Healthcare workers hospitalized due to COVID-19 have no higher risk of death than general population. Data from the Spanish SEMI-COVID-19 Registry.

Risk of death of healthcare workers hospitalized due to COVID-19

Jesús Díez-Manglano1*, Marta Nataya Solís Marquínez2, Andrea Álvarez García2, Nicolás Alcalá-Rivera1, Irene Maderuelo Riesco2, Martín Gericó Aseguinolaza1, José Luis Beato Pérez3, Manuel Mendez Bailon4, Ane Elbire Labirua-Iturburu Ruiz5, Miriam García Gómez6, Carmen Martinez Cilleros7, Paula Maria Pesqueira Fontan8, Lucy Abella Vázquez9, Julio César Blázquez Encinar10, Ramon Boixeda11, Ricardo Gil Sánchez12, Andrés de la Peña Fernández13, Jose Loureiro Amigo14, Joaquin Escobar Sevilla15, Marcos Guzmán Garcia16, María Dolores Martín Escalante17, Jeffrey Oskar Magallanes Gamboa18, Angel Luís Martínez Gonzalez19, Carlos Lumbreras Bermejo20, Juan Miguel Antón Santos21, for the SEMI-COVID-19 Network**.

1 Internal Medicine Department, Royo Villanova Hospital, Zaragoza, Spain
2 Internal Medicine Department, San Agustin University Hospital, Avilés (Asturias), Spain
3 Internal Medicine Department, Albacete University Hospital, Albacete, Spain
4 Internal Medicine Department, San Carlos Clinical Hospital, Madrid, Spain
5 Internal Medicine Department, Santa Marina Hospital, Bilbao, Spain
6 Internal Medicine Department, Urduliz Alfredo Espinosa Hospital, Urdúliz (Vizcaya), Spain
7 Internal Medicine Department, HLA Moncloa Hospital, Madrid, Spain

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
8 Internal Medicine Department, Santiago Clinical Hospital, Santiago de Compostela (A Coruña), Spain
9 Internal Medicine Department, Ntra Sra Candelaria University Hospital, Santa Cruz de Tenerife, Spain
10 Internal Medicine Department, Torrevieja University Hospital, Torrevieja (Alicante), Spain
11 Internal Medicine Department, Mataró Hospital, Mataró (Barcelona), Spain
12 Internal Medicine Department, La Fe University Hospital, Valencia, Spain
13 Internal Medicine Department, Son Llàtzer University Hospital, Palma de Mallorca, Spain
14 Internal Medicine Department, Moisès Broggi Hospital, Sant Joan Despí (Barcelona), Spain
15 Internal Medicine Department, Virgen de las Nieves University Hospital, Granada, Spain
16 Internal Medicine Department, San Juan de la Cruz Hospital, Úbeda (Jaén), Spain
17 Internal Medicine Department, Costa del Sol Hospital, Marbella (Málaga), Spain
18 Internal Medicine Department, Nuestra Señora del Prado Hospital, Talavera de la Reina (Toledo), Spain
19 Internal Medicine Department, León University Hospital, León, Spain
20 Internal Medicine Department, 12 de Octubre University Hospital, Madrid, Spain
21 Internal Medicine Department, Infanta Cristina University Hospital, Parla (Madrid), Spain
*Corresponding authors:

- Dr Jesús Díez-Manglano. Internal Medicine Department, Royo Villanova Hospital. Avenida San Gregorio, nº 30, 50015 Zaragoza, Spain
(jdiez@aragon.es)

Author Contributions: Conceptualization, Jesús Díez-Manglano and Nataya Solís Marquín; Data curation, Jesús Díez-Manglano, Nataya Solís Marquín, Andrea Álvarez García, Nicolás Alcalá-Rivera, Irene Maderuelo Riesco, Martín Gericó Aseguinolaza, José Luis Beato Pérez, Manuel Mendez Bailon, Ana Elbire Labirua-Iturburu Ruiz, Miriam García Gómez, Carmen Martínez Cilleros, Paula María Pesqueira Fontán, Julio César Blázquez Encimar, Ramon Boixeda, Ricardo Gil Sánchez, Andrés de la Peña-Fernández, José Loureiro Amigo, Joaquin Escobar Sevilla, Marcos Guzmán García, María Dolores Martín Escalante, Jeffrey Oskar Magallanes García, Ángel Luis Martínez-González, Carlos Lumbreras Bermejo and Juan Miguel Antón Santos; Formal analysis, Jesús Díez-Manglano, Nataya Solís Marquín and Lucy Abella Vázquez; Investigation, Jesús Díez-Manglano and Nataya Solís Marquín; Methodology, Jesús Díez-Manglano and Nataya Solís Marquín; Project administration, Carlos Lumbreras Bermejo and Juan Miguel Antón Santos; Supervision, Carlos Lumbreras Bermejo and Juan Miguel Antón Santos; Validation, Jesús Díez-Manglano and Nataya Solís Marquín; Writing – original draft, Jesús Díez-Manglano and Nataya Solís Marquín; Writing – review & editing, Nicolás Alcalá-Rivera, Irene Maderuelo Riesco, Martín Gericó Aseguinolaza, José Luis Beato Pérez, Manuel Mendez Bailon, Ana Elbire
Labirua-Iturburu Ruiz, Miriam García Gómez, Carmen Martínez Cilleros, Paula María Pesqueira Fontán, Lucy Abella Vázquez, Julio César Blázquez Encimar, Ramon Boixeda, Ricardo Gil Sánchez, Andrés de la Peña-Fernández, José Loureiro Amigo, Joaquin Escobar Sevilla, Marcos Guzmán García, María Dolores Martín Escalante, Jeffrey Oskar Magallanes García, Ángel Luis Martínez-González, Carlos Lumbreras Bermejo and Juan Miguel Antón Santos.; funding acquisition, none. All authors have read and agreed to the published version of the manuscript.

A complete list of the SEMI-COVID-19 Network members is provided in the Acknowledgments.

Funding:

None.

Disclosure

The authors declare no conflict of interest.
ABSTRACT

Aim: To determine whether healthcare workers (HCW) hospitalized in Spain due to COVID-19 have a worse prognosis than non-healthcare workers (NHCW).

Methods: Observational cohort study based on the SEMI-COVID-19 Registry, a nationwide registry that collects sociodemographic, clinical, laboratory, and treatment data on patients hospitalised with COVID-19 in Spain. Patients aged 20-65 years were selected. A multivariate logistic regression model was performed to identify factors associated with mortality.

