The occurrence of cardiovascular complications associated with SARS-CoV-2 infection: a systematic review

Daniele Melo Sardinha¹, Kada Valéria Batista Lima²,³, Thalyta Mariny Régio Lopes Ueno⁴, Yan Correa Rodrigues²,³, Juliana Conceição Dias Garcez⁵, Anderson Lineu Siqueira dos Santos²,³, Ana Lúcia da Silva Ferreira⁵, Ricardo José de Paula Souza e Guimarães¹,²,⁵, Luana Nepomuceno Gondim Costa Lima¹,²,³

¹ Programa de Pós-Graduação em Epidemiologia e Vigilância em Saúde (PPGEVS), Instituto Evandro Chagas (IEC), Ananindeua 65030-000, Brazil; danielle-vianna20@hotmail.com; ricardoguiaraes@iec.gov.br; luanalima@iec.gov.br,
² Programa de Pós-Graduação em Biologia Parasitária na Amazônia (PPGPBA), Instituto Evandro Chagas (IEC) e Universidade do Estado do Pará (UEPA), Belém 66087-670, Brazil; karlalima@iec.gov.br; thalyta_mlopes@hotmail.com; Yan.13@hotmail.com; juliana.garcez@famaz.edu.br; andersonlineu@gmail.com,
³ Seção de Bacteriologia e Micologia (SABMI), Instituto Evandro Chagas (IEC), Ananindeua 65030-000, Brazil,
⁴ Secretaria de Estado de Saúde Pública do Pará (SESPA), Belém, 66017-000, Brazil; analuca.ferreira@sespa.pa.gov.br,
⁵ Laboratório de Geoprocessamento, Instituto Evandro Chagas (IEC), Ananindeua 65030-000, Brazil; * Correspondence: danielle-vianna20@hotmail.com; Tel.: +55 91 998188990 (DMS)

Abstract: The Cardiovascular Diseases represent the main cause of death in the world, and are associated as risk factors that cause serious complications in cases of infections, such as those of the respiratory tract. In March 2020 the World Health Organization declared a pandemic for SARS-CoV-2, a new coronavirus causing severe pneumonia, which emerged in December 2019 in Wuhan, China. The objective is to investigate the occurrence of cardiovascular complications associated with SARS-CoV-2 infection. It is a systematic review, quantitative, in the databases, PubMed and Science direct, including primary studies with hospitalized patients confirmed for COVID-19 and who presented cardiovascular complications, form used tools for evaluation of quality and evidence, following the PREMA recommendations. Results: 12 studies were included. The occurrence of cardiovascular complications was: 27.33% of the sample of 3,316 patients. Types: Acute cardiac injury 17.09%; Thromboembolism 47.3%; Heart failure 34.3%; Arrhythmias 1.77%; Brain stroke 0.33%. Mean age 61 years. Conclusions: This study showed that there is several cardiovascular complications associated with SARS-CoV-2, that the main one is the acute cardiac injury, which causes several instabilities in the cardiopulmonary system, and that it is associated with mortality.

Keywords: Cardiovascular Complications; COVID-19; SARS-CoV-2.

1. Introduction

The Cardiovascular Diseases (CD) are a set of pathological conditions involving the cardiovascular system, such as: Coronary Arterial Disease (CAD), Cardiac Arrhythmias, Valvopathy, Inflammatory Heart Disease, Heart Failure (HF), Vascular Brain Injury (VBI), Pulmonary Embolism (PE), and Deep Venous Thrombosis (DVT). However, some risk factors, modifiable and non-modifiable, potentiate or cause cardiovascular events, among them: Systemic Arterial Hypertension (SAH), Diabetes Melittus (DM), Dyslipidemias, Sedentarism, Obesity, Stress, Hormone replacement therapy, Smoking, Family history of CD, Sex, Age and Heredity.¹,²

Thus, CD represents a major public health problem, since it is the leading cause of death, accounting for 17.7 million deaths worldwide in 2015, representing 31% of all deaths globally. The main cause of deaths is CAD.³,⁴

