TITLE
Including an allied health assistant changes physiotherapy service provision in an adult CF centre: a pre-post design study.

INVESTIGATORS
Kathleen Hall¹,²,³, Dr Lyndal Maxwell¹, Robyn Cobb²,³, Dr Michael Steele¹,⁶, Rebecca Chambers²,³, Mark Roll³, Professor Scott C Bell³,⁴,⁵, Professor Suzanne Kuys¹.

¹School of Allied Health, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Road, Banyo, QLD, 4014, Australia
²Physiotherapy, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD 4032, Australia
³Adult Cystic Fibrosis Centre, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD 4032, Australia
⁴Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
⁵Children’s Health Research Centre, The University of Queensland, Herston QLD 4006, Australia
⁶Nursing Research and Practice Development Centre, The Prince Charles Hospital, 627 Rode Road, Chermside, QLD 4032, Australia

Email:
kathleen.hall@acu.edu.au
lyndal.maxwell@acu.edu.au
michael.steele@acu.edu.au
robyn.cobb@health.qld.gov.au
rebecca.chambers@health.qld.gov.au
mark.roll@health.qld.gov.au
scott.bell@health.qld.gov.au

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
suzanne.kuys@acu.edu.au
Corresponding Author: Kathleen Hall, kathleen.hall@acu.edu.au, School of Allied Health, Faculty of Health Sciences, Australian Catholic University, 1100 Nudgee Road, Banyo, QLD, 4014, Australia

Abbreviated title:

Key words (MeSH):
Allied Health Assistants, Cystic Fibrosis, Physiotherapy, Health Workforce, Scope of Practice, Delivery of Healthcare

Word Count:
Abstract: 283
Main text: words (excludes tables and references): 3105

Number of References: 28
Number of Tables: 4
Number of Figures: 1
Number of tables online supplement: 3

Ethics approval:
The Prince Charles Hospital Human Research Ethics Committee, Metro North Hospital and Health Service (HREC/25/QPCH/68) and Australian Catholic University's Human Research Ethics Committee(s) (2017-51N) approved this study.

Competing interests: None

Source(s) of support:
This research was supported by a Queensland Health Allied Health Research Scheme Grant (2015-2017).

Acknowledgements:
The authors wish to sincerely thank the following people for their assistance with this study:

Anthony Fish for his guidance and expertise in ABC data collection and management, Trent Donnelley and the physiotherapists involved in the CF service during the study period.
ABSTRACT

Question(s): What is the impact of including an allied health assistant (AHA) role on physiotherapy service delivery in terms of service provision, scope of practice and skill mix changes in an acute respiratory service?

Design: A pragmatic pre-post design study examined physiotherapy services across two three-month periods: current service delivery [P1] and current service delivery plus AHA [P2].

Outcome measures: Clinical and non-clinical activity contributing to physiotherapy services delivery quantified as number of physiotherapists and AHAs, number, type and duration (per day) of all staff activity, and categorised for skill level (AHA, junior, senior).

Results: Overall physiotherapy service delivery increased in P2 compared to P1 (n=4730 vs n=3048). Physiotherapists undertook fewer respiratory (p < 0.001) and exercise treatments (p < 0.001) but increased patient reviews for inpatients (p < 0.001) and at multidisciplinary clinics in P2 (56% vs 76%, p < 0.01). The AHA accounted for 20% of all service provision. AHA activity comprised mainly non-direct clinical care including oversight of respiratory equipment use (e.g supply, set-up, cleaning, loan audits) and other patient related administrative tasks associated with delegation handovers, supervision and clinical documentation (72%) and delegated supervision of established respiratory (5%) and exercise treatments (10%) and delegated exercise tests (3%). The AHA completed most of the exercise tests (n = 25). AHA non-direct clinical tasks included departmental management activities such as statistics and ongoing training (11%). No adverse events were reported.

Conclusion: Inclusion of an AHA in an acute respiratory care service changed physiotherapy service provision. The AHA completed delegated routine non-clinical and clinical tasks. Physiotherapists increased clinic activity and annual reviews. Including an AHA role
potentially offers safe and sustainable options for enhancing physiotherapy service provision in acute respiratory care services.
INTRODUCTION

People with cystic fibrosis (CF) are living longer, thereby increasing both patient numbers and complexity of care.² Demand for services is expected to further increase, with forecasts suggesting the number of adults living with CF will increase 75% by 2025.³,⁴ Notably these estimates don’t incorporate predicted increases in survival associated with the addition of highly effective cystic fibrosis transmembrane conductance regulator modulator therapies.¹ Multidisciplinary and expert care is recommended by international guidelines.⁵,⁶ However, meeting staffing recommendations poses a challenge for current and future sustainability of care¹,³.

Innovative strategies to manage increased service demand such as remodelling care delivery using allied health assistants (AHAs) has been recommended in other areas of acute care but not for people with CF.⁷,⁸,⁹ AHAs have been identified as a potential cost-effective resource for health care delivery yet they appear to be underutilised.¹⁰ AHAs are well received by patients and can perform both clinical and non-clinical tasks,¹¹,¹² thereby improving efficiency and allowing allied health professionals (AHPs) to spend more time performing clinical care or other duties.¹³,¹⁴ Comprehensive information about establishing AHA roles and changes to physiotherapy practice associated with such roles in an acute respiratory clinical setting has not been reported. We aimed to determine the impact of the inclusion of an AHA role on physiotherapy service delivery in an acute respiratory care setting (adult CF centre), in terms of service provision, scope of practice and skill mix changes.