Results: As of 22 May 2020, 4393 patients were included, of whom 419 (9.5%) were HCW. Median (interquartile range) age of HCW was 52 (15) years and 62.4% were women. Prevalence of comorbidities and severe radiological findings upon admission were less frequent in HCW. There were no difference in need of respiratory support and admission to intensive care unit, but occurrence of sepsis and in-hospital mortality was lower in HCW (1.7% vs. 3.9%; p=0.024 and 0.7% vs. 4.8%; p<0.001 respectively). Age, male sex and comorbidity, were independently associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.219, 95%CI 0.069-0.693, p=0.01). 30-days survival was higher in HCW (0.968 vs. 0.851 p<0.001).

Conclusions: Hospitalized COVID-19 HCW had fewer comorbidities and a better prognosis than NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not carry more clinical severity nor mortality.

Key words: SARS-CoV-2; coronavirus; COVID-19; Spain; healthcare workers; mortality
INTRODUCTION

As of 30 October 2020, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected 44,592,789 people worldwide (1). Spain has been one of the countries with the highest number of confirmed cases and deaths.

Healthcare workers (HCW) are at high risk of infection with SARS-CoV-2 because of their exposure to infected patients. Several seroepidemiological studies have shown discordant results. In New York and Sweden the seroprevalence of SARS-CoV-2 among hospital HCW was high compared with the community (2,3). However, in Germany the seroprevalence in HCW was very low, 0.33% (4). A recent systematic review and meta-analysis, that included 11 studies, reported that the overall proportion of HCW who were SARS-CoV-2 positive among all COVID-19 patients was 10.1% (5). In Spain, 20.4% of confirmed COVID-19 cases were HCW (6).

In Scotland, HCW and their households contributed a sixth of COVID-19 admissions to hospital (7). In Spain and USA, 10% and 8% of HCW with COVID-19 were hospitalized respectively (6,8). Young women nurses were more frequently infected (9-11). Comorbidities were frequent in HCW hospitalized with COVID-19, particularly diabetes, hypertension, obesity, asthma and immunodepression (6, 10,11).
There is still controversy over the risk of death in HCW with COVID-19.

While it is high in Mexico, it is low in Germany and Malaysia (12,13). The main objectives of this study were to describe the clinical characteristics and outcomes of HCW hospitalised in Spain due to SARS-CoV-2 infection, and to determine if working in healthcare is associated with higher rates of complications and mortality.

METHODS

Study design and population

The SEMI-COVID-19 Registry is an ongoing, nationwide, multicentre, observational retrospective registry, participated by 150 hospital centres throughout Spain. Detailed features of the registry have been reported elsewhere (14-16). A total of 10,600 consecutive patients were recruited from March 1, 2020 to May 22, 2020.

Inclusion criteria

The SEMI-COVID-19 Registry includes patients > 18 years admitted to hospital with COVID-19 confirmed microbiologically by reverse transcription polymerase chain reaction (RT-PCR) testing of a nasopharyngeal swab sample, sputum specimen or bronchoalveolar lavage. The exclusion criteria were subsequent admission of the same patient or denial or withdrawal of informed consent. This study analyses the subpopulation of patients between 20 and 65 years of age. In Spain, 20 years is the youngest possible age for working in healthcare and 65 years is the retirement age. HCW were defined as
physicians, nurses, nurse aids, and non-healthcare professionals such as the administrative and cleaning staff of hospitals and healthcare centres.

Procedures and variables

Admission and treatment of patients took place at the discretion of the attending physicians based on their clinical judgment, local protocols, and the updated recommendations of the Spanish Ministry of Health.

Data were collected retrospectively in an online electronic data capture system and were extracted from electronic health records. Approximately 300 variables were collected including epidemiological data, RT-PCR data, personal medical and medication history, symptoms and physical examinations findings at admission, laboratory and diagnostic imaging tests, pharmacological treatment and ventilator support during hospitalization, complications and death during hospitalization, and readmissions and survival 30 days after diagnosis.

Comorbidity was assessed using the Charlson Comorbidity Index (CCI) (17). Degree of independence was classified as independent or mild, moderate, and severe. Obesity was defined as body mass index >30 kg/m².

The main endpoint was mortality during admission. Intensive care unit (ICU) admission, days in the ICU, invasive or non-invasive ventilation, all-cause re-admission, 30-days all-cause mortality, and length-of-stay were secondary endpoints.

Ethical aspects
The study was carried out in accordance with the Declaration of Helsinki. The processing of personal data strictly complied with Spanish Law 14/2007, of July 3, on Biomedical Research and Spanish Organic Law 3/2018, of 5 December, on the Protection of Personal Data and the Guarantee of Digital Rights. The study was approved by the Provincial Research Ethics Committee of Málaga (Spain) following the recommendation of the Spanish Agency of Medicines and Medical Products (AEMPS, for its initials in Spanish). All patients—or their caregivers, in the event they presented with cognitive impairment—gave their informed oral consent.

Statistical analysis

The patients were divided into two groups: HCW and non HCW (NHCW). Continuous variables were tested for normal distribution with the Kolmogorov-Smirnov test. Quantitative variables are expressed as mean (standard deviation, SD) or median [interquartile range]. Comparisons between groups were made using Student’s t-test and the Mann-Whitney U test. Categorical variables are expressed as absolute frequencies and percentages. Comparisons between them were made using the chi-square test with the Yates correction and with the Fisher’s exact test when necessary.

Two multivariate logistic regression models were performed to analyse the association between working in healthcare and mortality. The first model included age, sex, ethnicity, CCI score, and healthcare working. The second model included the previous variables and added the comorbidities with a statistical significance p<0.1 in the univariate model.
In all cases, statistical significance was established as p<0.05. Statistical analysis was carried out using Statistical Package for the Social Sciences (SPSS) 21.0 software for Windows.

RESULTS

Figure 1 shows the flowchart for patient inclusion. A total of 4,393 patients were included, of which 419 (9.5%) were HCW. Among HCW, 142 (33.9%) were medical doctors, 107 (25.5%) were nurses, 98 (23.4%) were nurse aides, and 72 (17.2%) held other positions within healthcare. The departments that most infected patients worked in were primary care (16.6%), the emergency department (11.3%), and internal medicine (11.3%).