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
In this context, previous research has shown a transient risk of acute vascular events, including myocardial infarction and cardiovascular deaths, after clinically diagnosed Acute Respiratory Infections (ARI). Influenza vaccine has been shown to minimize the risk of major adverse cardiac events among people with pre-existing cardiovascular disease. Studies have shown that influenza epidemics are associated with cardiovascular mortality in subtropical and tropical climates. Thus, seasonal mortality from all causes, specifically in the elderly, has been associated with several viruses, including influenza, parainfluenza, RSV and norovirus. A Dutch study suggests that these viruses account for 68% of deaths in people aged 85, 4.4% in people aged 75-84, and 1.4% in people aged 65-74. The impact of viral respiratory infections on the cardiovascular system causing fatal events is thus evident[5,6].

In this sense, in December 2019, cases of influenza syndrome with evolution to ARI, of unknown etiology, were registered in China and caused concern because of the several deaths and rapid transmissibility. In January researchers isolated and identified the causative infectious agent as a Coronavirus, named at the time 2019-nCov, however, due to the similarity to SARS-CoV, another coronavirus causing ARI in humans, was renamed by the World Health Organization (WHO) as SARS-CoV-2, and respectively the disease was named Cov Disease-19 (COVID-19)[7–9].

Soon, COVID-19, due to the high transmissibility via respiratory droplets, in a direct and indirect way, spread to neighboring countries, and reached the level of the pandemic in March 2020 declared by the WHO[10].

According to the studies, the clinical characteristics of COVID-19 have shown to evolve in three ways: Flu Syndrome (FS), Severe Acute Respiratory Syndrome (SARS) and Asymptomatic. In the FS it refers to the presentation of fever, cough, sore throat, coryza, nasal congestion and myalgia. In SARS, signs and symptoms of FS are associated with oxygen saturation equal to or <95%, beating of nose wings, diarrhea, nausea, vomiting and cyanosis. The cases of SARS represent the serious complications of COVID-19, requiring intensive care treatment and being responsible for several deaths. The following risk factors stand out for the evolution of SARS: chronic heart diseases, chronic respiratory diseases, neoplasms, elderly, pregnant women, obese people[11–13].

In a review study, several cardiovascular complications associated with SARS-CoV-2 infection were cited[14]. However, studies do not specify the most frequent and prevalent associated complications, so it was questioned: What is the occurrence of cardiovascular complications associated with SARS-CoV-2 infection? The objective of this research is to investigate the occurrence of cardiovascular complications associated with SARS-CoV-2 infection.

2. Materials and Methods

Exploratory-descriptive research, of the type Systematic Review (SR), following the PRISMA recommendations [15]. The SR is made up of five stages: 1. formulating a research question; 2. defining inclusion and exclusion criteria; 3. developing a research strategy and researching the literature - finding the studies; 4. selecting the studies; 5. evaluating the quality of the studies; 6. extracting the data; 7. summarizing the data and evaluating the quality of the evidence[16].

For the elaboration of the research question, we used the PICO strategy, widely used in evidence-based practice, in which it proposes that problems identified in clinical practice, research and teaching be organized from four elements: Patient; Intervention; Comparison; Outcome (PICO). Because the construction from these elements, provides greater scope for the resolution of the problem addressed [17].

For the search strategy in the literature, the following keywords were listed: cardiovascular complications; COVID-19; SARS-CoV-2. The selected databases were: PubMed, Science direct, including studies of any language, published from 2019 until the date of the search 11/07/2020.
Inclusion criteria: primary studies, which evaluated individuals infected by SARS-CoV-2 hospitalized and presented results on cardiovascular complications, of all age groups. Exclusion criteria: studies that do not specify the cardiovascular complications that occurred quantitatively.

The PRISMA flowchart, a tool that is part of the PRISMA protocol, was used to visualize the search in the databases, showing how the final sample was reached, describing all the stages and inclusion and exclusion [15].