MATERIALS AND METHOD

Design

A pragmatic pre-post design study was conducted at an adult CF centre to examine the delivery of physiotherapy services across two three-month periods: phase one (P1)
Physiotherapy staffing in both phases comprised two full time equivalent permanent senior CF physiotherapists and two full time equivalent junior rotational physiotherapists. A new full time equivalent AHA role was also included in phase two staffing. A workforce redesign tool called the Calderdale Framework was used for the development of the AHA role.15,16

All CF physiotherapy staff and the AHA were trained in the principles and practices of delegation.17 Physiotherapy staff delegated activities to an AHA who had been specifically trained in the knowledge and skills to undertake the activities safely.17,18 Training covered direct and non-direct clinical tasks (see online supplement 1 table A for task requirements). Clinical tasks included six-minute walk tests, and supervision of established inhalation therapy, airway clearance and routine exercise treatments for stable inpatients as delegated by the physiotherapy staff. Non-direct clinical tasks included oversight of respiratory equipment use (including supply, cleaning, audit of loans) and general administrative duties.

Data collection

Physiotherapy services for both inpatient and outpatient adults with CF undergoing treatment within this centre were quantified during weekdays (usual business hours). Staff recorded all direct and non-direct clinical and non-clinical activity daily to quantify physiotherapy service delivery using a portable scanning system (Chappell Dean Pty Limited). Data included date, time, location (ward, multidisciplinary outpatient clinics), activity type using a predetermined code list,19 number and duration of each activity, and staffing level (junior, senior, AHA in phase 2).

Clinical data were collected for all patients with CF admitted to the hospital across both phases. The number of admissions and number of people with CF attending multidisciplinary outpatient clinics were recorded over each phase. Number and details of any documented clinical incidents or adverse events during any physiotherapy or AHA
intervention were recorded using the hospital incident recording system\(^{20}\) for each phase. Staff and patient perceptions of the physiotherapy service during both phases were sought from all members of the multidisciplinary team and all patients receiving physiotherapy care during both phases. Purpose designed surveys were developed and pilot tested with both participant groups. Patient surveys comprised 26 questions and staff surveys nine questions. The surveys sought perceptions of the quality, effectiveness and accessibility of the physiotherapy service. A five-point Likert scale was used with open-ended response options also provided for participants to provide additional information (see online supplement 2 for survey inclusions)

Outcome measures

The primary outcome was all clinical and non-clinical activity that contributed to the delivery of physiotherapy services. Physiotherapy services were described under three categories: service provision, scope of practice and skill level. Service provision activity was quantified as the number of physiotherapists and AHAs. Scope of practice activity was quantified as number, type and duration (per day) of all staff activity, further categorised for skill level (AHA, junior, senior).\(^{19}\) Adverse events were described in terms of type and number.

Data analysis

Demographic, service provision, scope of practice and skill mix data were analysed descriptively. Fisher’s exact tests were used to determine differences in service delivery, staff numbers and types of activities across phases. Independent t-tests were conducted to compare the number of activities per day and duration of activity type on the days these activities occurred between phases for all staff and between junior and senior staff. Clinical and demographic information from surveys were analysed descriptively. Mann-Whitney U tests were conducted to compare survey responses between phases. Open-ended responses were collated. Significance was defined as a p value < 0.05. SPSS v25 (IBM Corp., NY, USA) for
all analyses.

RESULTS

Service provision

Twenty-two staff delivered physiotherapy services across each phase. The two senior positions remained consistent across both phases. In P1 13 junior staff were rostered to the two junior CF positions or provided leave cover, with another seven junior physiotherapists contributing to care delivery during busy periods. In P2 16 staff were rostered to the two junior positions and four AHA staff covered the one rostered AHA position (for leave cover when required).

In P1, there were 113 inpatient admissions and 385 patient attendances at multidisciplinary outpatient clinics. In P2, there were 111 inpatient admissions and 352 patient attendances at multidisciplinary outpatient clinics. All inpatients across both phases received direct clinical care by the physiotherapy service. Physiotherapists saw a higher proportion of attendees at multidisciplinary clinics in P2 (268 (76%) vs 215 (56%), absolute risk difference 20% (95% confidence interval 13 to 27).

Scope of practice

Physiotherapy service activity (n, %) for all staff across the phases is described in Table 1. Overall, the physiotherapy service undertook more activity in P2 (n = 4730) compared to P1 (n = 3048).
Table 1 Number (percent total activity) of clinical and non-clinical care activities by all staff

(physiotherapists and AHAs) across phase one and two. Comparisons between phases for all staff (number (%)).

<table>
<thead>
<tr>
<th>Activity</th>
<th>All Staff</th>
<th>Fishers exact test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1</td>
<td>Phase 2</td>
</tr>
<tr>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Clinical care: Direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Treatment</td>
<td>1058 (35)</td>
<td>830 (18)</td>
</tr>
<tr>
<td>Exercise Treatment</td>
<td>338 (11)</td>
<td>350 (7)</td>
</tr>
<tr>
<td>Exercise Test</td>
<td>20 (1)</td>
<td>40 (1)</td>
</tr>
<tr>
<td>MDT clinic<sup>a</sup></td>
<td>215 (7)</td>
<td>268 (6)</td>
</tr>
<tr>
<td>Reviews</td>
<td>79 (3)</td>
<td>342 (7)</td>
</tr>
<tr>
<td>Other Treatment<sup>**</sup></td>
<td>29 (1)</td>
<td>20 (0)</td>
</tr>
<tr>
<td>Total direct clinical care</td>
<td>1739 (57)</td>
<td>1850 (39)</td>
</tr>
<tr>
<td>Clinical care: Non-direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient related documentation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>communication and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>management<sup>***</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment management<sup>****</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total non-direct clinical care</td>
<td>851 (28)</td>
<td>2069 (44)</td>
</tr>
<tr>
<td>Total clinical care</td>
<td>2590 (85)</td>
<td>3919 (83)</td>
</tr>
<tr>
<td>Non Clinical care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>326 (11)</td>
<td>587 (12)</td>
</tr>
<tr>
<td>Teaching & training</td>
<td>128 (4)</td>
<td>187 (4)</td>
</tr>
<tr>
<td>Research</td>
<td>4 (0)</td>
<td>37 (1)</td>
</tr>
<tr>
<td>Total non-clinical care</td>
<td>458 (15)</td>
<td>811 (17)</td>
</tr>
<tr>
<td>Total Activity</td>
<td>3048</td>
<td>4730</td>
</tr>
</tbody>
</table>
Multidisciplinary team outpatient based clinics; Reviews include physiotherapy annual review assessment and/or detailed reviews of specific management; **Other includes routine musculoskeletal and incontinence management and other clinical care activity not covered in other categories; ***Patient related documentation and communication includes documentation of clinical care related to patients and all other clinical documentation related to patient care administration and other patient related clinical activities (handovers, weekly patient review meetings) not covered in other categories; ****Equipment management includes time taken to manage (supply / setup / clean / order) patients respiratory / oxygen therapy equipment. Please refer to Hall K et al., 2020 19 for a full description of activity code inclusions.

