Novel early-warning system for evaluating control and elimination of SARS-CoV-2 reveals alignment of policy with local transmission in New Zealand

Kris V Paragaa,\,* and Christl A Donnellya,\,b

aMRC Centre for Global Infectious Disease Analysis, Imperial College London, London, W2 1PG
bDepartment of Statistics, University of Oxford, Oxford, OX1 3LB

*For correspondence: k.parag@imperial.ac.uk

Abstract

Discriminating between second waves of community transmission, which necessitate broad-spectrum interventions, and multiple stuttering epidemic chains from repeated importations, which require targeted controls, is crucial for outbreak preparedness. However, necessarily scarce data available in the lull between potential epidemic waves cripples standard inference engines, blurring early-warning signals. We propose a novel framework for denoising inter-wave data, revealing how timely policy in New Zealand achieved local elimination and avoided dangerous resurgence.

Main Text

The timeliness of the application and relaxation of non-pharmaceutical interventions (NPIs) (e.g. border closures, quarantines and social-distancing mandates) throughout the COVID-19 pandemic has been a polarising and pressing topic of global debate. Deciding on how best to balance the risk of resurging infections (i.e. second waves) against the costs of sustaining NPIs and related restrictions is non-trivial and lacks consensus. Among the key early-warning analytics informing NPI policy is the effective reproduction number (R), popularly displayed on many COVID-19-related websites and dashboards. While, theoretically, an escalation from $R < 1$ (the epidemic is waning) to $R > 1$ (it is growing) forewarns of resurgence, robustly identifying this transition during periods of low incidence is fundamentally difficult, in practice.
In such periods, necessarily scarce data cripples standard inference approaches. However, reliable estimates are crucial for informing decision-making and delineating between the chances of elimination and second waves. We present a novel early-warning framework for robustly assessing R and the likelihood of elimination, which circumvents these problems, highlights the diverse roles of imported and local cases in effecting resurgence and underscores the influence of timely NPI application and relaxation. The dynamics of COVID-19 in New Zealand present a striking example of how impactful swift and decisive intervention policy can be \(^1\) and a representative yet generalisable use-case for our proposed framework.

New Zealand first recorded local transmission of the SARS-CoV-2 virus in mid-March 2020 and in under 2 weeks initiated a rapid 4-level alert system for NPI deployment. This culminated in a nationwide lockdown (level 4) on March 26. Across this period surveillance and testing were continually improved; with the delay from symptom-onset to case notification reduced to under 2 days, for example \(^1\). As the epidemic waned, several NPIs were relaxed by May 14 (level 2). Subsequently, no new cases were observed for a prolonged period leading to a declaration of elimination on June 9 (level 1) \(^1\). However, sustained transmission was detected again in early August and NPIs were swiftly reintroduced by August 12 to avoid a second wave (levels 2-3). De-escalation (level 1) followed on October 7; the last date we analyse. The top panel of Figure 1 contextualises this timeline against reported cases.

While descriptive studies have explained how New Zealand’s policy facilitated epidemic control and elimination \(^1\), we compute novel transmission and risk indicators that closely align salient transmission details with policy action-points, revealing how timely NPIs secured elimination and averted resurgence. Key results are in the bottom panel of Figure 1. We introduce two informative early-warning analytics – the smoothed local R number (red) and
the Z number (blue), which respectively measure community transmission and confidence in local elimination. Epidemic growth can be mischaracterised when distinctions between local and imported cases are ignored2. However, existing local R inference methods (e.g. $EpiEstim$3) do not fully exploit the information encoded within incidence data4. Consequently, they struggle when data are scarce and become dominated by their prior model assumptions. These issues are amplified when low-incidence periods are prolonged, as in New Zealand.