Figure 1. Patient inclusion flowchart

Demographic and clinical characteristics

Baseline demographic and clinical characteristics and comorbidities are shown in Table 1. HCW were more often Caucasian women, and reported more frequent contact with a COVID-19 patient (57.8% vs. 22.1%, p<0.001). Moderate and severe dependence was more frequent in NHCW. There was no difference in comorbidity measured as Charlson index score, but the prevalence of comorbidities as alcohol use disorder, hypertension, dyslipidemia, obesity, diabetes, myocardial infarction, stroke, dementia, chronic obstructive pulmonary disease, obstructive sleep apnea-hypopnea syndrome, chronic kidney disease and malignancy was higher in NHCW.
Table 1. Sociodemographic characteristics, comorbidities and treatment of patients included

<table>
<thead>
<tr>
<th></th>
<th>Total (n=4393)</th>
<th>NHCW (n=3974)</th>
<th>HCW (n=419)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years (n=4393)</td>
<td>55 (15)</td>
<td>55 (15)</td>
<td>52 (15)</td>
<td>0.439</td>
</tr>
<tr>
<td>Gender, female (n=4386)</td>
<td>1791 (40.8)</td>
<td>1530 (38.6)</td>
<td>261 (62.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>Race/ethnicity (n=4303)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>3399 (79.0)</td>
<td>3038 (78.1)</td>
<td>361 (87.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>BAME people</td>
<td>904 (21.0)</td>
<td>851 (21.91)</td>
<td>53 (12.8)</td>
<td></td>
</tr>
<tr>
<td>Dependency (n=4351)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent or mild</td>
<td>4195 (96.4)</td>
<td>3779 (96.1)</td>
<td>416 (99.5)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>77 (1.8)</td>
<td>75 (1.9)</td>
<td>2 (0.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>79 (1.8)</td>
<td>79 (2.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Tobacco use (n=4191)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smoker</td>
<td>289 (6.9)</td>
<td>266 (7.0)</td>
<td>23 (5.6)</td>
<td>0.291</td>
</tr>
<tr>
<td>Alcohol use disorder (n=4278)</td>
<td>190 (4.4)</td>
<td>187 (4.8)</td>
<td>3 (0.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Charlson Comorbidity Index (n=4274)</td>
<td>0 (1)</td>
<td>0 (1)</td>
<td>0 (1)</td>
<td>0.447</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension (n=4388)</td>
<td>1116 (25.4)</td>
<td>1044 (26.3)</td>
<td>72 (17.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyslipidaemia (n=4389)</td>
<td>1019 (23.2)</td>
<td>946 (23.8)</td>
<td>73 (17.1)</td>
<td>0.003</td>
</tr>
<tr>
<td>Obesity (n=4005)</td>
<td>872 (21.8)</td>
<td>803 (22.2)</td>
<td>698 (17.6)</td>
<td>0.037</td>
</tr>
<tr>
<td>Diabetes mellitus (n=4374)</td>
<td>457 (10.4)</td>
<td>434 (11.0)</td>
<td>23 (5.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>AMI (n=4387)</td>
<td>76 (1.7)</td>
<td>75 (1.9)</td>
<td>1 (0.2)</td>
<td>0.014</td>
</tr>
<tr>
<td>Heart failure (n=4387)</td>
<td>64 (1.5)</td>
<td>61 (1.5)</td>
<td>64 (1.5)</td>
<td>0.182</td>
</tr>
<tr>
<td>Atrial fibrillation (n=4382)</td>
<td>86 (2.0)</td>
<td>83 (2.1)</td>
<td>3 (0.7)</td>
<td>0.054</td>
</tr>
<tr>
<td>Stroke/TIA (n=4378)</td>
<td>96 (2.2)</td>
<td>94 (2.4)</td>
<td>2 (0.5)</td>
<td>0.012</td>
</tr>
<tr>
<td>Dementia (n=4381)</td>
<td>47 (1.1)</td>
<td>47 (1.2)</td>
<td>0 (0)</td>
<td>0.025</td>
</tr>
<tr>
<td>COPD (n=4384)</td>
<td>99 (2.3)</td>
<td>99 (2.5)</td>
<td>0 (0)</td>
<td>0.001</td>
</tr>
<tr>
<td>OSAHS (n=4362)</td>
<td>232 (5.3)</td>
<td>223 (5.7)</td>
<td>9 (2.2)</td>
<td>0.002</td>
</tr>
<tr>
<td>Moderate-severe CKD (n=4382)</td>
<td>97 (2.2)</td>
<td>94 (2.4)</td>
<td>3 (0.7)</td>
<td>0.026</td>
</tr>
<tr>
<td>Moderate-severe CLD (n=4387)</td>
<td>36 (0.8)</td>
<td>36 (0.9)</td>
<td>0 (0)</td>
<td>0.050</td>
</tr>
<tr>
<td>Malignancy (n=4363)</td>
<td>254 (5.8)</td>
<td>239 (6.1)</td>
<td>15 (3.6)</td>
<td>0.042</td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose, mg/dL (n=4231)</td>
<td>105 (29)</td>
<td>105 (10)</td>
<td>102 (24)</td>
<td>0.027</td>
</tr>
<tr>
<td>Creatinine, mg/dL (n=4355)</td>
<td>0.83 (0.31)</td>
<td>0.84 (0.15)</td>
<td>0.76 (0.35)</td>
<td><0.001</td>
</tr>
<tr>
<td>Urea, mg/dL (n=3336)</td>
<td>29 (15)</td>
<td>29 (6)</td>
<td>26 (11)</td>
<td><0.001</td>
</tr>
<tr>
<td>LDH, U/L (n=3887)</td>
<td>304 (171)</td>
<td>299 (63)</td>
<td>273 (127)</td>
<td><0.001</td>
</tr>
<tr>
<td>AST, U/L (n=3470)</td>
<td>36 (27)</td>
<td>37 (11)</td>
<td>30 (21)</td>
<td><0.001</td>
</tr>
<tr>
<td>ALT, U/L (n=4191)</td>
<td>35 (30)</td>
<td>35 (12)</td>
<td>30 (25)</td>
<td><0.001</td>
</tr>
<tr>
<td>CRP, mg/L (n=4355)</td>
<td>41.8 (89)</td>
<td>49 (23)</td>
<td>27.8 (64.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Serum ferritin, mcg/L (n=1629)</td>
<td>643 (1028)</td>
<td>669 (364)</td>
<td>388 (779)</td>
<td>0.001</td>
</tr>
<tr>
<td>D-dimer, ng/mL (n=3485)</td>
<td>550 (544)</td>
<td>490 (199)</td>
<td>410 (431)</td>
<td>0.001</td>
</tr>
<tr>
<td>Blood count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemoglobin, g/dL (n=4368)</td>
<td>14.3 (2)</td>
<td>14.4 (2)</td>
<td>14.2 (1.6)</td>
<td>0.044</td>
</tr>
<tr>
<td>WBC, x10^9/L (n=4370)</td>
<td>5900 (3400)</td>
<td>5910 (1310)</td>
<td>5530 (2840)</td>
<td>0.005</td>
</tr>
<tr>
<td>Lymphocytes (n=4365)</td>
<td>1000 (610)</td>
<td>1000 (245)</td>
<td>1072 (600)</td>
<td>0.261</td>
</tr>
<tr>
<td>Platelets (n=4373)</td>
<td>200500 (103250)</td>
<td>196000 (42000)</td>
<td>187000 (90000)</td>
<td>0.103</td>
</tr>
<tr>
<td>Radiological findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilateral condensation (n=4352)</td>
<td>1,378 (31.7)</td>
<td>1267 (32.2)</td>
<td>111 (26.7)</td>
<td>0.033</td>
</tr>
<tr>
<td>Bilateral interstitial infiltrates (n=4355)</td>
<td>2322 (53.3)</td>
<td>2128 (54.0)</td>
<td>194 (46.7)</td>
<td>0.018</td>
</tr>
<tr>
<td>Pleural effusion (n=4356)</td>
<td>104 (2.4)</td>
<td>101 (2.5)</td>
<td>3 (0.7)</td>
<td>0.047</td>
</tr>
<tr>
<td>Treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LP/Vr (n=4357)</td>
<td>3096 (71.1)</td>
<td>2803 (71.0)</td>
<td>291 (71.3)</td>
<td>0.913</td>
</tr>
<tr>
<td>Interferon Beta-1B (n=4329)</td>
<td>567 (13.1)</td>
<td>520 (13.3)</td>
<td>47 (11.5)</td>
<td>0.312</td>
</tr>
<tr>
<td>Remdesivir (n=4315)</td>
<td>27 (0.6)</td>
<td>21 (0.5)</td>
<td>6 (1.5)</td>
<td>0.023</td>
</tr>
<tr>
<td>Hydroxychloroquine (n=4366)</td>
<td>3916 (89.7)</td>
<td>3531 (89.3)</td>
<td>385 (93.0)</td>
<td>0.020</td>
</tr>
<tr>
<td>Tocilizumab (n=4349)</td>
<td>462 (10.6)</td>
<td>413 (10.5)</td>
<td>49 (12.0)</td>
<td>0.359</td>
</tr>
<tr>
<td>Systemic corticosteroids</td>
<td>1228 (28.3)</td>
<td>1121 (28.5)</td>
<td>107 (26.0)</td>
<td>0.279</td>
</tr>
</tbody>
</table>