Physiotherapist activity

Table 2 presents the activity undertaken by physiotherapists and the AHA for both phases. The overall number and percentage of clinical care activities undertaken by physiotherapists across the two phases was similar (85 vs 81%). There were differences for specific activities between the phases (Table 2). In P2, physiotherapists undertook fewer respiratory and exercise treatments and the number of patient reviews increased from 79 to 342. Patient related clinical administrative tasks such as documentation, handovers, attendance at ward rounds and discussions within the multidisciplinary team increased from 25% in P1 to 36% in P2. There was a reduction in activity associated with managing patients’ equipment needs by the physiotherapists in P2. Non-clinical care activities of research and management increased from P1 to P2. Teaching and training remained unchanged (Table 2).

AHA activity

The AHA completed 960 activities in P2, representing 20% of all physiotherapy service provision (Table 2). The majority of this was non-direct clinical care (n = 687, 72%), however delegated direct clinical activity including respiratory (n = 52 (5%) and exercise treatments (n = 93 (10%) occurred, contributing to the overall increase in numbers of exercise treatments undertaken by all staff in P2 (Table 2). The AHA completed 25 (3%) delegated exercise tests (Table 2).
Table 2 Number (percent total activity) of clinical and non-clinical care activities undertaken by physiotherapists and AHA for each phase.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>AHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physiotherapy</td>
<td>Physiotherapy</td>
<td>AHA</td>
</tr>
<tr>
<td></td>
<td>staff n (%)</td>
<td>staff n (%)</td>
<td>n (%)</td>
</tr>
<tr>
<td>Clinical care: Direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Treatment</td>
<td>1058 (35)</td>
<td>778 (21) ***</td>
<td>52 (5)</td>
</tr>
<tr>
<td>Exercise Treatment</td>
<td>338 (11)</td>
<td>257 (7) ***</td>
<td>93 (10)</td>
</tr>
<tr>
<td>Exercise Test</td>
<td>20 (1)</td>
<td>15 (0)</td>
<td>25 (3)</td>
</tr>
<tr>
<td>Multidisciplinary team clinics</td>
<td>215 (7)</td>
<td>268 (7) **</td>
<td>0</td>
</tr>
<tr>
<td>Reviews</td>
<td>79 (3)</td>
<td>342 (9) ***</td>
<td>0</td>
</tr>
<tr>
<td>Other Treatment**</td>
<td>29 (1)</td>
<td>19 (1) *</td>
<td>1 (0)</td>
</tr>
<tr>
<td>Total direct clinical care</td>
<td>1739 (57)</td>
<td>1679 (45)</td>
<td>171 (18)</td>
</tr>
<tr>
<td>Clinical care: Non-direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient related documentation,</td>
<td>749 (25)</td>
<td>1363 (36) ***</td>
<td>433 (45)</td>
</tr>
<tr>
<td>communication and management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment management</td>
<td>102 (3)</td>
<td>19 (1) ***</td>
<td>254 (26)</td>
</tr>
<tr>
<td>Total non-direct clinical care</td>
<td>851 (28)</td>
<td>1382 (37)</td>
<td>687 (72)</td>
</tr>
<tr>
<td>Total clinical care</td>
<td>2590 (85)</td>
<td>3061 (81)</td>
<td>858 (90)</td>
</tr>
<tr>
<td>Non Clinical care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>326 (11)</td>
<td>485 (13) *</td>
<td>102 (11)</td>
</tr>
<tr>
<td>Teaching & training</td>
<td>128 (4)</td>
<td>187 (5)</td>
<td>0</td>
</tr>
<tr>
<td>Research</td>
<td>4 (0)</td>
<td>37 (1) ***</td>
<td>0</td>
</tr>
<tr>
<td>Total non-clinical care</td>
<td>458 (15)</td>
<td>709 (19)</td>
<td>102 (11)</td>
</tr>
<tr>
<td>Total Activity</td>
<td>3048</td>
<td>3770</td>
<td>960</td>
</tr>
</tbody>
</table>

* p<0.05; ** p=0.01; *** p<0.001, p values based on Fisher’s exact t test of the difference between phases.
Time taken per activity by staff

The mean duration of each episode of activity per day for P1 and P2 for all staff is described in Table 3. Time spent on most activity episodes didn’t change ($p > 0.06$). More time was spent on respiratory treatments which increased by four minutes per episode in P2. Reduced time was spent on documentation, management and communication activities per episode in P2 (Table 3).

