The Contrasting Role of Nasopharyngeal Angiotensin Converting Enzyme 2 (ACE2) Expression in SARS-CoV-2 Infection: A Cross-Sectional Study of People Tested for COVID-19 in British Columbia

Authors: Aidan M. Nikiforuk1,4* (MSc.), Kevin S. Kuchinski1,2* (BSc.), David D.W. Twa2,3* (PhD), Christine D. Lukac1 (MPH), Hind Sbihi1,4 (PhD), C. Andrew Basham1,4 (MSc.), Christian Steidl3 (MD), Natalie A. Prystajecky1,2 (PhD), Agatha N. Jassem1,2 (PhD), Mel Krajden1,2 (MD), David M, Patrick1,4 (MD) and Inna Sekirov1,2 (PhD).

*these authors contributed equally to the work.

1British Columbia Centre for Disease Control, Vancouver, V5Z 4R4, British Columbia, Canada
2Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada
3British Columbia Cancer Research Centre, Vancouver, V5Z 1L3, British Columbia, Canada
4School of Population and Public Health, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada

Corresponding Author: Dr. Inna Sekirov MD/ PhD, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada, V5Z 4R4 and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.

email: inna.sekirov@bccdc.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Summary

Background
Angiotensin converting enzyme 2 (ACE2) serves as the host receptor for SARS-CoV-2, with a critical role in viral infection. We aim to understand population level variation of nasopharyngeal ACE2 expression in people tested for COVID-19 and the relationship between ACE2 expression and SARS-CoV-2 viral RNA load, while adjusting for expression of the complementary protease, Transmembrane serine protease 2 (TMPRSS2), soluble ACE2, age, and biological sex.

Methods
A cross-sectional study of n=424 participants aged 1-104 years referred for COVID-19 testing was performed in British Columbia, Canada. Participants who tested negative or positive for COVID-19 were matched by age and biological sex. Viral and host gene expression was measured by quantitative reverse-transcriptase polymerase chain reaction. Bivariate analysis and multiple linear regression were performed to understand the role of nasopharyngeal ACE2 expression in SARS-CoV-2 infection. The ACE2 gene was targeted to measure expression of transmembrane and soluble transcripts.

Findings
Analysis shows no association between age and nasopharyngeal ACE2 expression in those who tested negative for COVID-19 (P=0.092). Mean expression of transmembrane (P=1.2e-4), soluble ACE2 (P<0.0001) and TMPRSS2 (P<0.0001) differed between COVID-19-negative and -positive groups. In bivariate analysis of COVID-19-positive participants, expression of transmembrane ACE2 positively correlated with SARS-CoV-2 RNA viral load (P<0.0001), expression of soluble ACE2 negatively correlated (P<0.0001), and no correlation was found with TMPRSS2 (P=0.694). Multivariable analysis showed that the greatest viral RNA loads were observed in participants with high transmembrane ACE2 expression (B=0.886, 95%CI:[0.596 to 1.18]), while expression of soluble ACE2 may protect against high viral RNA load in the upper respiratory tract (B= -0.0990, 95%CI:[-0.176 to -0.0224]).
Interpretation

Nasopharyngeal ACE2 expression plays a dual, contrasting role in SARS-CoV-2 infection of the upper respiratory tract. Transmembrane ACE2 positively correlates, while soluble ACE2 negatively correlates with viral RNA load after adjusting for age, biological sex and expression of TMPRSS2.

Funding

This project (COV-55) was funded by Genome British Columbia as part of their COVID-19 rapid response initiative.

Research in Context

Evidence before this study

We conducted a MEDLINE® search using the MeSH topic terms: “angiotensin converting enzyme 2 expression” and “SARS” and “age”, restricting the search to English-language reports published from January 1st, 2020. The search returned n=98 articles, eighty-eight of which reported primary research; these were further filtered by the MeSH qualifiers “epidemiology” and “virology” to provide n=43 articles. Search results were further restricted to the MeSH headings: age, virus replication, host pathogen interactions, nasal mucosa, RNA viral load and real-time polymerase chain reaction, which returned n=24 results. We read through the abstracts of these twenty-four papers and manually selected n=4 for full review. This review provided evidence that ACE2 expression is greater in the upper respiratory tract than the lower respiratory tract, when measured by single-cell RNA sequencing, immunohistochemistry and high-sensitivity RNA in-situ mapping. In the upper airway, ACE2 mRNA abundance closely correlates with protein concentration. A reverse genetics study demonstrated that a variable SARS-CoV-2 infection gradient occurs in the respiratory tract, with highest viral loads expected in the upper airway. In several patient cohorts, upper respiratory expression of ACE2 was significantly increased in those who smoke, in this analysis multivariable adjustment of age suggested limited confounding.
Added Value of this study