According to the protocol, two reviewers researched the bases independently, and critically evaluated each study from exhaustive reading in two stages, sorting by titles and abstracts/complete text. They then met twice to discuss the evaluations and decided which studies were included in the research.

The U.S. National Institutes of Health’s Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies was used to assess the quality of studies (https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools) It consists of 14 questions that measure the representativeness, the type of sampling, the description and evaluation of the exposure, the participants' overbite and the adjustments and qualifications of the confounding variables. The results were discussed qualitatively among the researchers, and the disparities were solved through the discussion.

In the evaluation of the quality of evidence, the Oxford Centre for Evidence-Based Medicine's Quality Classification Scheme was used for studies and other evidence [18], which is based on levels 1 to 5:

1- Randomized clinical trial properly fed and conducted; systematic review with meta-analysis.
2- Well designed controlled trial without randomization; comparative prospective cohort study.
3- Case control studies; retrospective cohort study.
4- Series of cases with or without intervention; transversal study.
5- Opinion of respected authorities; case reports.

When extracting the data, the researchers developed a form consisting of the following variables: authors and year of publication, method, quality of evidence, location, age, participants, gender, comorbidities, estimates of occurrence of cardiovascular complications evidenced in those infected by SARS-CoV-2. For data analysis, we opted for descriptive statistics, chi-square test of independence applied in the participants with the complications, to observe the most significant complications. The results were presented in tables.

3. Results

In PubMed, the initial search resulted in 294 articles, after the analysis by title and objective, 46 were selected for reading. 7 articles were included for the data analysis [19], [20], [21], [22], [23], [24], [25]. In Science direct, 795 articles were initially searched, applying the filter for primary articles only resulted in 257. 45 were selected, and after reading 5, [26], [27], [28], [29], [30]. In figure 1 is the flowchart of the search, and in table 1 the detailing of the variables extracted from the studies.