Table 3: Duration in minutes (mean (SD)) of each episode of activity per day of clinical and non-clinical care activities by all staff for each phase. Mean difference (95% confidence interval (CI)) between the two phases.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration of each episode of activity per day (mins)</th>
<th>Mean difference (95% CI) P2 minus P1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1 Mean (SD)</td>
<td>Phase 2 Mean (SD)</td>
</tr>
<tr>
<td>Clinical care: Direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory Treatment</td>
<td>34 (8)</td>
<td>38 (4)</td>
</tr>
<tr>
<td>Exercise Treatment</td>
<td>41 (7)</td>
<td>39 (6)</td>
</tr>
<tr>
<td>Exercise Test</td>
<td>32 (9)</td>
<td>35 (7)</td>
</tr>
<tr>
<td>Multidisciplinary team clinics</td>
<td>51 (29)</td>
<td>53 (31)</td>
</tr>
<tr>
<td>Reviews</td>
<td>42 (10)</td>
<td>41 (11)</td>
</tr>
<tr>
<td>Other Treatment</td>
<td>24 (6)</td>
<td>32 (13)</td>
</tr>
<tr>
<td>Clinical care: Non-direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient related documentation, communication and management</td>
<td>25 (14)</td>
<td>10 (5)</td>
</tr>
</tbody>
</table>
Skill mix

Overall junior physiotherapists undertook similar number (Table 4) and duration (see online supplement 1 table B) of direct clinical care activities in both phases. Direct clinical care activity increased for the number of reviews, and junior physiotherapists commenced non-clinical teaching and training activity in P2. No research activity for junior physiotherapists occurred in either phase (Table 4).

Differences in most of the clinical care activities were observed for senior physiotherapists between the phases (Table 4). In P2, senior physiotherapists completed fewer respiratory and exercise treatments, however spent longer time per episode compared to P1 (see online supplement 1 table B). Senior physiotherapists completed the same number of exercise tests in P2 (Table 4), though approximately 16 minutes longer was spent completing each test (see online supplement 1 table B). Senior physiotherapists increased the number of inpatient reviews completed per day from 1.0 (SD1.3) in P1 to 3.7 (SD2.9) in P2 (Table 4). There was no difference in number or duration of non-clinical care activities for teaching and training and management for senior physiotherapists. Senior physiotherapists undertook more research activity in P2 (Table 4).
Table 4 Clinical and non-clinical care activities per day by junior and senior physiotherapists across each phase.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Junior physiotherapists</th>
<th>Senior physiotherapists</th>
<th>Mean difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1</td>
<td>Phase 2</td>
<td>P2 minus P1</td>
</tr>
<tr>
<td>Clinical care: Direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory treatment</td>
<td>8.3 (4.5)</td>
<td>9.5 (3.3)</td>
<td>1.3 (-0.1 to 2.7)</td>
</tr>
<tr>
<td>Exercise treatment</td>
<td>4.4 (2.1)</td>
<td>3.6 (2.0)</td>
<td>-0.8 (-1.5 to -0.1)</td>
</tr>
<tr>
<td>Exercise testing</td>
<td>0.2 (0.5)</td>
<td>0.2 (0.4)</td>
<td>0.0 (-0.2 to 0.1)</td>
</tr>
<tr>
<td>Multidisciplinary team clinics</td>
<td>0.2 (0.9)</td>
<td>0.0 (0.1)</td>
<td>-0.2 (0.5 to -0.0)</td>
</tr>
<tr>
<td>Reviews</td>
<td>0.2 (0.5)</td>
<td>1.9 (1.7)</td>
<td>1.6 (1.2 to 2.1)</td>
</tr>
<tr>
<td>Other treatment</td>
<td>0.4 (1.1)</td>
<td>0.3 (0.5)</td>
<td>-0.1 (-0.4 to -0.2)</td>
</tr>
<tr>
<td>Clinical care: Non-direct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient documentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/communication/management</td>
<td>3.0 (3.7)</td>
<td>8.0 (4.5)</td>
<td>5.0 (3.8 to 6.2)</td>
</tr>
<tr>
<td>Equipment management</td>
<td>0.3 (0.6)</td>
<td>0.2 (0.5)</td>
<td>-0.2 (-0.4 to -0.0)</td>
</tr>
<tr>
<td>Non clinical care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>2.5 (2.0)</td>
<td>4.7 (1.7)</td>
<td>2.2 (1.5 to 2.8)</td>
</tr>
<tr>
<td>Teaching and training</td>
<td>0*</td>
<td>1.1 (1.5)</td>
<td>1.1 (0.7 to 1.5)</td>
</tr>
<tr>
<td>Research</td>
<td>0*</td>
<td>0</td>
<td>a</td>
</tr>
</tbody>
</table>

* t cannot be computed because there were no data for at least one of the groups

* Represents nil activity
Safety

No clinical incidents or adverse events associated with any physiotherapy or AHA patient intervention were recorded using the PRIME Clinical Incidents system across P1 or P2.

Perceptions of staff and patients

Eighteen (51%) and 17 (49%) staff responded to surveys during P1 and P2 respectively; 40% were allied health staff, 23% nursing and 29% medical staff. Sixty-three (35%) and 62 (36%) CF patients (53% male, 39% aged 36 years or older) receiving physiotherapy responded during P1 and P2 respectively. Staff (88%) were aware of the AHA working within the physiotherapy team during P2 and rated there was improved access to physiotherapy services for patients (p = 0.05) and greater ability of senior physiotherapy staff to engage in clinical care discussions and research (p < 0.05). Approximately two-thirds (62%) of patients reported the AHA had been involved in their care in P2, with 87% of respondents rating their physiotherapy care as good to excellent (see supplement 1 Figure A). In P1 72% agreed or strongly agreed their physiotherapy care was effective with different staff involved in their care, which increased to 87% of respondents in P2 (Figure 1). Overall, the numbers of written comments were small however there were no negative comments associated with the AHA delivering provision of care. Participants commented that the care was ‘still a high standard’ (participant X) and perceived the AHA as a ‘good resource, interested and knowledgeable’ (participant Y).
Figure 1: Perceived effectiveness of the physiotherapy care delivery in each phase of the study, rated on a 5-category Likert-type scale. Mean ranks: 43 for P1 and 33 for P2, Mann-Whitney U = 508, p = 0.024.
DISCUSSION