We measured ACE2 expression in the context of COVID-19 testing to investigate the role of nasopharyngeal ACE2 in SARS-CoV-2 infection. Our findings support previous work: the strong correlation we observe between nasopharyngeal ACE2 expression and SARS-CoV-2 load also suggests an infection gradient across the human airway. Greater viral loads are expected in tissue with high transmembrane ACE2 expression. No observed relationship between age and nasopharyngeal ACE2 in COVID-19-negative participants suggests that upper airway ACE2 expression is independent of the RAAS pathway. We are the first to measure endogenous expression of soluble ACE2 in the upper airway of people tested for COVID-19 and include this measure in multivariable analysis. Importantly, nasopharyngeal expression of soluble ACE2 negatively correlates with viral RNA load, inferring a protective role at the population level.

Implications of all the available evidence

Considering all available evidence, ACE2 may play a dual, contrasting role in SARS-CoV-2 infection of the upper airway. Expression of transmembrane ACE2 positively correlates with SARS-CoV-2 RNA load, while expression of soluble ACE2 shows a negative association. Expression of nasopharyngeal ACE2 does not seem to correlate with age, as would be expected in the lower respiratory tract. Risk factors such as smoking may affect the baseline risk of high SARS-CoV-2 RNA loads in those infected. Factors associated with endogenous nasopharyngeal expression of soluble ACE2 require further investigation.

Introduction

In December 2019, clusters of viral pneumonia were reported in Wuhan, China. A novel highly pathogenic human coronavirus was isolated and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease (COVID-19). SARS-CoV-2 utilizes the same host receptor and protease for cell entry as the human coronaviruses SARS-CoV and HCoV-NL63. The receptor angiotensin converting enzyme 2 (ACE2) mediates cellular entry, while transmembrane serine protease 2 (TMPRSS2) serves as a complementary host factor. In human physiology, ACE2 has a cardiovascular protective and anti-inflammatory role, as a constituent of the renin-angiotensin-aldosterone-system (RAAS). Interestingly,
expression of ACE2 in the nasopharyngeal tract exceeds that in alveolar tissue, explaining initiation of SARS-CoV-2 infection in the upper respiratory tract.5 Transcription of ACE2 produces at least two dominant mRNA transcripts responsible for translation into soluble and membrane-bound protein isoforms.6 Although the transmembrane isoform has been shown to be crucial for viral entry into host cells, the role of soluble ACE2 remains uncharacterized, though some evidence exists that it protects against SARS-CoV-2 infection.7,8 Transmembrane serine protease 2 (TMPRSS2) contributes to SARS-CoV-2 cell entry by cleaving the viral spike protein into a conformational form necessary for membrane fusion.2 Unlike ACE2, TMPRSS2 expression occurs more stably across upper airway tissue and alternative enzymes such as cathepsin B/L may perform its role in viral infection interchangeably.5 To understand the importance of ACE2 expression in SARS-CoV-2 infection, we performed a cross-sectional study of people tested for COVID-19 in British Columbia, Canada. The study aims to investigate the relationship between i) nasopharyngeal expression of ACE2 and age in COVID-19-negative participants, ii) nasopharyngeal expression of host genes by COVID-19 test result and iii) nasopharyngeal expression of transmembrane ACE2 and viral RNA load in those who tested COVID-19-positive adjusting for age, biological sex, expression of soluble ACE2 and TMPRSS2. Characterizing expression of nasopharyngeal ACE2 in a large group of participants tested for COVID-19 will increase our knowledge of host genes involved in viral infection and may allow for assessment of baseline risk.

Methods

Study Design and Participants

We performed cross-sectional sampling of people tested for COVID-19 at the British Columbia Center for Disease Control Public Health Laboratory (BCCDC-PHL) from 24/3/2020-9/5/2020. At the time of sampling, provincial health guidelines required a clinical indication for referral of a COVID-19 test. Inclusion criteria were applied to select study participants whose diagnostic specimens were: tested centrally at the BCCDC-PHL, collected by nasopharyngeal swab, the first test administered by provincial health number, suspended in Hologic AptimaTM media, negative for concurrent Influenza A, B or Respiratory syncytia virus infection, stored at -80\degree C following RNA extraction and for whom host gene expression was successfully measured by quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). People meeting the
inclusion criteria (n=444), were excluded (n=16) if samples had a SARS-CoV-2 E gene cycle threshold (Ct) value of >=38 by qRT-PCR. COVID-19-positive cases (n=212) were matched in a 1:1 ratio with those that tested negative for COVID-19 by age and biological sex (Figure S1).