Under these conditions it is vital to distinguish between (i) true second waves of community transmission, which may necessitate broad-spectrum NPIs e.g. national lockdowns, and (ii) multiple stuttering epidemic chains due to repeated importations, which require targeted NPIs e.g. isolation or quarantine of travellers. Our local R estimator compensates for these issues by generalising new methodology4 – which formally maximises the information extracted from incidence data (termed smoothing in engineering) and hence the statistical robustness of R estimates – to include the local-imported dynamics previously used to investigate (i)–(ii) for zoonoses2. Our Z number extends recent approaches for forecasting epidemic lifetimes5, integrating the smoothed local R to evaluate the confidence at any time-point that there will be no future local cases i.e. that the epidemic is eliminated. This framework exposes early-warning transmission signals buried in scarce data, forms part of the $EpiFilter$ package4 and is detailed in the Supplementary Information.

Using this (R, Z) framework, we demonstrate how NPI decision times aligned with community transmission in New Zealand, as depicted in Figure 1. Initially, there was notable uncertainty around R suggesting that either supercritical or subcritical transmission might be occurring. The early response of New Zealand quickly suppressed the first possibility, confidently forcing R below 1, following lockdown. Swift action here was likely critical since delayed responses in other countries have been correlated with larger epidemic sizes. An $R < 1$ was sustained for a significant period after most NPIs were relaxed. We compared this
with naïve R estimates that ignore local-import case distinctions and found stark differences in the Supplementary Information. We inferred strong support for the hypothesis that this naïve R, which is often shown on COVID-19 dashboards, was above 1 and could therefore mislead policymakers.

Post-relaxation, the Z number, which characterises risks to elimination from both imported and local cases, increased, suggesting the first wave could be declared over with 95% and 99% certainty by June 5 and 10, respectively. This corroborates the official declaration on June 9\(^\text{T}\). After elimination, recurrent introductions seeded new outbreaks, which led to the estimate of R climbing confidently above 1 just before the resurgence action-point. This steep rise in R (and fall of Z) highlights that not only was a second wave likely but also that its transmission potential was larger than the first. The timely, unequivocal response of New Zealand in August suppressed transmission and likely averted a more explosive second epidemic. The observed sharp decline in R and its remaining below 1 demonstrates the efficacy of this policy and supports the belief that New Zealand regained control of COVID-19 in early October.

Understanding the transmission forces driving epidemic elimination and spread is critical to the effective design and timely implementation of NPIs. Appropriate responses to import-driven versus locally sustained outbreaks can differ markedly and materially given that they are usually resource-limited. While naïve R estimates and cross-country comparisons have become popularised across the COVID-19 pandemic, we argue that locally relevant strategies tuned to the specific dynamics of an area are imperative. Our proposed early-warning (R, Z) framework can support this aim, especially in the crucial data-limited lull between potential epidemic waves. While our framework provided rigorous underpinning and insight into New Zealand’s national response, it can also be applied at regional or district levels, both in real-time and retrospectively, to extract fine-scale insights. Local and
contextualised analytics may be critical to separating the signal from the noise when it comes to effective NPIs.

References

Main Figure
Figure 1: **Local transmission dynamics of COVID-19 in New Zealand.** The top panel shows the local cases by date reported (red) and the additional cases due to introductions or imports (grey). Vertical lines provide key policy change-times and alert levels in response to these caseloads. The bottom panel presents effective reproduction number \((R)\) estimates from *EpiFilter* (red with 95% confidence bands – these rigorously extract more information from incidence curves than several standard approaches\(^3\)) and corresponding probabilities (in %) of epidemic elimination \((Z)\) – defined as the probability of no future local cases (blue). Both analytics account for the difference between local and imported cases. Transmission is largely driven by repeated imports with mostly subcritical local spread following timely interventions. Not only was national lockdown impactful, but elimination could be declared with 95% (99%) confidence on June 5 (10). It was actually declared on June 9\(^1\). Recurring
importations after this point eventually seeded a new epidemic that was decisively averted by timely measures in August. This resurgence may have presented more risk than the initial wave in March.

Funding

This work is jointly funded under grant reference MR/R015600/1 by the UK Medical Research Council (MRC) and the UK Department for International Development (DFID) under the MRC/DFID Concordat agreement and is also part of the EDCTP2 programme supported by the European Union.