This study describes the successful development and then incorporation of an AHA role in an acute CF physiotherapy service. This redesign was undertaken as an innovative approach to address service provision challenges\(^1\) associated with increasing age, numbers and complexity of care for adults with cystic fibrosis.\(^1\) Redesigning health service delivery, where change is directed towards skill mix reconfiguration and optimising the capabilities of all members of a healthcare team to increase workforce capacity and patient outcomes is well recognised.\(^7,9,10,21\)

Overall access to physiotherapy services improved according to the multidisciplinary team. Additionally, more patients reported their care was effective in the second phase of the study. Approximately two-thirds of these patients reported the AHA had been involved in this care. Physiotherapists scope of practice changed, incorporating more advanced skills such as patient reviews and research, and in conjunction with the delegation of suitable tasks to the AHA.\(^,\) It would appear physiotherapy service delivery in this centre has now moved closer to several of the benchmarking standards recommended in clinical practice guidelines, with increased exercise testing and physiotherapy activity in the multidisciplinary clinics.\(^19,28\) It could be postulated these findings describe a redesigned acute care respiratory physiotherapy service with increased capability, comprising a new skill mix of an AHA and junior and senior physiotherapists. Similar service delivery models have been shown to improve patients outcomes in previous studies.\(^11,12,21\)

Detailed descriptions of the scope of practice undertaken by an AHA are presented. The AHA contributed 20% of overall physiotherapy service delivery with approximately 90% of their work centred on direct and non-direct clinical care activity. Direct care included delegated respiratory and exercise treatments. Most of the exercise tests in the second phase of the study were completed by the AHA. Previous reports of AHAs providing acute hospital
ward-based physiotherapy care include delegated strengthening and balance exercises and mobilisation occurring on rehabilitation, orthopaedic and general medical wards\(^9,^{21}\) and mobilisation of patients post abdominal surgery.\(^{22}\) This is the first time AHA workloads have been quantified for specific acute respiratory physiotherapy treatments to our knowledge. Of note, no patients reported that their quality of care was compromised.

As a likely consequence of the new AHA role within the physiotherapy service, changes to physiotherapists’ scope of practice occurred. Some exercise treatments and the management of patients’ equipment appeared to have shifted into the AHA’s activity. Senior physiotherapists could complete more patient reviews, undertake more activity within the multidisciplinary outpatient clinic and increase research activity. Junior physiotherapists undertook more advanced roles, including teaching and training, and some patient reviews. All physiotherapists increased their engagement in patient communication and management activity. Multidisciplinary team members felt that the physiotherapy staff were able to contribute more often to clinical care discussions. Clinical guidelines endorse the importance of physiotherapists being available for daily pre and post clinic meetings, inpatients discussion meetings, weekly multidisciplinary team case conferences and contributions to research and education meetings\(^1,^5,^{27,28}\) thus an AHA role is a possible strategy to optimise scope of practice for physiotherapists.

Barriers to the successful development and implementation of an AHA role within an acute care respiratory physiotherapy service were considered in the planning of this service redesign, in particular the ability to safely contribute to direct respiratory clinical care delivery. It is well documented that barriers to successful AHA role development include pre-existing perceptions of both physiotherapists and AHAs about these roles.\(^{12,13,14}\) Other barriers about the AHA role include lack of clarity regarding the specific tasks to be performed, the need for preparation and training, and an understanding by all staff about the
level of accountability and responsibility for treatments undertaken by the AHA, which requires training for all staff in supervision and delegation practices. To address these issues the Calderdale Framework was used to develop the AHA role, with a focus on supporting skill mix redesign and mitigating potential risk.

This workforce redesign tool was specifically chosen as it has previously been successfully used in the implementation of AHA roles, is patient-focused and engages both the AHAs and the physiotherapists in the seven-step facilitated process. Using the Calderdale Framework analysis tools and a trained facilitator the AHAs and the physiotherapists worked together to establish the most appropriate clinical and non-clinical tasks to be included in the new AHA role. The training of the AHA was comprehensive and followed a taught, modelled, competent methodology. Competency assessment, clinical governance processes, and a procedure for documentation and feedback to delegating physiotherapists after task completion were all developed. All staff completed a structured delegation training process. This training outlined the level of accountability and responsibility for both the physiotherapists and AHAs when supervising and handing over clinical tasks to AHAs.

It is likely therefore, that the positive outcomes reported in this study can be attributed to the decision to use a comprehensive workforce development tool to develop and implement the AHA role. All staff appeared to be engaged in activity at appropriate scope, which included the development of an appropriate scope of practice for the AHA and then physiotherapy staff undertaking more advanced scope of practice activities required to deliver care to this complex patient group.

Another aim of the using the workforce redesign tool was to mitigate potential risk. This appears to have been achieved. The delegated clinical treatments undertaken by the AHA in this study appear to be safe, as no major adverse clinical events were reported in the
hospital’s clinical incident documentation system. Previous safety outcomes in acute care settings are only available for delegated exercise and mobility treatments for patients. A recent systematic review supports our findings, reporting no increased risk of harm to patients associated with a broad range of delegated AHA treatments occurring in hospital and community centres. These authors suggested healthcare organisations could be assured that AHAs can provide safe interventions under supervision. We were unable to collect more extensive safety data (e.g. intermittent desaturation with exercise) and this should be included in future research.

Generalisability of our findings should also be considered. Our robust methodology of using the Calderdale Framework to inform the inclusion of the AHA role was a deliberate strategy to optimise outcomes for the new AHA role and overall service delivery as discussed. Other studies developing AHA roles have not shown such successful outcomes and this may due to a lack of planning and training for all members of the teams involved. Findings from this study suggest that delegated clinical and non-clinical roles could be established in other centres with similar education and training strategies.