Ethical approval for the study was obtained from the University of British Columbia human ethics board (H20-01110). Demographic variables of age and biological sex were drawn from public health laboratory data. Laboratory methods were performed in a College of American Pathologists accredited laboratory with externally validated qRT-PCR assays.9–12

Procedures

Nasopharyngeal samples collected in Hologic Aptima™ media were stored at 4°C before RNA extraction using the Viral RNA isolation kit on the MagMAX-96™ platform (ThermoFisher).13

Host and viral gene targets were assayed by qRT-PCR on the Applied Biosystems 7500 Real-Time PCR platform using TaqMan FastVirus 1-step polymerase (ThermoFisher). Total reaction volumes equaled 20μl, with 5μl of RNA template, 1μl of 20x primer/probe, 5μl Fast Virus and 9μl of nuclease free water per reaction. Cycling conditions were set to: 50°C for 5 minutes, 95°C for 20 seconds followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 minute. A multiplex qRT-PCR reaction targeting SARS-CoV-2 envelope (E) and host ribonuclease P (RNaseP) was used to diagnosis acute viral infection by presence of viral RNA.14 Expression of RNaseP was used to ensure sample quality and control for sampling variation.14 Participants were diagnosed as COVID-19 positive with an E gene Ct value of <38. The E gene Ct values were transformed to genome equivalents per millilitre by making a 5-fold, 1:10 standard curve of SARS-CoV-2 synthetic RNA- MN908947·3 (Twist Bioscience) (Table S1).

Commercially available primer probe sets were used to amplify the host gene targets TMPRSS212 (Hs00237175_m1) (ThermoFisher) and ACE2 10 (Hs01085333_m1, HS01085340_m1) by multiplex qRT-PCR with a glyceraldehyde 3-phosphate dehydrogenase (GAPDH) control11 (Hs02758991_g1) (ThermoFisher). Relative gene expression was calculated between TMPRSS2, ACE2 and GAPDH using the 2−ΔΔCt method.15 Transmembrane ACE2 was defined from the Hs01085333_m1 (ThermoFisher) gene target, which exon spans the transmembrane domain. Soluble ACE2 was defined as absolute relative expression between the Hs01085333_m1 (ThermoFisher) and HS01085340_m1 (ThermoFisher) gene targets (Figure...
The HS01085340_m1 target, does not include the transmembrane domain and is positioned between two motifs essential for SARS-CoV receptor binding (Figure S3).

Statistical Analysis

De-identified data reporting participant COVID-19 test result, site of sample collection, type of collection media, accessioning laboratory, age and biological sex was accessed from public health laboratory records. Matching of COVID-19-positive people, who met the described inclusion, exclusion criteria, to COVID-19-negative participants by age and biological sex in a 1:1 ratio was performed by a nearest neighbor algorithm (n=424). Bivariate analysis was performed between: age, biological sex, viral RNA load, TMPRSS2, soluble or transmembrane ACE2, and COVID-19 test result. The balance of covariates between test groups was examined post matching.

The relationship between age and nasopharyngeal expression of transmembrane ACE2 was examined in COVID-19-negative participants over the age of 18 by both linear regression and categorization of age into 9-year intervals. Differences in ACE2 expression by age category were tested by analysis of variance.

Differences in mean expression of host genes by COVID-19 diagnosis was further examined by Levene’s test for equal variance and a two-tailed, t-test assuming non-equal variance. Correlation between host gene expression and viral RNA load was analyzed by simple linear regression. Multivariable analysis was performed by multiple linear regression, variable importance was assessed by the partial f-test. Collinearity was examined by the variable inflation factor with a cut-off of 10. The common cause criterion was applied to control for measured confounding, effect modification was incorporated when found statistically significant. All analysis was performed in RStudio version 1.2.5042 using the packages: car, ggsci, tidyverse, dataexplorer, ggpubr, lmtest, publish, forcats, matchit, tableone and effects.

Role of the Funding Source and Data Stewards

The funder and data stewards played no role in the study design, analysis or interpretation of the results. As such, interpretation of the results does not reflect the views of the funding organization or data stewards. The study was performed as research at the University of British Columbia and British Columbia Centre for Disease Control.
Results

The analytic dataset contains an age- and biological sex-matched sample of n=424 participants tested for COVID-19 in British Columbia from 24/3/2020-9/5/2020 (Figure S1). Participant characteristics are shown in Table 1. The mean age of n=212 COVID-19-positive participants was 61.6, 47.6% were biologically male. In n=212 COVID-19-negative participants, the mean age was 62.1, 48.6% were biologically male. Bivariate analysis between the examined covariates and diagnosis (COVID-19-negative or -positive) shows balance of age (P=0.83) and biological sex (P=0.92) between groups. Viral RNA (E gene Ct) was only detected in COVID-19 positive participants, with an average Ct value of 28.2. Relative expression of transmembrane ACE2, soluble ACE2, and TMPRSS2 statistically differed by COVID-19 test result (Table 1).