Figure 1 - Characterization of the search and definition of the sample in the databases.
Table 1. Data extracted from the studies included in the review.
<table>
<thead>
<tr>
<th>First author and year</th>
<th>Method</th>
<th>Quality of evidence</th>
<th>Location/sample</th>
<th>Age</th>
<th>Sex</th>
<th>Comorbidities</th>
<th>The occurrence and cardiovascular complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li et al (2020).</td>
<td>Retrospective study with patients Hospitalized</td>
<td>3</td>
<td>China 548</td>
<td>Average 60 years (range 48-69)</td>
<td>Male 279 (50.9%) Female 269 (49.1%)</td>
<td>Chronic obstructive pulmonary disease 17 (3.1%) Asthma 5 (0.9%) Tuberculosis 1 (0.6%) Diabetes 83 (15.1%) Hypertension 166 (30.3%) Coronary heart disease 34 (6.2%) Hepatitis B 5 (0.9%) Chronic kidney disease 10 (1.8%) Tumor 24 (4.7%)</td>
<td>Cardiac injury 119 (21.7%) Diffuse intravascular coagulation 42 (7.7%)</td>
</tr>
<tr>
<td>Wang et al (2020).</td>
<td>Retrospective cohort clinic, all confirmed cases of COVID-19 over 60 years of age</td>
<td>3</td>
<td>China 339</td>
<td>Average 71 years (> 60)</td>
<td>Male 166 (49%) Female 173 (51%)</td>
<td>Heart Disease 53 (15.7%) Hypertension 138 (40.8%) Diabetes 54 (16%) Kidney Disease 13 (3.8%) Chronic Liver Disease 2 (0.6%) Pneumopathy 21 (6.2%) Autoimmune disease 5 (1.5%)</td>
<td>Acute cardiac injury 70 (21.0%) Arrhythmia 35 (10.4%) Heart failure 58 (17.4%)</td>
</tr>
<tr>
<td>Inciardi et al (2020).</td>
<td>Retrospective cohort with hospitalized patients</td>
<td>3</td>
<td>Italy 99</td>
<td>Average 67</td>
<td>Male 80 (81%) Female 19 (19%)</td>
<td>Hypertension 63 (64%) Dyslipidemia 29 (30%) Diabetes 30 (31%) Heart failure 21 (21%) Atrial fibrillation 19 (19%) Coronary artery disease 16 (16%)</td>
<td>Venous thromboembolism 12 (12%) Arterial thromboembolism 3 (3%)</td>
</tr>
<tr>
<td>Study</td>
<td>Cohort Size</td>
<td>Median Age</td>
<td>Male (%)</td>
<td>Female (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shi et al. (2020a)</td>
<td>China</td>
<td>671</td>
<td>48%</td>
<td>52%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2020)</td>
<td>China</td>
<td>3</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2020)</td>
<td>China</td>
<td>671</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2020b)</td>
<td>China</td>
<td>416</td>
<td>40%</td>
<td>60%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2020b)</td>
<td>China</td>
<td>219</td>
<td>39.7%</td>
<td>60.3%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li et al. (2020b)</td>
<td>China</td>
<td>416</td>
<td>49.3%</td>
<td>50.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comorbidities:
- Hypertension: 17% (11/64), 25.1% (55/219), 30.5% (127/416)
- Diabetes: 14% (9/64), 14.2% (31/219), 14.4% (60/416)
- Coronary heart disease: 8% (5/64), 7.8% (17/219), 10.6% (44/416)
- Cerebrovascular disease: 5% (3/64), 5% (11/219), 5.3% (22/416)
- Heart failure: 17% (11/64), 4% (8/219), 4.1% (17/416)
- Chronic obstructive pulmonary disease: 4% (2/64), 6% (13/219), 6% (22/416)
- Cardiac injury: 2% (1/64), 2% (4/219), 2% (8/416)
- Stroke: 1% (1/64), 5% (11/219), 5% (22/416)
- Myocardial infarction: 2% (1/64), 4% (8/219), 4% (8/416)
<table>
<thead>
<tr>
<th>Study Type</th>
<th>Country</th>
<th>Sample Size</th>
<th>Average Age</th>
<th>Gender Distribution</th>
<th>Medical Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective study with hospitalized patients</td>
<td>China</td>
<td>221</td>
<td>58 (14-66)</td>
<td>Male 91 (48.7%), Female 96 (51.3%)</td>
<td>Hypertension 61 (32.6%), Cardiovascular disease 24 (10.9%), Acute cardiac injury 17 (7.7%)</td>
</tr>
<tr>
<td>Retrospective cohort study and multicenter protocol</td>
<td>China</td>
<td>191</td>
<td>55 (19-87)</td>
<td>Male 102 (53.2%), Female 89 (46.8%)</td>
<td>Hypertension 58 (30%), Diabetes 36 (15%), Chronic kidney disease 9 (4.3%)</td>
</tr>
<tr>
<td>Observational study of hospitalized patients</td>
<td>China</td>
<td>200</td>
<td>55 (18-87)</td>
<td>Male 98 (49%), Female 102 (51%)</td>
<td>Hypertension 45 (22.5%), Chronic lung disease 7 (3.5%), Diabetes 21 (10.5%)</td>
</tr>
<tr>
<td>Retrospective and multicenter cohort study, with hospitalized cases</td>
<td>China</td>
<td>187</td>
<td>56 (18-87)</td>
<td>Male 119 (63%), Female 68 (37%)</td>
<td>Hypertension 58 (30%), Diabetes 36 (19%), Chronic kidney disease 9 (4.8%)</td>
</tr>
<tr>
<td>Retrospective study with hospitalized patients</td>
<td>China</td>
<td>221</td>
<td>58 (19-87)</td>
<td>Male 108 (49.1%), Female 113 (50.9%)</td>
<td>Hypertension 54 (24.5%), Diabetes 36 (16.3%), Chronic obstructive pulmonary disease 2 (0.9%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cardiovascular disease 15 (6.8%), Cancer 9 (4.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Acute cardiac injury 17 (7.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Myocardial infarction 52 (23.6%)</td>
</tr>
</tbody>
</table>