It is possible that some changes observed in physiotherapist activity for inpatients may have been attributed to variations in the complexity of patients admitted to the CF centre across the two phases. There was no capacity to quantify patient complexity during each phase of the study therefore, we are unable to determine if this was a factor. Variations in patient demand and complexity were minimised with data collection periods deliberately chosen to avoid peak holiday (December to January) and clinical demand (July to August). Additionally, data collection over a three-month period may not have been long enough to fully account for changes to service delivery and physiotherapists scope of practice. Further, there was some limitation to the activity codes used. Activity codes were selected in
collaboration with the CF physiotherapy team which resulted in some limitation in our ability to tease out detailed information related to scope of practice.

This study describes the scope of practice undertaken by an AHA in an acute care service and the resultant changes to physiotherapy service provision within an adult CF centre. The AHA completed delegated clinical tasks such respiratory and exercise treatments and most of the exercise tests. AHA non-direct clinical care included managing equipment and patient related administration activities. Resultant changes to physiotherapist activity and scope of practice included a reduction in simple task focused treatments such as delivery of exercise treatments delivered to inpatients. However complex clinical care involving activity in the multidisciplinary team clinic and undertaking more annual reviews was increased. Physiotherapists also increased their patient communication, management and research activity. Importantly, there were no safety issues reported during the study phases. Critical to the successful establishment of the AHA role was the use of a workforce redesign tool to engage, develop, train and educate both the physiotherapists and the AHA for effective and safe delegation activities.
ONLINE SUPPLEMENT 1

The following are supplementary tables and figures to this article:

Table A: AHA clinical and non-clinical task requirements

<table>
<thead>
<tr>
<th>1 COMMUNICATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inform physiotherapist when arrive/leave ward</td>
<td></td>
</tr>
<tr>
<td>• Alert physiotherapist to any changes to normal routine (eg relief)</td>
<td></td>
</tr>
<tr>
<td>• Ensure patient confidentiality</td>
<td></td>
</tr>
<tr>
<td>2 SAFETY/KNOWLEDGE</td>
<td></td>
</tr>
<tr>
<td>• Location of emergency buzzers & trolleys, fire exits, fire extinguishers and fire break glass/alarms.</td>
<td></td>
</tr>
<tr>
<td>• Awareness of emergency procedures for area and alert tones</td>
<td></td>
</tr>
<tr>
<td>• Awareness, understanding and competent check of clinical task instructions</td>
<td></td>
</tr>
<tr>
<td>o When to stop</td>
<td></td>
</tr>
<tr>
<td>o Pulse oximetry</td>
<td></td>
</tr>
<tr>
<td>o Heat rate monitoring</td>
<td></td>
</tr>
<tr>
<td>o Blood pressure monitoring</td>
<td></td>
</tr>
<tr>
<td>• Awareness and management of signs of fainting, seizures, hypoglycaemia (low blood sugar levels), oxygen desaturation and severe breathlessness</td>
<td></td>
</tr>
<tr>
<td>• Awareness of infection control procedures</td>
<td></td>
</tr>
<tr>
<td>• Emergency alarm checks performed monthly</td>
<td></td>
</tr>
<tr>
<td>• Semi-automatic external defibrillator equipment checked daily</td>
<td></td>
</tr>
<tr>
<td>• Cleaning procedure for defibrillator equipment</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 EQUIPMENT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Familiarity with and understanding of the following equipment:</td>
<td></td>
</tr>
<tr>
<td>🏥 Oxygen saturation monitor (oximetry)</td>
<td></td>
</tr>
<tr>
<td>🏥 Oxygen cylinders and delivery methods</td>
<td></td>
</tr>
<tr>
<td>🏥 Nasal high flow oxygen device (Airvo)</td>
<td></td>
</tr>
<tr>
<td>🏥 Non-invasive ventilation devices</td>
<td></td>
</tr>
<tr>
<td>🏥 Airway clearance devices</td>
<td></td>
</tr>
<tr>
<td>🏥 Exercise equipment (bikes, treadmills, weights)</td>
<td></td>
</tr>
<tr>
<td>Demonstrated ability to assemble / set up:</td>
<td></td>
</tr>
<tr>
<td>• Nasal high flow oxygen device (Airvo)</td>
<td></td>
</tr>
<tr>
<td>• Non-invasive ventilation circuit</td>
<td></td>
</tr>
</tbody>
</table>
- Airway clearance devices (e.g. PariPEP, Flutter, Aerobika)
- Demonstrated handling and safety associated with the following equipment:
 - Walking aids (Elbow support frame, walking belts, sticks, crutches, 4 Wheel walkers)
 - Attachments: Drips and drains (oxygen cylinder, IV pole, lines, drains, catheter, shoes, clothing, chair)
 - Weights
 - Treadmill
 - Exercise bike
 - Multi-station gym equipment (CF gym)
- Responsible for equipment safety, inventory checks, cleaning and maintenance checks
- Responsible for stock ordering.
- Delivery/ retrieval of respiratory equipment from central sterilising unit
- Environment considerations
 - Bed positioning, brakes on, clear path, equipment positioning
 - Appropriate positioning of self with respect to patient and physiotherapist (under guidance of PT)

4 INTERVENTIONS/MANUAL HANDLING:
The tasks set out below are to be undertaken with the physiotherapist or at direction of the physiotherapist (delegation).