Table 1: Structure and Characteristics of Analytic Data Stratified by COVID-19 Test Result (n=424).

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Level</th>
<th>Total (n)</th>
<th>Negative</th>
<th>Positive</th>
<th>Chi X^2</th>
<th>T-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (mean [SD])</td>
<td>..</td>
<td>424</td>
<td>212</td>
<td>212</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>Sex (n [%])</td>
<td>..</td>
<td>424</td>
<td>62.2 [24.3]</td>
<td>61.7 [23.5]</td>
<td>..</td>
<td>0.83</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>204</td>
<td>103 [48.6]</td>
<td>101 [47.6]</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>220</td>
<td>109 [51.4]</td>
<td>111 [52.4]</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>E Gene Ct (mean [SD])</td>
<td>..</td>
<td>424</td>
<td>..</td>
<td>28.2 [7.18]</td>
<td>..</td>
<td>..</td>
</tr>
<tr>
<td>Transmembrane ACE2 (mean [SD])</td>
<td>..</td>
<td>424</td>
<td>(0.00) [1.08]</td>
<td>(-0.609) [1.90]</td>
<td>..</td>
<td>1.2e-4</td>
</tr>
<tr>
<td>Soluble ACE2 (mean [SD])</td>
<td>..</td>
<td>424</td>
<td>(0.00) [0.625]</td>
<td>(-0.898) [1.47]</td>
<td>..</td>
<td><0.0001</td>
</tr>
<tr>
<td>TMPRSS2 Total (mean [SD])</td>
<td>..</td>
<td>424</td>
<td>(0.00) [0.797]</td>
<td>(-1.35) [1.60]</td>
<td>..</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Participants who tested negative or positive by COVID-19 were matched by age and biological sex, balance was checked between groups post matching by chi X^2 or t-test (α=0.05). Relative gene expression of ACE2 and TMPRSS2 was normalized to the negative group by the 2^ΔΔCt method. 15

Relationship between ACE2 expression and age in COVID-19-negative participants

No relationship was found between nasopharyngeal ACE2 expression and age in COVID-19 negative participants between 19 and 98 years of age with age as a continuous variable by
linear regression (P=0.076). This finding was reproduced when age was categorized into nine-year intervals (P=0.092) (Figure 1).

Figure 1: Relationship between age and nasopharyngeal transmembrane ACE2 expression in COVID-19-negative participants. Boxplots of transmembrane ACE2 expression by nine-year age categories in COVID-19-negative participants between the ages of 19 and 98 (n=198); boxes represent the Q1-Q3 interquartile range, whiskers represent 1.5x the Q1 or Q3 and horizontal lines the median transmembrane ACE2 expression by age category. Nine-year categories were selected to optimize the distribution of observations between groups. Participants who tested negative younger than 19 or older than 98 were excluded based on n<10 observations per age group. No difference was detected in mean transmembrane ACE2 expression among age categories (ANOVA, P=0.092).

Nasopharyngeal expression of ACE2 and TMPRSS2 by COVID-19 test result

Bivariate analysis showed a significant mean difference in transmembrane, soluble ACE2 and TMPRSS2 expression between COVID-19-negative and -positive participants (Figure 2). These differences were further examined to detect non-equal variance for all host gene targets by COVID-19 test result. Assuming non-equal variance, mean expression differed for transmembrane ACE2 (P=1.2e-4), soluble ACE2 (P<0.0001) and TMPRSS2 (P<0.0001) between
those testing COVID-19-negative or -positive (Figure 2). Expression of all three host genes was lower in COVID-19-positive participants.

Figure 2: Relative nasopharyngeal gene expression of targeted host genes by COVID-19 test result. Gene expression is portrayed in kernel density plots stratified by COVID-19 test result. Probability densities of relative host gene expression are shown by positive (red, transmembrane ACE2; blue, soluble ACE2; yellow, TMPRSS2) and negative COVID-19 test results (grey). Levene’s test was used to detect non-equal variance in gene expression for all host targets between COVID-19-negative and -positive participants. A two-tailed, t-test was used to examine mean difference in host gene expression by COVID-19 test result assuming unequal variance: transmembrane ACE2 (P=1·2e-4), soluble ACE2 (P<0·0001) and TMPRSS2 (P<0·0001).