ALT: alanine aminotransferase; AMI: acute myocardial infarction; AST: aspartate aminotransferase; BAME: black, Asian and minority ethnic; CLD: chronic liver disease; CCI: Charlson Comorbidity Index; CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; CRP: C-reactive protein; LDH: lactate dehydrogenase; OSAHS: obstructive sleep apnoea/hypopnoea syndrome; TIA: transient ischaemic attack.
The median time from first symptoms to admission was 7 [5-9] days, without difference between HCW and NHCW. There were some differences in symptoms and physical examination findings. Dry cough (72.3% vs. 67.3%, p=0.003), asthenia (54.6% vs. 44.8%, p<0.001), arthralgia (48.1% vs. 39.2%, p<0.001), ageusia (14.6% vs. 9.4%, p=0.001) and anosmia (14.6% s. 8.7%, p<0.001) were more frequent in HCW, and temperature ≥ 38°C (74.4% vs. 68.5%, p=0.007) and oxygen saturation ≤ 92% (24.2% vs 11.8%, p<0.001) in NHCW.

At admission the levels of serum glucose, creatinine, urea, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, ferritin, D-dimer, hemoglobin and the count of white blood cells were lower in HCW. NHCW presented more frequently severe radiological findings—i.e. pleural effusion, bilateral condensation, and bilateral interstitial infiltrates (all p≤0.025).

Treatments

There were no differences in the treatment for COVID-19 disease between HCW and NHCW except for hydroxychloroquine and remdesivir (93% vs. 89.3%; p=0.02 and 1.5% vs. 0.5%; p=0.0.23 respectively).

Outcomes

Sepsis was more frequent in NHCW (3.9% vs. 1.7%; p=0.024). There were no differences in the occurrence of other complications, the need of respiratory support or ICU admission. The length of hospital stay was 8 (7) days.
without difference among HCW and NHCW. During hospitalization 194 (4.4%) patients died. In-hospital mortality was lower in HCW (0.7% vs 4.8%; p<0.001). The readmission rate was 2.9%. Half of readmissions were due to COVID-19 disease (Table 2). The 30-days survival was 96.8% in HCW and 85.1% in NHCW (p=0.001). Figure 2 shows the Kaplan-Meier survival curve.

Table 2. Outcomes

<table>
<thead>
<tr>
<th>Complications</th>
<th>Total</th>
<th>NHCW</th>
<th>HCW</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial pneumonia (n=4356)</td>
<td>330 (7.6)</td>
<td>305 (7.7)</td>
<td>25 (6.0)</td>
<td>0.209</td>
</tr>
<tr>
<td>ARDS (n=4355)</td>
<td>1011 (23.0)</td>
<td>919 (23.3)</td>
<td>92 (19.8)</td>
<td>0.101</td>
</tr>
<tr>
<td>Acute kidney failure (n=4353)</td>
<td>243 (5.6)</td>
<td>228 (5.8)</td>
<td>15 (3.6)</td>
<td>0.068</td>
</tr>
<tr>
<td>Sepsis (n=4351)</td>
<td>160 (3.7)</td>
<td>153 (3.9)</td>
<td>7 (1.7)</td>
<td>0.024</td>
</tr>
<tr>
<td>Shock (n=4349)</td>
<td>132 (3.0)</td>
<td>125 (3.2)</td>
<td>7 (1.7)</td>
<td>0.094</td>
</tr>
<tr>
<td>Thromboembolic disease</td>
<td>71 (1.6)</td>
<td>64 (1.6)</td>
<td>7 (1.7)</td>
<td>0.921</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory support</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High flow nasal cannula (n=4334)</td>
<td>327 (7.5)</td>
<td>293 (7.5)</td>
<td>34 (8.2)</td>
<td>0.578</td>
</tr>
<tr>
<td>Noninvasive mechanical ventilation</td>
<td>174 (4.0)</td>
<td>156 (4.0)</td>
<td>18 (4.3)</td>
<td>0.707</td>
</tr>
<tr>
<td>Invasive mechanical ventilation (n=4357)</td>
<td>314 (7.2)</td>
<td>291 (7.4)</td>
<td>23 (5.5)</td>
<td>0.168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intensive care unit (ICU)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission to ICU (n=4385)</td>
<td>415 (9.5)</td>
<td>371 (9.4)</td>
<td>44 (10.5)</td>
<td>0.435</td>
</tr>
<tr>
<td>Days in the ICU</td>
<td>11 (10)</td>
<td>11 (11)</td>
<td>8.5 (10)</td>
<td>0.099</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Death and readmission</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospital length-of-stay, days (n=4392)</td>
<td>8 (7)</td>
<td>8 (8)</td>
<td>7 (7)</td>
<td>0.067</td>
</tr>
<tr>
<td>In-hospital death (n=4393)</td>
<td>194 (4.4)</td>
<td>191 (4.8)</td>
<td>3 (0.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Readmission (n=4194)</td>
<td>121 (2.9)</td>
<td>112 (2.9)</td>
<td>9 (2.3)</td>
<td>0.449</td>
</tr>
</tbody>
</table>

ARDS: acute respiratory distress syndrome; ICU: intensive care unit
Data are expressed as n (%) and median [interquartile range]

Figure 2. 30-days Kaplan-Meier survival curves.