- Mobilising
 - Able to assist in standing and mobilising patients using appropriate mobility aids and appropriate weight bearing status (NWB, PWB, TWB, FWB)
 - Able to assist in appropriate positioning of patient (high sitting, side lying, prone etc)

- Airway clearance
 - Supervision of airway clearance for inpatients as delegated per local work unit guidelines including:
 - Positioning and manual techniques (percussion and vibrations)
 - Active cycle of breathing technique
 - PEP and OPEP devices

- Exercise
 - Supervision of exercise programs for inpatients as delegated per local work unit guidelines
• Exercise tests
 - Undertake delegated exercise test as per local WUG
 - Six minute walk test
 - Modified shuttle walk test

5 ORGANISATIONAL SKILLS
• Data entry
• Generation of patient reports
• Statistics
• Photocopying
• Research assistant
• Office administrative tasks
• Management of medical aids subsidiary scheme and Cystic Fibrosis Qld equipment forms
• Management of loan stock from the above agencies, including a three monthly audit
• Engineering and Biomedical technology servicing administration as required
Table B Duration in minutes (mean (SD)) of each episode of activity per day by junior and senior physiotherapists for each phase. Mean difference (95% confidence interval (CI)) between the two phases for junior and senior physiotherapists.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Junior physiotherapists</th>
<th>Senior physiotherapists</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1 Mean (SD)</td>
<td>Phase 2 Mean (SD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical care: Direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respiratory treatment</td>
<td>37 (8)</td>
<td>37 (4)</td>
</tr>
<tr>
<td>Exercise treatment</td>
<td>40 (8)</td>
<td>38 (8)</td>
</tr>
<tr>
<td>Exercise testing</td>
<td>34 (9)</td>
<td>39 (12)</td>
</tr>
<tr>
<td>Multidisciplinary team clinics</td>
<td>47 (7)</td>
<td>30 (0)</td>
</tr>
<tr>
<td>Reviews</td>
<td>38 (11)</td>
<td>39 (10)</td>
</tr>
<tr>
<td>Other treatment</td>
<td>25 (5)</td>
<td>32 (13)</td>
</tr>
<tr>
<td>Clinical care: Non-direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient documentation,</td>
<td>28 (15)</td>
<td>12 (7)</td>
</tr>
<tr>
<td>communication, communication,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment management</td>
<td>34 (21)</td>
<td>21 (7)</td>
</tr>
<tr>
<td>Non clinical care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>43 (21)</td>
<td>41 (12)</td>
</tr>
<tr>
<td>Teaching and training</td>
<td>0*</td>
<td>29 (10)</td>
</tr>
<tr>
<td>Research</td>
<td>0*</td>
<td>0*</td>
</tr>
</tbody>
</table>

* t cannot be computed because there were no data for at least one of the groups
* Represents nil activity
Figure A: Perceived quality of the inpatient physiotherapy service in each phase of the study, rated on a 5-category Likert-type scale. Mean ranks: 42 for P1 and 34 for P2, Mann-Whitney U = 560, p = 0.97
ONLINE SUPPLEMENTARY MATERIALS 2 - SURVEYS

Survey 1: Patient survey

Physiotherapy Services at the Adult Cystic Fibrosis Centre at X hospital.

The following are the questions included in the surveys about patients’ experiences of the physiotherapy services provided at X hospital.

The post intervention survey had three (3) additional questions specific to the AHA role (Q 10, 12 and 14).

Section 1 - The Basics

1. How old were you at your last birthday?
 - 17 or younger
 - 18 - 25
 - 26 - 35
 - 36 or older

2. Are you male or female?
 - Female
 - Male

3. How far do you travel to attend X for outpatient or inpatient care?
 - Less than one hours drive
 - 1 -2 hours drive
 - 2 - 6 hours drive
 - Longer than 6 hours drive away

Section 2 - Inpatient Care

4. Have you been an inpatient over the last three months?
 - Yes
 - No
5. Please answer the questions below about your inpatient experience in the last three months:

<table>
<thead>
<tr>
<th>Question</th>
<th>Always</th>
<th>Usually</th>
<th>Unsure</th>
<th>Occasionally</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was it easy to access the physiotherapy service?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was it easy to access supervised exercise sessions in the gym or your room?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall, were your physiotherapy sessions long enough for you to feel your treatment was effective?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you have access to the apparatus and equipment you needed for your physiotherapy care (as far as you could tell)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As far as you could tell did the members of the physiotherapy team delivering your care work well together?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Did you have opportunities to participate in the physiotherapy decisions that applied to your care?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Were you given detailed instructions regarding your home physiotherapy programs before discharge?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall, did you have confidence and trust in the staff delivering your physiotherapy care?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any comments about the answers above?

[Blank space for comments]
6. Please also answer these questions about your inpatient experience.

| Overall, the staff delivering your physiotherapy care have a good understanding of cystic fibrosis. |
|--|----------------------------------|
| Strongly Agree | Agree | Unsure | Disagree | Strongly Disagree |
| ☐ | ☐ | ☐ | ☐ | ☐ |

| Overall, if you had any concerns about your physiotherapy management, these were addressed appropriately. |
|--|----------------------------------|
| Strongly Agree | Agree | Unsure | Disagree | Strongly Disagree |
| ☐ | ☐ | ☐ | ☐ | ☐ |

| The physiotherapy service you received during your admission helped you to deal more effectively with your cystic fibrosis. |
|--|----------------------------------|
| Strongly Agree | Agree | Unsure | Disagree | Strongly Disagree |
| ☐ | ☐ | ☐ | ☐ | ☐ |

Any comments about the answers above?

7. Did the physiotherapist treating you offer anything new or different with your physiotherapy care during your admission?

☐ Yes

☐ No

If yes, please describe

8. How would you rate the overall quality of the physiotherapy service you receive as an inpatient?

<table>
<thead>
<tr>
<th>Excellent</th>
<th>Good</th>
<th>Adequate</th>
<th>Poor</th>
<th>Very poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

9. Did you have more than one person treating or supervising your physiotherapy and/or exercise sessions during your inpatient stay?

☐ Yes

☐ No

How many? and any other comments

10. Did you have a physiotherapy assistant treating or supervising your physiotherapy and/or exercise sessions at any stage during your inpatient stay?

- Yes
- No
- unsure

Any comments

11. Did you feel your physiotherapy care varied if different staff were involved in your care?

- Yes
- No

Please describe

12. Did you feel your physiotherapy care varied if an allied health assistant was involved in your care?

- Yes
- No
- other

Please comment on why you chose your response above.

13. Would you agree you received effective physiotherapy care even if there were different staff involved in your care across an admission.

- Strongly Agree
- Agree
- Unsure
- Disagree
- Strongly Disagree

Do you have any further comments?