Association between host gene expression and viral RNA load in COVID-19-positive participants

Correlations between each host gene and viral RNA load were examined by simple linear regression. Nasopharyngeal expression of transmembrane ACE2 positively correlated with viral RNA (P<0·0001). Expression of soluble ACE2 negatively correlated with viral RNA (P<0·0001). No correlation was found between TMPRSS2 expression and viral RNA (P=0·69).
Multiple linear regression estimated that a one-unit change in transmembrane ACE2 expression increases viral RNA load by $0.886 \log_{10} \text{GE/mL}$ (95%CI: 0.596 to 1.18) adjusting for age, biological sex, expression of soluble ACE2 and TMPRSS2 (Table 2). No collinearity was detected between covariates. Biological sex could have been dropped from the model as evident from comparison between nested models ($P=0.76$), but was kept for validity. A partial f-test indicated effect modification between transmembrane and soluble ACE2 expression ($P=0.010$) (Table 2). No effect modification was observed between transmembrane expression of ACE2 and TMPRSS2 ($P=0.23$). High expression of soluble ACE2 decreases viral RNA load ($B=-0.0990$, 95%CI: [-0.176 to -0.0224]) (Table 2). The association between transmembrane ACE2 expression and viral RNA in nasopharyngeal tissue differs by the concomitant level of soluble ACE2 expressed (Figure 3). Effect modification was visualized by categorizing soluble ACE2 by the relative mean expression +/- 2 standard deviations of all study participants (Low= -2.86, Mean= -0.444, High= 1.98, SD=2.43) (Figure 3).
Table 2: Unadjusted, Adjusted and Effect Modification Linear Regression Models of SARS-CoV-2 Viral RNA Load

<table>
<thead>
<tr>
<th>Variables</th>
<th>Unadjusted, (B (95% CI))</th>
<th>Adjusted, (B (95% CI))</th>
<th>Effect Modification, (B (95% CI))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept (^a)</td>
<td>5.44 (5.12 to 5.77)</td>
<td>2.55 (1.71 to 3.40)</td>
<td>2.48 (1.65 to 3.31)</td>
</tr>
<tr>
<td>Transmembrane ACE2 Expression (^b)</td>
<td>0.493 (0.329 to 0.656)</td>
<td>0.886 (0.596 to 1.18)</td>
<td>0.624 (0.274 to 0.975)</td>
</tr>
<tr>
<td>Soluble ACE2 Expression (^c)</td>
<td>--</td>
<td>-0.243 (-0.494 to 0.00834)</td>
<td>-0.484 (-0.794 to -0.174)</td>
</tr>
<tr>
<td>TMPRSS2 Expression (^d)</td>
<td>--</td>
<td>-0.873 (-1.21 to -0.533)</td>
<td>-0.713 (-1.07 to -0.336)</td>
</tr>
<tr>
<td>Age (^e)</td>
<td>--</td>
<td>0.0276 (0.0162 to 0.0389)</td>
<td>0.0259 (0.0146 to 0.0372)</td>
</tr>
<tr>
<td>Biological Sex (^f)</td>
<td>--</td>
<td>0.0778 (-0.424 to 0.579)</td>
<td>0.0735 (-0.422 to 0.569)</td>
</tr>
<tr>
<td>Transmembrane ACE2* Soluble ACE2 Expression (^g)</td>
<td>--</td>
<td>--</td>
<td>-0.0990 (-0.176 to -0.0224)</td>
</tr>
</tbody>
</table>

Regression of SARS-CoV-2 viral RNA load by Transmembrane ACE2, Soluble ACE2 and TMPRSS2 Expression, Age and Biological Sex.

\(^a\) Viral RNA load in females, measured by \(\log_{10}\) viral genome equivalents per millilitre (\(\log_{10}\) GE/mL) targeting the SARS-CoV-2 E gene.

\(^b\) Transmembrane ACE2 Expression (2\(^\Delta\Delta CT\)) in the nasopharyngeal epithelium of SARS-CoV-2 positive participants.

\(^c\) Soluble ACE2 expression (2\(^\Delta\Delta CT\)) in the nasopharyngeal epithelium of SARS-CoV-2 positive participants.

\(^d\) TMPRSS2 expression (2\(^\Delta\Delta CT\)) in the nasopharyngeal epithelium of SARS-CoV-2 positive participants.

\(^e\) Age, measured in years.

\(^f\) Biological sex, effect of being male.