The factors associated with in-hospital mortality are shown in Table 3. In the first multivariate analysis model, age, male sex and Charlson Comorbidity index score were associated with higher in-hospital mortality and healthcare working with lower mortality (OR 0.219, 95%CI 0.069-0.693, p=0.01). In the
second model, including comorbidities, healthcare working was also associated with a lower in-hospital mortality (OR 0.285 95%CI 0.089-0.908; p=0.034).

Table 3. Factors associated with mortality

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%CI)</td>
<td>p</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.073 (1.053-1.095)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>1.884 (1.366-2.599)</td>
<td><0.001</td>
</tr>
<tr>
<td>BAME</td>
<td>0.743 (0.505-1.094)</td>
<td>0.132</td>
</tr>
<tr>
<td>HCW</td>
<td>0.143 (0.045-0.449)</td>
<td>0.001</td>
</tr>
<tr>
<td>CCI</td>
<td>1.423 (1.340-1.512)</td>
<td><0.001</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.073 (1.053-1.095)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male sex</td>
<td>1.884 (1.366-2.599)</td>
<td><0.001</td>
</tr>
<tr>
<td>BAME</td>
<td>0.743 (0.505-1.094)</td>
<td>0.132</td>
</tr>
<tr>
<td>HCW</td>
<td>0.143 (0.045-0.449)</td>
<td>0.001</td>
</tr>
<tr>
<td>Alcohol</td>
<td>2.642 (1.604-4.351)</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking</td>
<td>2.491 (1.625-3.820)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension</td>
<td>2.362 (1.762-3.166)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>1.886 (1.393-2.552)</td>
<td><0.001</td>
</tr>
<tr>
<td>Obesity</td>
<td>2.029 (1.471-2.798)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diabetes</td>
<td>2.870 (2.030-4.059)</td>
<td><0.001</td>
</tr>
<tr>
<td>Acute myocardial infarction</td>
<td>2.609 (1.236-5.508)</td>
<td>0.012</td>
</tr>
<tr>
<td>Heart failure</td>
<td>3.660 (1.782-7.519)</td>
<td><0.001</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>2.279 (1.085-4.788)</td>
<td>0.03</td>
</tr>
<tr>
<td>Stroke/TIA</td>
<td>3.913 (2.178-7.033)</td>
<td><0.001</td>
</tr>
<tr>
<td>Dementia</td>
<td>8.773 (4.551-16.910)</td>
<td><0.001</td>
</tr>
<tr>
<td>COPD</td>
<td>6.017 (3.600-10.057)</td>
<td><0.001</td>
</tr>
<tr>
<td>OSAHS</td>
<td>3.165 (2.058-4.867)</td>
<td><0.001</td>
</tr>
<tr>
<td>Moderate-severe CKD</td>
<td>5.351 (3.138-9.126)</td>
<td><0.001</td>
</tr>
<tr>
<td>Moderate-severe CLD</td>
<td>5.375 (2.324-12.429)</td>
<td><0.001</td>
</tr>
<tr>
<td>Malignancy</td>
<td>3.710 (2.490-5.527)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

DISCUSSION

The main findings of our study were that hospitalised HCW had less severe COVID-19 and lower mortality.
The demographic characteristics of our patients were consistent with other reports (14,18,19). Worldwide, men were more likely to be infected by SARS-CoV-2 than women. However, among HCW, women were the most affected (8,9,13,20). We think that this difference is due to the higher proportion of females in healthcare professions. When we compared our HCW cohort with those reported in other studies, our patients were more than ten years older (8-10,13,20,21). This could be due to the different inclusion criteria used in each study. In the USA, Hughes et al (8) reported on the characteristics of 100,570 HCW with a median age of 41 years, of whom only 6832 were hospitalised. Wang et al included 80 HCW hospitalised in Wuhan, of whom 57 were confirmed cases and 23 were clinical diagnosis (11). In our cohort, only hospitalised patients between 20 and 65 years old with a confirmed diagnosis of COVID-19 were included, while the rest included all HCW with COVID-19.

An interesting finding in our study was that upon admission HCW presented milder symptoms, such as loss of smell or taste and arthralgia, less severe radiological findings and lower lactate dehydrogenase, C-reactive protein, serum ferritin and D-dimer levels. And all of it even though there was no difference between HCW and NHCW in time from onset of symptoms and admission. There was not an explanation for this, but we hypothesize that it could be due to HCW were hospitalised earlier and more easily than NHCW.

ARDS is overwhelmingly the main cause of death in hospitalised COVID-19 patients. In our study, sepsis was less frequent in HCW but there was no difference in ARDS, the rest of complications, the need of respiratory support
nor the ICU admission. In-hospital and 30-days mortality were lower in HCW. In a systematic review Similar results were reported in the systematic review by Sahu et al. (5). A healthy worker effect could explain these results. Severely ill and chronically disabled are ordinarily excluded from employment (22). The difference observed in prevalence of comorbidities between HCW and NHCW supports this explanation. The better clinical and analytical profile of the HCW at admission may be due to their knowledge of mild symptoms of COVID-19 and their ability to identify them in themselves. In this regard, increased education on the earliest and mildest symptoms of COVID-19 could help NHCW to recognize and to report them to a healthcare centre earlier in the course of their disease.

There are geographical differences in mortality observed in hospitalised COVID-19 HCW. In a teaching hospital in Belgium the mortality of HCW was 0.5% (20). In a single-centre study in Wuhan, in-hospital death in HCW with confirmed SARS-CoV-2 infection was 1.7%, more than twice in our study (11). The mortality in a multicentre study in New York City was 21%, far higher than that we observed (19). Also, high mortality, 14.7%, was reported in Brazil (10). In Mexico, a mortality of 2% of HCW with COVID-19 was reported (21). Their mortality was higher than ours even though only 9% of them needed to be hospitalized. The authors explain their high mortality because of different reasons. On the one hand, in Mexico there is a high prevalence of comorbidities which are associated with severe COVID-19. On the other hand, due to structural inequalities, their healthcare system is highly heterogeneous and there is a remarkable amount of marginalized communities. Therefore, the
prevalence of comorbidities, the level of economic wealth, and the organization of healthcare in the different countries could explain these differences observed in the mortality.