Guan et al. (2020).
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Country</th>
<th>Median/Average</th>
<th>Male/Female</th>
<th>Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shang et al (2020)</td>
<td>Retrospective cohort study with severe hospitalized</td>
<td>China</td>
<td>66/65</td>
<td>73/40</td>
<td>Hypertension 50 (44%)
Diabetes 20 (17.7%)
Coronary heart disease 28 (24.8%)
Chronic obstructive pulmonary disease 5 (4%)
Tumor 8 (7.1%)
Heart disease 9 (8.0%)
Liver disease 8 (7.1%)
Acute myocardial injury 44 (38.9%)
Coagulopathy 21 (18.6%)</td>
</tr>
<tr>
<td>Deng et al (2020)</td>
<td>Retrospective with hospitalized</td>
<td>China</td>
<td>63 (49-60)</td>
<td>57 (50.9%)
55 (49.1%)</td>
<td>Hypertension 36 (32.1%)
Diabetes 19 (17.0%)
Coronary artery disease 15 (13.4%)
Atrial fibrillation 4 (3.6%)
Myocardial injury 14 (12.5%)</td>
</tr>
</tbody>
</table>

Source: Authors.
Based on the analysis of the included studies and the extracted variables, the review gathered 3,316 participants of the studies who were hospitalized, 50.87% male and 49.12% female, mean age 61 years, 13.08% with heart diseases (heart failure and coronary disease were included in heart diseases), 15.10% diabetes, 31.72% hypertension, 3.5% pneumopathy (obstructive pulmonary disease was included in pneumopathy), 3.13% renal diseases, 2.89% cancer, 0.09% immunosuppression, 0.57% liver disease, 0.15% autoimmune disease and 0.27% tuberculosis. This shows the most frequent comorbidities are: Hypertension, Diabetes and Cardiac Diseases (table 2).

Table 2 - Characteristics of participants, gender, mean age and comorbidities.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1629</td>
<td>49.12545</td>
<td>1687</td>
<td>50.87455</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>1687</td>
<td>50.87455</td>
<td>1629</td>
<td>49.12545</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (average) 61 years</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart disease</td>
<td>434</td>
<td>13.08016</td>
<td>2882</td>
<td>86.9194</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>501</td>
<td>15.10856</td>
<td>2815</td>
<td>84.8915</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>1052</td>
<td>31.72497</td>
<td>2264</td>
<td>68.2753</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumopathy</td>
<td>119</td>
<td>3.588661</td>
<td>3197</td>
<td>96.4113</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic kidney</td>
<td>104</td>
<td>3.136309</td>
<td>3212</td>
<td>96.8636</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancer</td>
<td>96</td>
<td>2.895054</td>
<td>3220</td>
<td>97.1046</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunosuppression</td>
<td>3</td>
<td>0.09047</td>
<td>3313</td>
<td>99.9095</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver disease</td>
<td>19</td>
<td>0.572979</td>
<td>3297</td>
<td>99.4270</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>5</td>
<td>0.150784</td>
<td>3311</td>
<td>99.8492</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>9</td>
<td>0.271411</td>
<td>3307</td>
<td>99.7286</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Authors.

Regarding the occurrence of cardiovascular complications associated with the SARS-CoV-2 infection, the following were highlighted: acute cardiac injury 17.09%, thromboembolism 47.3%, heart failure 3.43%, arrhythmias 1.77%, and stroke 0.33% (Table 3).

Table 3 - Occurrence of cardiovascular complications associated with SARS-CoV-2.