\(^g\) Effect modification term, the effect of transmembrane ACE2 expression on viral RNA load differs by expression of soluble ACE2.
Figure 3: The association between transmembrane ACE2 expression and SARS-CoV-2 RNA load in nasopharyngeal tissue differs by the amount of soluble ACE2 expression. Soluble ACE2 expression was categorized into low, mean and high levels to demonstrate the relationship. The low category (grey) represents soluble ACE2 expression two standard deviations below the mean expression. The mean category (orange) codes for the mean soluble ACE2 expression, zero standard deviations. The high category (blue) indicates soluble ACE2 expression two standard deviations above mean expression. Shaded areas represent 95% confidence intervals, solid lines represent B coefficients from multiple linear regression.

Discussion

In the described study, we measured nasopharyngeal ACE2 and TMPRSS2 relative gene expression by qRT-PCR in a cross-sectional sample of n=424 participants tested for COVID-19 in British Columbia. Analysis was performed to understand: the relationship between ACE2 expression and age in COVID-19-negative participants, differences in host gene expression between COVID-19-negative and -positive participants and the role of ACE2 in SARS-CoV-2
infection in those who tested positive for COVID-19.

Among participants tested negative for COVID-19, we found no relationship between nasopharyngeal ACE2 expression and age, in a group of adults between 19-98 years of age. This result, agrees with findings from other efforts to characterize nasopharyngeal ACE2 expression at the population level. Bunyavanich et al. reported a difference in ACE2 expression levels between children younger than ten years old and young adults from eighteen to twenty-four years old. No difference was evident between young adults, and adults twenty-five or more years in age. Lack of a relationship between nasopharyngeal ACE2 expression and progressive aging suggests that expression of ACE2 in the upper airway does not correlate with expression of ACE2 in the RAAS. The physiological importance of ACE2 in the RAAS suggests that its expression would increase in response to age as older people have higher prevalence of cardiovascular disease or similar comorbidities (i.e. diabetes). If nasopharyngeal expression of ACE2 occurs independently of the RAAS pathway, future studies should ascertain what factors if any regulate expression of soluble ACE2 in nasopharyngeal tissue and variation of ACE2 expression in COVID-19-negative people over time. Some populations, such as young children, may have differential levels of nasopharyngeal ACE2 expression which protect against SARS-CoV-2 viral infection. Participants who tested positive for COVID-19 were matched to those who tested negative by age and biological sex to estimate the direct relationship between host gene expression and SARS-CoV-2 test result. This analysis demonstrated that mean expression of transmembrane, soluble ACE2 and TMPRSS2 decreased in COVID-19-positive participants, while variation increased. Unfortunately, the limitation of reverse-causality in cross-sectional study design prevents us from understanding whether the presence of SARS-CoV-2 in positive samples affects host gene expression or host gene expression puts people at risk of viral infection. However, if we make the plausible assumption that at least a single round of viral replication must occur in order for qRT-PCR to generate a positive test result, it suggests that the observed variation in host gene expression of participants who test positive for COVID-19 results from viral replication. Numerous studies have demonstrated that coronavirus replication disrupts cellular transcription, as resources required by the cell to produce mRNA are instead sequestered by virus to replicate its genome. Reduced transcription of ACE2 by SARS-CoV, but not HCoV-NL63, in an in vitro model of Vero E6 cell infection was previously
suggested as a pathological mechanism. Putative SARS-CoV-2 disruption of ACE2 expression could partially explain the apparent association between hypertension, diabetes, and severe COVID-19. Answering these questions; however, requires a longitudinal study design to test the temporal effect of SARS-CoV-2 replication on the expression of ACE2 and other implicated host genes.

The sample was then restricted to participants who tested positive for COVID-19 to investigate the association between nasopharyngeal ACE2 expression and SARS-CoV-2 RNA load. Bivariate and multivariable analysis both suggest that ACE2 plays a dual, contrasting role in SARS-CoV-2 infection. Transmembrane ACE2 positively correlates with viral RNA load, while soluble ACE2 may limit viral infection by reducing viral RNA load. Interestingly, effect modification was observed between transmembrane and soluble ACE2 implicating that the proportion between these molecules may have more importance than absolute expression of either individually. For example, between two people with similar above-average nasopharyngeal transmembrane ACE2 expression, we would expect a higher viral RNA load in the one with lower soluble ACE2 expression. Though we are not equipped to characterize the mechanism by which soluble ACE2 plays a protective role in SARS-CoV-2 infection, identification of this effect at the population level warrants further investigation of the underlying mechanism. Previous work has postulated that soluble ACE2 restricts SARS-CoV/SARS-CoV-2 infection by acting as a decoy substrate. In a study of virus-ACE2 dynamics in engineered human tissue, instead of binding to transmembrane ACE2, virus particles bound to soluble ACE2 and were unable to infect susceptible cells. Moreover, recombinant soluble ACE2 was recently administered to a COVID-19 patient requiring ventilation. In the case report, administration of soluble ACE2 decreased viral RNA load in the patient’s plasma, tracheal aspirate and nasopharyngeal specimens. Additionally, soluble ACE2 did not interfere with production of IgG and assumed its cardiovascular protective role in the RAAS.