Several studies have reported that age, male sex and comorbidity were associated with higher mortality in COVID-19 patients (23-26). However the research about healthcare working as risk factor of mortality is scarce. HCW worry and are afraid to be infected and die for COVID-19. Our results confirm that COVID-19 is less severe and leads to less mortality in HCW. This is one of the novel contributions of our study.

Among the strengths of our study are its multicentre design, the inclusion of patients from the entire country, and the large number of patients included, which provides an adequate statistical power to confirm hypotheses. However, our study also has limitations. Only hospitalised patients were included, so it is not possible to extrapolate our results to non-hospitalised patients. The large number of researchers involved and variability in the availability of data in each hospital could have led to information bias. Finally, the voluntary participation of each centre could have caused selection bias.

In conclusion, HCW had fewer comorbidities, milder symptoms, and a better prognosis than the NHCW. Our results suggest that professional exposure to COVID-19 in HCW does not lead to greater clinical severity nor mortality.

Acknowledgments. List of the SEMI-COVID-19 Network members
Coordinator of the SEMI-COVID-19 Registry: José Manuel Casas Rojo.

SEMI-COVID-19 Scientific Committee Members: José Manuel Casas Rojo, José Manuel Ramos Rincón, Carlos Lumbreras Bermejo, Jesús Millán Núñe-
Cortés, Juan Miguel Antón Santos, Ricardo Gómez Huelgas.

SEMI-COVID-19 Registry Coordinating Center: S & H Medical Science Service.

Members of the SEMI-COVID-19 Group

H. U. 12 de Octubre. Madrid
Paloma Agudo de Blas, Coral Arévalo Cañas, Blanca Ayuso, José Bascuñana
Morejón, Samara Campos Escudero, María Carnevali Frías, Santiago Cossio
Tejido, Borja de Miguel Campo, Carmen Díaz Pedroche, Raquel Díaz Simon,
Ana García Reyne, Lucía Jorge Huerta, Antonio Lalueza Blanco, Jaime
Laureiro Gonzalo, Carlos Lumbreras Bermejo, Guillermo Maestro de la Calle,
Barbara Otero Perpiña, Diana Paredes Ruiz, Marcos Sánchez Fernández,
Javier Tejada Montes.

H. U. Gregorio Marañón. Madrid
Laura Abarca Casas, Álvaro Alejandro de Oña, Rubén Alonso Beato, Leyre
Alonso Gonzalo, Jaime Alonso Muñoz, Cristian Mario Amodeo Oblitas,
Cristina Ausín García, Marta Bacete Cebrián, Jesús Baltasar Corral, María
Barrientos Guerrero, Alejandro Bendala Estrada, María Calderón Moreno,
Paula Carrascosa Fernández, Raquel Carrillo, Sabela Castañeda Pérez, Eva
Cervilla Muñoz, Agustín Diego Chacón Moreno, María Carmen Cuenca
Carvajal, Sergio de Santos, Andréz Enríquez Gómez, Eduardo Fernández
Carracedo, María Mercedes Ferreiro-Mazón Jenaro, Francisco Galeano Valle,
Alejandra Garcia, Irene García Fernandez-Bravo, María Eugenia García Leoni,
María Gomez Antunez, Candela González San Narciso, Anthony Alexander
Gurjian, Lorena Jiménez Ibáñez, Cristina Lavilla Olleros, Cristina Llamazares
Mendo, Sara Luis García, Víctor Mato Jimeno, Clara Millán Noales, Jesús
Millán Núñe-Cortés, Sergio Moragón Ledesma, Antonio Muñoz Migue,
Cecilia Muñoz Delgado, Lucia Ordieres Ortega, Susana Pardo Sánchez, Alejandro
Parra Virto, María Teresa Pérez Sanz, Blanca Pinilla Llorente, Sandra Piéqueras
Ruiz, Guillermo Soria Fernández-Llamazaress, María Toledano Macías, Neera
Toledo Samaniego, Ana Torres, Marfa Villalba Garcia, Gracia
Villarreal, María Zurita Etayo.

Hospital Universitari de Bellvitge. L'Hospitalet de Llobregat
Xavier Corbella, Abelardo Montero, Jose María Mora-Luján.

C. H. U. de Albacete. Albacete
Jose Luis Beato Pérez, María Lourdes Sáez Méndez.

H. U. La Paz-Cantoblanco-Carlos III. Madrid

Complejo Asistencial de Segovia. Segovia

Eva María Ferreira Pasos, Daniel Monge Monge, Alba Varela García.

H. U. Puerta de Hierro. Majadahonda

H. Miguel Servet. Zaragoza

Gonzalo Acebes Repiso, Uxua Asín Samper, María Aranzazu Caudevilla Martínez, José Miguel García Brunén, Rosa García Fenoll, Jesus Javier González Igual, Laura Letona Giménez, Mónica Llorente Barrio, Luis Sáez Comet.

H. U. La Princesa. Madrid

medRxiv preprint doi: https://doi.org/10.1101/2020.11.23.20236810; this version posted November 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
María Aguilera García, Ester Alonso Monge, Jesús Álvarez Rodríguez, Claudia Álvarez Varela, Miquel Berníz Gódia, Marta Briega Molina, Marta Bustamante Vega, Jose Curbelo, Alicia de las Heras Moreno, Ignacio Descalzo Godoy, Alexia Constanza Espiño Álvarez, Ignacio Fernández Martín-Caro, Alejandra Franquet López-Mosteiro, Gonzalo Galvez Marquez, María J. García Blanco, Yaiza García del Álamo Hernández, Clara García-Rayo Encina, Noemí Gilabet González, Carolina Guillermo Rodríguez, Nicolás Labrador San Martín, Manuel Molina Báez, Carmen Muñoz Delgado, Pedro Parra Caballero, Javier Pérez Serrano, Laura Rabes Rodríguez, Pablo Rodríguez Cortés, Carlos Rodríguez Franco, Emilia Roy-Vallejo, Monica Rueda Vega, Aresio Sancha Lloret, Beatriz Sánchez Moreno, Marta Sánz Alba, Jorge Serrano Ballester, Alba Somovilla, Carmen Suarez Fernández, Macarena Vargas Tirado, Almudena Villa Marti.

H. U. de A Coruña. A Coruña

H. Clinico San Carlos. Madrid

H. Infanta Sofía. S. S. de los Reyes
Rafael del Castillo Cantero, Rebeca Fuerte Martínez, Arturo Muñoz Blanco, José Francisco Pascual Pareja, Isabel Perales Fraile, Isabel Rábago Lorite, Llanos Soler Rangel, Inés Suárez García, Jose Luis Valle López.