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
<th>Yes</th>
<th>%</th>
<th>Total</th>
<th>%</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>General complications</td>
<td>908</td>
<td>27.3507</td>
<td>2408</td>
<td>72.6503</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiac injury</td>
<td>567</td>
<td>17.09891</td>
<td>2784</td>
<td>82.9011</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thromboembolism</td>
<td>157</td>
<td>4.73462</td>
<td>3159</td>
<td>95.2658</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart failure</td>
<td>114</td>
<td>3.437972</td>
<td>3202</td>
<td>96.5628</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td><0.0001*</td>
</tr>
<tr>
<td>Arrhythmias</td>
<td>59</td>
<td>1.779252</td>
<td>3255</td>
<td>98.2208</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>11</td>
<td>0.331725</td>
<td>3305</td>
<td>99.6685</td>
<td>3316</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Discussion

Infection with SARS-CoV-2 may manifest with mild symptoms (85%) and severe symptoms (15%) (such as progression to SARS) with the potential to cause extrapulmonary damage, including cardiovascular damage that directly influences morbidity and mortality [31].

Thus, this study showed, from the analysis of studies with 3,316 hospitalized patients confirmed for COVID-19, that the occurrence of cardiovascular complications associated with SARS-CoV-2 was 27.38% of the following types: Acute cardiac injury 17.09%; Thromboembolism 4.73%; Heart failure 3.43%; Arrhythmias 1.77%; Brain stroke 0.33%.

Acute cardiac injury was the most recurrent, and two meta-analysis studies showed its juto association with increased troponin and mortality, showing no association of the cardiac injury with higher risk of developing SARS. The studies highlight that early troponin monitoring is a preventive strategy for further myocardial injury[32,33]. This mechanism of injury is not yet clear to cardiologists, however, they work with hypotheses of viral invasion in the myocardium, similar to pulmonary invasion, via the connection of SARS-CoV-2 to the Angiotensin Converting Enzyme 2 (ACE2), which is extensively present in the myocardium. Additionally, pneumonia can influence through systemic inflammatory responses causing non-ischemic complications in the myocardium, mainly in the presence of cardiovascular comorbidities. It is also noted that the increased inflammatory activity is a risk factor for the rupture of coronary atherosclerotic plaques, which can cause the partial or total blockage of coronary arteries, causing myocardial ischemia and consequently hypoxia injury, characterizing Acute Myocardial Infarction. Causes of cardiomyopathy due to stress, physical injury, or pharmacological effects were not excluded [34,35].

Research characterizes that the occurrence of acute cardiac injury is highly related to the presence of cardiovascular comorbidities (such as hypertension and diabetes), admission to an Intensive Care Unit and mortality. They highlight as a characteristic the increase of troponin type I associated with electrocardiographic and echocardiographic alterations, presenting segmental abnormality of the wall movement or reduction of the left ventricle ejection fraction [36]. Thus, the clinical presentation of the acute cardiac lesion may manifest as myocarditis or acute myocardial infarction, with thoracic pain and ST-segment elevation, requiring percutaneous cardiac procedure[37,38], which is an intervention that presents a risk of acute renal failure in hospitalized patients with comorbidities, due to the use of contrasts, and can increase hospitalization and mortality [39]. Showing that this complication requires procedures that can influence or enhance clinical conditions for a worse outcome.