Soluble ACE2 may also influence the usage of Neuropilin-1 as a co-receptor or alternative receptor for SARS-CoV-2. Function of Neuropilin-1 for cell entry and infectivity may depend upon high SARS-CoV-2 viral load; therefore, expression of soluble ACE2 may limit SARS-CoV-2 tropism.

We acknowledge that the described study has several limitations. In our sample, the age distribution possesses a left skew which prevents us from examining the relationship between
age and nasopharyngeal expression of ACE2 in participants younger than 18 years of age. The difference in mean host gene expression observed between participants who tested negative or positive for COVID-19 cannot be resolved in a cross-sectional study design due to reverse causality. We attempted to control for immunological gene regulation by excluding people with endemic respiratory co-infections from Influenza A/B or Respiratory syncytia virus. We describe associations between transmembrane, soluble ACE2 and SARS-CoV-2 RNA load which suggest the dual, contrasting role of ACE2 in viral infection. However, we cannot provide evidence of the mechanism responsible for this association. Additionally, the measure of viral RNA load over-approximates infectious viral titre and viral RNA may be isolated in the absence of infectious virus.\(^{30}\)

In conclusion, we have characterized nasopharyngeal ACE2 expression in a sample of people tested for COVID-19. Analysis shows no relationship between age and nasopharyngeal ACE2 expression in COVID-19-negative participants 19-98 years old. Expression of nasopharyngeal ACE2 and TMPRSS2 differs between COVID-19-positive and –negative groups. The role of nasopharyngeal ACE2 in SARS-CoV-2 infection of the upper-airway may be differentiated by gene isoform expression; transmembrane ACE2 positively correlates with viral RNA load, while soluble ACE2 shows a negative association. Nasopharyngeal expression of ACE2 possesses a dual, contrasting role in SARS-CoV-2 infection at the population level.

Contributors

AMN, DDWT, KSK, NAP, ANJ, MK, DMP, and IS conceived, designed, and obtained funding for the project. AMN wrote the manuscript, editing was provided by Karen Chu. AMN, DDWT and KSK performed the experiments. CDL and HS obtained and cleaned laboratory data. AMN, KSK, DDWT, CAB, CDL, and HS analyzed the data under the direction of CS, NAP, ANJ, MK, DMP and IS. All authors interpreted the data, edited the manuscript and provided their approval to publish.
Declaration of Interests

The authors have no conflicts of interest to declare.

Acknowledgments

We would like to acknowledge the work of all our clinical colleagues at the British Columbia Centre for Disease Control and across the globe in responding to the COVID-19 pandemic. This work would not have been possible without funding from Genome British Columbia. We would like to thank Michael Donoghue for managing this multi-stakeholder project and Karen Chu for assisting as a medical copy editor.

References

7. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of

Enzyme 2 in Children and Adults. JAMA 2020; published online May 20.

Bullard J, Dust K, Funk D, et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clin Infect Dis 2020; published online May 22. DOI:10.1093/cid/ciaa638.
Figure S1: Inclusion, exclusion criteria applied to all people tested for COVID-19 in British Columbia from 24/3/2020-9/5/2020 to select study participants (analytic data). Specimens from people tested for COVID-19 with the following criteria were included (white box): tested at the BCCDC-PHL, specimen was collected by nasopharyngeal swab, test was the primary test by provincial health number, specimen was suspended in Hologic Aptima™ media and stored at -80°C following testing, negative for Influenza A, B or Respiratory syncytia virus infection and possessing host gene expression data. Those with a COVID-19-positive diagnosis, were further restricted by excluding (grey box) SARS-CoV-2 E gene Ct values of > 38 by qRT-PCR (n=212), and matched in a 1:1 ratio with COVID-19-negative people (n=212) by age and biological sex (bold text).
Figure S2: Correlation between host gene expression in COVID-19-positive participants and SARS-CoV-2 RNA load. The level of transmembrane ACE2 (red), soluble ACE2 (blue) and TMPRSS2 (black) expression in positive cases of COVID-19 and its relationship with SARS-CoV-2 RNA is shown in Log_{10} genome equivalents per millilitre (GE/mL). Host gene expression was measured by quantitative real-time PCR and normalized to expression of the housekeeping gene GAPDH by the (2^{ΔΔCt}) method. Soluble ACE2 was defined as absolute relative expression between the Hs01085333_m1 (ThermoFisher) and HS01085340_m1 (ThermoFisher) gene targets (Figure S3).
Simple linear regression was used to estimate correlations, the reported P values are for the Beta-coefficients of host gene expression.