Hospital Universitario Dr. Peset. Valencia
Juan Alberto Aguilera Ayllón, Arturo Arteoro Mora, María del Mar Carmona Martín, María José Fabiá Valls, Maria de Mar Fernández Garcés, Ana Belén Gómez Belda, Ian López Cruz, Manuel Madrazo López, Elisabet Mateo Sanchis, Jaume Micó Gandia, Laura Piles Roger, Adela Maria Pina Belmonte, Alba Viana García.

Hospital Clínico de Santiago. Santiago de Compostela
María del Carmen Beceiro Abad, María Aurora Freire Romero, Sonia Molinos Castro, Emilio Manuel Paez Guillan, María Paço Nuñez, Paula Maria Pesqueira Fontan.
Hospital Royo Villanova, Zaragoza
Nicolás Alcalá Rivera, Anxela Crestelo Vieitez, Esther del Corral, Jesús Díez Manglano, Isabel Fiteni Mera, María del Mar García Andreu, Martín Gerico Aseguiñolaza, Claudia Josa Laorden, Raul Martínez Murgui, Marta Teresa Matía Sanz.

H. U. Infanta Cristina, Parla

H. de Cabueñes, Gijón
Ana María Álvarez Suárez, Carlos Delgado Vergés, Rosa Fernandez-Madera Martínez, Eva Fonseca Aizpuru, Alejandro Gómez Carrasco, Cristina Helguera Amezua, Juan Francisco López Caleya, María del Mar Martínez López, Aleida Martínez Zapico, Carmen Olabuenaga Iscar, María Luisa Taboada Martínez, Lara María Tamargo Chamorro.

H. Santa Marina, Bilbao
María Areses Manrique, Ainara Coduras Erdozain, Ane Elbire Labirua-Iturburu Ruiz.

Hospital de Urduliz Alfredo Espinosa, Urdúliz

Hospital HLA Moncloa, Madrid
Guillermo Estrada, Teresa García Delange, Isabel Jimenez Martinez, Carmen Martínez Cilleros, Nuria Parra Arribas.

H. del Henares, Coslada
Jesús Ballano Rodríguez-Solís, Luis Cabeza Osorio, María del Pilar Fidalgo Montero, Mª Isabel Fuentes Soriano, Erika Esperanza Lozano Rincon, Ana Martín Hermida, Jesús Martínez Carrilero, Jose Angel Pestaña Santiago, Manuel Sánchez Robledo, Patricia Sanz Rojas, Nahum Jacobo Torres Yebes, Vanessa Vento.

H. Nuestra Señora del Prado, Talavera de la Reina
Sonia Casallo Blanco, Jeffrey Oskar Magallanes Gamboa.

H. U. Torrevieja, Torrevieja
Julio César Blázquez Encinar.
H. U. La Fe. Valencia
Dafne Cabañero, María Calabuig Ballester, Pascual Císcar Fernández, Ricardo Gil Sánchez, Marta Jiménez Escrig, Cristina Marín Amelia, Laura Parra Gómez, Carlos Puig Navarro, José Antonio Todolí Parra.

H. San Pedro. Logroño
Diana Alegre González, Irene Ariño Pérez de Zabalza, Sergio Arnedo Hernández, Jorge Collado Sáenz, Beatriz Dendariena, Marta Gómez del Mazo, Iratxe Martínez de Narvajas Urra, Sara Martínez Hernández, Estela Menendez Fernández, Jose Luis Peña Somovilla, Elisa Rabadán Pejenaute.

Hospital Universitario Ntra Sra Candelaria. Santa Cruz de Tenerife

H. U. San Juan de Alicante. San Juan de Alicante

H. U. San Agustin. Avilés
Andrea Álvarez García, Víctor Arenas García, Alba Barragán Mateos, Demelsa Blanco Suárez, María Caño Rubia, Jaime Casal Álvaro, David Castrodá Copa, José Ferreiro Celeiro, Natalia García Arenas, Raquel García Noriega, Joaquín Lorente García, Irene Maderuelo Riesco, Paula Martínez García, María Jose Menendez Calderon, Diego Eduardo Olivo Aguilar, Marta Nataya Solís Marquíní, Luis Trapiella Martínez, Andrés Astur Treceñio García, Juan Valdés Bécares.

H. U. Son Llàtzer. Palma de Mallorca
Andrés de la Peña Fernández, Almudena Hernández Milián.

H. de Mataró. Mataró
Raquel Aranega González, Ramon Boixeda, Carlos Lopera Márml, Marta Parra Navarro, Ainhoa Rex Guzmán, Aleix Serrallonga Fustier.

H. Juan Ramón Jiménez. Huelva
Francisco Javier Bejarano Luque, Francisco Javier Carrasco-Sánchez, Mercedes de Sousa Baena, Jaime Diaz Leal, Aurora Espinar Rubio, María Franco Huertas, Juan Antonio García Bravo, Andrés González Macías, Encarnación Gutiérrez Jiménez, Constantino Lozano Quintero, Carmen Mancilla Reguera, Francisco Javier Martínez Marcos, Francisco Muñoz
Beamud, María Perez Aguilera, Alícia Perez Jiménez, Virginia Rodríguez
Castaño, Alvaro Sánchez de Alcazar del Río, Leire Toscano Ruiz.

H. U. Reina Sofía. Córdoba
Antonio Pablo Arenas de Larriva, Pilar Calero Espinal, Javier Delgado Lista,
María Jesús Gómez Vázquez, Jose Jiménez Torres, Laura Martín Piedra,
Javier Pascual Vinagre, María Elena Revelles Vilchez, Juan Luis Romero
Cabrera, José David Torres Peña.

H. Moisès Broggi. Sant Joan Despí
Jose Loureiro Amigo, Melani Pestaña Fernández, Nicolas Rhyman, Nuria
Vázquez Piqueras.

H. U. Virgen de las Nieves. Granada
Pablo Conde Baena, Joaquin Escobar Sevilla, Laura Gallo Padilla, Patrici
Gómez Ronquillo, Pablo González Bustos, María Navío Botías, Jessica
Ramírez Taboada, Mar Rivero Rodríguez.

H. San Juan de la Cruz. Úbeda
Marcos Guzmán García, Francisco Javier Vicente Hernández.

Hospital Costa del Sol. Marbella
Victoria Augustín Bandera, María Dolores Martín Escalante.

Complejo Asistencial Universitario de León. León
Rosario María García Die, Manuel Martín Regidor, Angel Luis Martínez
Gonzalez, Alberto Muela Molinero, Raquel Rodríguez Díez, Beatriz Vicente
Montes.

Hospital Clinic Barcelona. Barcelona
Júlia Calvo Jiménez, Àina Capdevila Reniu, Irene Carbonell De Boule,
Emmanuel Coloma Bazán, Joaquim Fernández Solà, Cristina Gabara Xancó,
Joan Ribot Grabalosa, Olga Rodríguez Núñez.