Thromboembolism was the second most recurrent cardiovascular complication, described in the literature as Disseminated Intravascular Coagulation. In association with SARS-CoV-2, it is related to a storm of inflammatory cytokines, directly attacking the vascular endothelium with elevation of the fibrinogen and dimero-D markers (product of fibrin/fibrinogen degradation), causing thrombin dysregulation, exacerbated by inhibition of fibrinolysis. Thus the natural anticoagulants are compromised, resulting in the formation of thrombi, which can travel to a smaller vessel and obstruct, causing hypoxia. Thromboses can be venous or arterial, and can evolve to Deep Venous Thrombosis, Pulmonary Embolism, Ischemic Vascular Accident or acute myocardial infarction. These are serious complications associated with mortality. In this context, the heparin used in anticoagulant therapy was associated with better prognosis in some cases[40,41]. A study with 184 patients hospitalized in an intensive care unit confirmed for COVID-19, showed an incidence of 31% of thrombotic events, all received standard dose thromboprophylaxis[42]. Another study with 388 patients hospitalized by COVID-19 with thrombotic events in 28 cases (7.7%), being 8 cases in intensive care unit and 20 cases in the infirmary, the complications represented: 4.4% venous thromboembolism, 2.8% Pulmonary Embolism, 0.3% Deep Venous Thrombosis, 2.5% ischemic stroke and 11.1% acute myocardial infarction and Acute Coronary Syndrome. All cases used thromboprophylaxis[43]. This study also showed the occurrence of stroke alone as a complication in
0.33% of cases, however, it is directly associated with thromboembolism associated with SARS-CoV-2, because the inflammatory response generates a hypercoagulable condition.

Heart failure represented the third cardiovascular complication, being a complex clinical syndrome, in which the myocardium has inability to adequately pump the blood to meet the metabolic needs of the tissues. This condition can be caused by structural or functional cardiac changes and presents characteristic signs and symptoms that result from a reduction in cardiac output and/or high filling pressures at rest or under stress[44]. Studies show that this complication occurs in patients without heart disease, mainly as a consequence of acute heart injury, since the damage to the myocardium has repercussions on its ventricular contraction function, resulting in a reduction in systolic function. Additionally, coagulopathies can cause pulmonary embolism and have repercussions in acute right ventricular failure. In addition, stress cardiomyopathy can also lead to classic ventricular decompensation, with high filling pressures and pulmonary edema. On the other hand, in the carrier of chronic heart failure, there is a great chance of decompensation of the disease, requiring hospitalization and intensive care, influencing mortality[45,46].

Another outstanding complication was cardiac arrhythmias, which are directly related to the following factors: acute cardiac injury, heart failure, drugs that prolong the cQ1T interval. Atrial fibrillation proved to be the most common type of arrhythmia, with the potential risk of thrombus formation, acute myocardial infarction and ischemic stroke, and antithrombotic therapy is debatable even in cases without risk factors. Arrhythmias are also related to higher risks of heart instability, cardiac arrest and death[47].

This review showed that acute cardiac injury is the main cardiovascular complication associated with SARS-CoV-2 infection, causing several instabilities in cardiopulmonary functions, and also influencing other cardiovascular complications, in patients without chronic diseases and with chronic diseases.

5. Conclusions

The main cardiovascular complications associated with SARS-CoV-2 in hospitalized patients were several, among them: acute cardiac injury, thromboembolism, heart failure, arrhythmias and ischemic stroke, with a mean age of 61 years, with the most prevalent comorbidities, hypertension, diabetes and heart diseases.

The evidence on the association of cardiovascular complications and SARS-CoV-2 provides information for the implementation of preventive measures and better therapeutic management, with the objective of minimizing hospital stay, morbidity and mortality.

Author Contributions: D.M.S and K.V.B.L. conceived the study. D.M.S, K.V.B.L. and T.M.R.L.U. designed the search strategy. D.M.S. conducted searching of databases. Y.C.R., D.M.S., J.C.D.G. and A.L.d.s.F. screened the records. D.M.S and K.V.B.L. screened the full texts. A.L.S dos S. completed all data extraction, and R.J. de P.S e G and L.N.G.C.L. conducted quality checks. L.N.G.C.L. drafted the full manuscript, and all authors reviewed and approved final submission. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

https://doi.org/10.1111/tmi.13838.

https://doi.org/10.20344/amp.11923.

[36] Martins-Filho PR, Barreto-Filho JAS, Santos VS. Biomarcadores de Lesão Miocárdica e Complicações...

https://doi.org/10.36660/abc.20200322.

https://doi.org/10.1111/jth.14768.

https://doi.org/10.9734/ca/2020/v9i230129.

https://doi.org/10.1161/CIRCEP.120.008719.