14. If you were treated by or underwent exercise testing with an allied health assistant would you like to comment specifically on the care you received?

Section 3 - Outpatient Care
15. Have you attended an outpatient clinic review over the last three months?
 - Yes
 - No

16. Did you see a physiotherapist at the outpatient clinic review in last three months?
 - Yes
 - No

17. Please answer the questions below about your outpatient clinic visits over the last three months

<table>
<thead>
<tr>
<th></th>
<th>Always</th>
<th>Sometimes</th>
<th>Unsure</th>
<th>Occasionally</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you find it easy to access physiotherapy service at the clinic?</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>If you see a physiotherapist, do you have enough time to discuss your physiotherapy related health problems?</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

18. Have you completed any of the following PHYSIOTHERAPY tests as an outpatient in the last year?
 (tick all that apply) at X hospital?
 - Six minute walk test
 - Shuttle walk test
 - Examination of your posture, back or neck?
 - Other physiotherapy tests

Please list other physiotherapy related tests you have had:

Allied Health Assistant in an Adult CF Physiotherapy service

Hall

5/11/2020

Page 32 of 41
19. Please answer the questions below about your outpatient experience in the last three months:

<table>
<thead>
<tr>
<th>Always</th>
<th>Usually</th>
<th>Unsure</th>
<th>Occasionally</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Did you have opportunities to participate in the physiotherapy decisions that applied to your outpatient care?

<table>
<thead>
<tr>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Unsure</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Were you given detailed instructions regarding your home physiotherapy programs if required?

Overall, did you have confidence and trust in the staff delivering your physiotherapy care?

Any comments about the answers above?

20. Please also answer these questions about your outpatient experience.

Overall, the staff delivering your physiotherapy care have a good understanding of cystic fibrosis.

Overall, if you had any concerns about your physiotherapy management, these were addressed appropriately.

The physiotherapy service you received during your outpatient consultation helped you to deal more effectively with your cystic fibrosis.

Any comments about the answers above?

21. How would you rate the overall quality of the physiotherapy service you receive as an outpatient?

- Excellent
- Good
- Adequate
- Poor
- Very poor

Final Section

22. Overall, as either an inpatient or outpatient, you are treated with respect and dignity by members of the physiotherapy team delivering your care.

- Strongly Agree
- Agree
- Neutral
- Disagree
- Strongly Disagree

23. Overall, how satisfied are you with the service you receive from staff delivering your physiotherapy care?

- Very satisfied
- Mostly satisfied
- Neutral
- Mostly dissatisfied
- Very dissatisfied

24. What do you find particularly good/like about the physiotherapy service at X Hospital?

25. What improvements could be made to the physiotherapy service at X Hospital?

26. Are there any other comments about the physiotherapy service at X Hospital you would like to make?

Thankyou for taking the time to complete this survey.

Survey 2:

Multidisciplinary team survey

Adult CF service – Multidisciplinary team survey
The following are the questions included in the surveys for multidisciplinary team members about physiotherapy services provided at X hospital.

The post intervention survey had four (4) additional questions specific to the AHA role (Q 3, 4, 5 and 6).

1. Which professional group do you belong to?
 - Allied health
 - Nursing
 - Medical
 - Rather not say

2. These questions relate to your perceptions, as a member of the ACFC multidisciplinary team, of the current physiotherapy service.

 ![Survey Table]

 - As an inpatient, clients find it easy to access the physiotherapy service.
 - As an inpatient, clients can access the physiotherapy service in a timely way.
 - As an outpatient, clients find it easy to access the physiotherapy service.
 - As an outpatient, clients can access the physiotherapy service in a timely way.
 - Clients receive benefits from the physiotherapy service.
 - Referrers (e.g. doctors, other AHP’s) can easily access the physiotherapy service.
 - Physiotherapists in the team work to their full scope of practice.

3. Are you aware there is an allied health assistant working within the physiotherapy team?
 - Yes
4. Did you have any professional contact with the allied health assistant, or were aware of the specific care they were delivering to patients as part of your role in the ACFC?
 - Yes
 - No
 - Unsure

5. Has the overall physiotherapy care delivered to the patients varied in any way over last 3 months?
 - Yes
 - No
 - Unsure
 - Can’t comment

6. Can you comment on any changes you have observed to physiotherapy care delivery over last 3 months?

7. What are the three most valuable aspects of the current physiotherapy service at X hospital?
 1.
 2.
 3.

8. What could be improved in the current physiotherapy service at X hospital?

9. Are there any other comments about the current physiotherapy service at X hospital you would like to make?
Thank you for taking the time to complete this survey. Your feedback is appreciated.
REFERENCES

10. Duckett S, Breadon P, Farmer J. Unlocking skills in hospitals: better jobs, more care

12. Munn Z, Tufanaru C, Aromataris E. Recognition of the health assistant as a delegated
clinical role and their inclusion in models of care: a systematic review and meta-synthesis of
qualitative evidence. *Int J Evid Based Healthc* 2013;11:3-19 http://dx.doi.org/10.1111/j.1744-
1609.2012.00304.x

13. Stanhope J, Pearce C. Role, implementation, and effectiveness of advanced allied health
http://dx.doi.org/10.2147/JMDH.S50185

14. Nancarrow S, Mackey H. The introduction and evaluation of an occupational therapy
http://dx.doi.org/10.1111/j.1440-1630.2005.00531.x

15. Allied Health Professions Office of Queensland. The Calderdale framework (pdf)
(2016b) https://www.health.qld.gov.au/__data/assets/pdf_file/0030/149655/calderdale-

16. Smith R, Duffy J Developing a competent and flexible workforce using the Calderdale
http://dx.doi.org/10.12968/iitr.2010.17.5.47844

(2016a)

(Accessed Dec 2019).

22. Boden I. Allied health assistants can safely and effectively provide early ambulation following major upper abdominal surgery (Australian Physiotherapy Association Conference paper) (2015)