Hospital Marina Baixa. Villajoyosa
Javier Ena, Jose Enrique Gómez Segado.

C. H. U. de Ferrol. Ferrol
Hortensia Álvarez Diaz, Tamara Dalama Lopez, Estefania Martul Pego, Carmen
Mella Pérez, Ana Pazos Ferro, Sabela Sánchez Trigo, Dolores Suarez
Sambade, Maria Trigas Ferrin, María del Carmen Vázquez Friol, Laura Vilariño
Maneiro.

Hospital del Tajo. Aranjuez
Ruth Gonzalez Ferrer, Raquel Monsalvo Arroyo.

H. U. Marqués de Valdecilla. Santander
Marta Fernández-Ayala Novo, José Javier Napal Lecumberri, Nuria Puente Ruiz, Jose Riancho, Isabel Sampedro García.

Hospital Torrecárdenas. Almería
Luis Felipe Díez García, Iris El Attar Acedo, Bárbara Hernandez Sierra, Carmen Mar Sánchez Cano.

Hospital Infanta Margarita. Cabra
María Esther Guisado Espartero, Lorena Montero Rivas, María de la Sierra Navas Alcántara, Raimundo Tirado-Miranda.

H. U. Severo Ochoa. Leganés
Yolanda Casillas Viera, Lucía Cayuela Rodríguez, Carmen de Juan Alvarez, Gema Flox Benitez, Laura García Escudero, Juan Martin Torres, Patricia Moreira Escriche, Susana Plaza Canteli, M Carmen Romero Pérez.

Hospital Insular de Gran Canaria. Las Palmas G. C.
Carlos Jorge Ripper.

Hospital Valle del Nalón. Riaño (Langreo)
Sara Fuente Cosío, César Manuel Gallo Álvaro, Julia Lobo García, Antía Pérez Piñeiro.

H. U. del Vinalopó. Elche

Hospital Alto Guadalquivir. Andújar
Begoña Cortés Rodríguez.

H. Francesc de Borja. Gandía
Alba Camarena Molina, Simona Cioaia, Anna Ferrer Santolalia, José María Frutos Pérez, Eva Gil Tomás, Leyre Jorquer Vidal, Marina Llopis Sanchis, Mari Ángeles Martínez Pascual, Álvaro Navarro Batet, Mari Amparo Perea Ribis, Ricardo Peris Sanchez, José Manuel Querol Ribelles, Silvia Rodriguez Mercadal, Ana Ventura Esteve.

H. G. U. de Castellón. Castellón de la Plana
Jorge Andrés Soler, Marián Bennasar Remolar, Alejandro Cardenal Álvarez, Daniela Díaz Carlotti, María José Esteve Gimeno, Sergio Fabra Juana, Paula García López, María Teresa Guinot Soler, Daniela Palomo de la Sota, Guillem Pascual Castellanos, Ignacio Pérez Catalán, Celia Roig Martí, Paula Rubert Monzó, Javier Ruiz Padilla, Nuria Tornador Gaya, Jorge Usó Blasco.

H. Santa Bárbara. Soria
Marta Leon Tellez.

C. A. U. de Salamanca. Salamanca
Gloria María Alonso Claudio, Víctor Barreales Rodríguez, Cristina Carbonell Muñoz, Adela Carpio Pérez, María Victoria Coral Orbes, Daniel Encinas Sánchez, Sandra Inés Revuelta, Miguel Marcos Martín, José Ignacio Martín González, José Ángel Martín Oterino, Leticia Moralejo Alonso, Sonia Peña Balbuena, María Luisa Pérez García, Ana Ramón Prados, Beatriz Rodríguez-Alonso, Ángela Romero Alegria, María Sanchez Ledesma, Rosa Juana Tejera Pérez.

H. U. de Canarias. Santa Cruz de Tenerife

H. de Poniente. Almería
Juan Antonio Montes Romero, Encarna Sánchez Martín, Jose Luis Serrano Carrillo de Albornoz, Manuel Jesus Soriano Pérez.

H. U. Lucus Augusti. Lugo
Raquel Gómez Méndez, Ana Rodríguez Álvarez.

H. San Pedro de Alcántara. Cáceres

H. U. del Sureste. Arganda del Rey

H. de Pozoblanco. Pozoblanco
José Nicolás Alcalá Pedrajas, Antonia Márquez García, Inés Vargas.

Hospital Doctor José Molina Orosa. Arrecife (Lanzarote)
Virginia Herrero García, Berta Román Bernal.

H. Nuestra Señora de Sonsoles. Ávila
Alaaeldeen Abdelhady Kishta.

C. H. U. de Badajoz. Badajoz
Rafael Aragon Lara, Inmaculada Cimadevilla Fernandez, Juan Carlos Cira García, Gema Maria García García, Julia Gonzalez Granados, Beatriz Guerrero Sánchez, Francisco Javier Monreal Periáñez, Maria Josefa Pascual Perez.

H. G. U. de Elda. Elda
Carmen Cortés Saavedra, Jennifer Fernández Gómez, Borja González López, María Soledad Hernández Garrido, Ana Isabel López Amorós, María de los Reyes Pascual Pérez, Andrea Torregrosa García.

H. U. Puerta del Mar. Cádiz
José Antonio Girón González, Susana Fabiola Pascual Perez, Cristina Rodríguez Fernández-Viagas, María José Soto Cardenas.

Hospital de Montilla, Montilla
Ana Cristina Delgado Zamorano, Beatriz Gómez Marín, Adrián Montaño Martínez, Jose Luis Zambrana García.

H. Virgen de los Lirios, Alcoy (Alicante)
Mª José Esteban Giner.

H. Infanta Elena, Huelva
María Gloria Rojano Rivero.

H. de la Axarquía, Vélez- Málaga
Antonio Lopez Ruiz.

H. Virgen del Mar, Madrid
María Jesus Gonzalez Juarez.

Hospital do Salnes, Vilagarcía de Arousa
Vanesa Alende Castro, Ana María Baz Lomba, Ruth Brea Aparicio, Marta Fernandez Morales, Jesus Manuel Fernandez Villar, Maria Teresa Lopez Monteagudo, Cristina Pérez García, Lorena María Rodríguez Ferreira, Maria Begoña Valle Feijoo.
REFERENCES

11,682 patients in the SEMI-COVID-19 Registry

- 298 patients did not specify if they were healthcare workers

10,608 patients

- 6,163 patients over 65 years old
- 13 patients under 20 years old
- 39 patients without data on age

4,393 patients included in the study

419 healthcare workers

3,974 non healthcare workers
log rank p=0.001