Table S1: Serial Dilution of SARS-CoV-2 RNA for Generation of a Standard Curve by Quantitative Real-Time Polymerase Chain Reaction.

<table>
<thead>
<tr>
<th>Log_{10} Dilution</th>
<th>10^0</th>
<th>10^1</th>
<th>10^2</th>
<th>10^3</th>
<th>10^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>~GE/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>36.1</td>
<td>32.6</td>
<td>28.9</td>
<td>25.9</td>
<td>22.8</td>
</tr>
<tr>
<td>R2</td>
<td>35.8</td>
<td>31.9</td>
<td>28.8</td>
<td>25.8</td>
<td>22.8</td>
</tr>
<tr>
<td>R3</td>
<td>34.8</td>
<td>32.3</td>
<td>28.8</td>
<td>25.8</td>
<td>22.8</td>
</tr>
<tr>
<td>R4</td>
<td>35.6</td>
<td>31.7</td>
<td>28.8</td>
<td>25.7</td>
<td>22.8</td>
</tr>
<tr>
<td>R5</td>
<td>34.5</td>
<td>31.9</td>
<td>28.6</td>
<td>25.7</td>
<td>22.3</td>
</tr>
<tr>
<td>R6</td>
<td>34.0</td>
<td>32.1</td>
<td>28.7</td>
<td>25.5</td>
<td>22.7</td>
</tr>
<tr>
<td>R7</td>
<td>34.4</td>
<td>31.9</td>
<td>28.6</td>
<td>25.6</td>
<td>22.8</td>
</tr>
<tr>
<td>R8</td>
<td>34.1</td>
<td>31.4</td>
<td>28.8</td>
<td>25.6</td>
<td>22.8</td>
</tr>
<tr>
<td>R9</td>
<td>34.7</td>
<td>31.4</td>
<td>28.7</td>
<td>25.6</td>
<td>22.9</td>
</tr>
</tbody>
</table>

A 5-fold, 1:10 serial dilution of SARS-CoV-2 synthetic RNA was performed over nine independent replicates (n=9) to measure a standard curve by quantitative real-time PCR targeting the viral E gene.

A simple linear regression model was fit to n=9 replicates of the SARS-CoV-2 RNA standard curve: GE/mL = b_0 + b_1x_i. Where, Genome Equivalents per millilitre (GE/mL) = 34.5 - 1.27\ln(x) and R^2 = 0.999.
Homo sapiens angiotensin I converting enzyme 2 (ACE2), transcript variant 2, mRNA NCBI Reference Sequence: NM_021804.3

\[
\begin{align*}
\text{5'} & \quad \text{ggctactaca cttgcacatg gcgtacaggt acaatgagct cgcttgctga agatgcaag} \\
\text{10} & \quad \text{aaaactcta aatcctctt gcattcttg ggtcctgat ccatgtctcg aacggctgat} \\
\text{15} & \quad \text{gaggtctgca g aggcttgctc ggtgcattc agaattcatt caggtctctg} \\
\text{20} & \quad \text{gtagctgctc ctaggcttg ctctgattct cgcgtgtttc aactgtctct} \\
\text{25} & \quad \text{cttgcttga agagcttga tcatgctctg cggcttcctg aacgggctg} \\
\text{30} & \quad \text{ctttgtcctg aaactgtacct cgcaggtctg tacaggtttg aacctgtgaag} \\
\text{35} & \quad \text{ctttacttta aatgagaggc tctgggcttg ggaaagctgg agatctgagg} \\
\text{40} & \quad \text{tgcggcaagca gctgaggcca gaatatcgttg acaacgtctg gatctggctc} \\
\text{45} & \quad \text{ctctgttgca cctgcaagct ctctgttgca cctgcaagct ctctgttgca} \\
\text{50} & \quad \text{ctctgttgca cctgcaagct ctctgttgca cctgcaagct ctctgttgca}
\end{align*}
\]

Legend:
Transmembrane Domain
SARS-CoV-2 Binding Domain
ACE2: HS01085333_m1

Figure S3: Nasopharyngeal expression of ACE2 was determined by two quantitative real-time polymerase chain reaction targets, one target (yellow) exon spans the ACE2 transmembrane domain. The other does not include the transmembrane domain (pink) and lays nested between two motifs known to interact with the SARS-CoV receptor binding domain (blue). The measure of soluble ACE2 represents normalized expression of the pink to yellow target, or the proportion of non-transmembrane ACE2 to transmembrane ACE2.