Upper Limb Motor Improvement after TBI: Systematic Review of Interventions

Running Head: TBI upper limb motor improvement

Sandeep K. Subramanian, PhD, BPTh,1,2,3 Melinda A. Fountain, DPT1, Ashley F. Hood, DPT1 and Monica Verduzco-Gutierrez, MD2,3

1Department of Physical Therapy, School of Health Professions, UT Health San Antonio, San Antonio, TX, USA

2Department of Rehabilitation Medicine, Joe R. & Teresa Lozano Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA.

3University Hospital-University Health System, San Antonio, TX, USA.

Corresponding Author:

Sandeep K Subramanian, Ph.D, B.P.Th,
Assistant Professor,
Department of Physical Therapy,
School of Health Professions,
UT Health San Antonio,
San Antonio, Texas,
USA 78229
Phone: 1-210-567-8762
Fax: 1-210-567-8774
Email: subramanias3@uthscsa.edu

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Acknowledgements

The authors would like to acknowledge Dr. Kate Aultman for her support and encouragement in this project.

ORCID ID

Sandeep Subramanian: 0000-0002-5972-1588

Monica Verduzco-Gutierrez: 0000-0003-0964-5908

Word count: 4936 words

Figures: 1

Tables: 7
Abstract:

Traumatic Brain Injury (TBI) is a leading cause of adult morbidity and mortality. Individuals sustaining a TBI have impairments in both cognitive and motor domains. Motor improvements post-TBI are attributable to adaptive neuroplasticity and motor learning. Majority of the studies focus on remediation of balance and mobility impairments. There is limited understanding on the use of interventions for upper limb (UL) motor improvements in this population. We examined the evidence regarding the effectiveness of different interventions to augment UL motor improvement after a TBI. We systematically reviewed the literature published in English from 1990-2020. The modified Down's and Black checklist helped assess study quality (total score:28). Studies were classified as excellent:24-28, good:19-23, fair:14-18 and poor:≤13 in quality. Effect sizes helped quantify intervention effectiveness. Twenty-three studies were retrieved. Study quality was excellent (n=1), good (n=4) or fair (n=19).

Interventions used included strategies to decrease spasticity [Botulinum toxin provision (n=2), serial casting, soft splinting, tizanidine and acupuncture (n=1 each)], constraint induced movement therapy (n=4), virtual reality gaming (n=5), noninvasive stimulation (n=3), arm motor ability training (n=1), stem-cell transplant (n=1); task-oriented training (n=2) and augmented feedback (n=1). Motor impairment outcomes included Fugl-Meyer Assessment, Modified Ashworth Scale and kinematic outcomes (error and movement straightness). Activity limitation outcomes included Wolf Motor Function Test and Motor Activity Log. Effect sizes for majority of the interventions ranged from medium (0.5-0.79) to large (≥0.8). Only ten studies included retention testing. Results suggest that using these interventions can reduce UL motor impairment and improve activity performance after a TBI.
Introduction

Traumatic Brain Injury (TBI) is a major worldwide cause of morbidity and mortality. A mild, moderate, or severe assault to the head from blunt or penetrating trauma disrupting normal brain function causes a TBI. In the USA, recent reports indicate 2.87 million TBI related visits to the emergency room. The most common causes of TBI include falls, motor vehicle accidents and/or assaults with or without weapons. The available total cost estimates for TBI range from $56-$221 billion annually. Individuals sustaining a TBI may face effects lasting for days or for the rest of their lives. Most commonly, they report cognitive, behavioral and communication difficulties. Additionally, occurrence of a TBI can cause motor impairments to the upper and lower extremities.

Motor impairments in this population include abnormal posture, abnormal muscle tone, paresis, reappearance of primitive and tonic reflexes, motor sequencing difficulty, ataxia, decreased balance, and lack of coordinated movement. These individuals continue to have difficulty with ADL performance, especially with activities relying on coordinated movements and muscle strength in the upper limbs (UL). Persistent UL impairments and difficulties in ADL performance can impact functional and social independence in this population.

Rehabilitation can help in motor improvement, promote independence in the performance of ADLs and community reintegration after a TBI. Motor improvement after a TBI is attributable in part to motor learning and adaptive neuroplasticity. Provision of rehabilitation services helps in motor recovery by focusing on performing accurate repetitions of desired movements. Repetition of desired movements is an integral part of motor learning and promotes adaptive neuroplasticity. Recent guidelines stress the need for task-specific and intensive repetitive practice of functional reaching and an emphasis on fine motor coordination.
There is a need to identify the most effective and pertinent interventions with a focus on remediation of impairments and activity limitations. To date, research has focused primarily on cognitive impairments and gait limitations in this population, with less focus on UL issues. This is an important topic, given that the UL issues are more diffuse and tend to be long standing. Previous studies have identified deficits in UL functioning including impaired timing, reduced reach accuracy and ability to grasp objects. Functioning of the UL has implications for successful rehabilitation and community reintegration after a TBI. This is an area that has received less attention.

The objective of our study was to systematically review the available literature of studies focusing on rehabilitation of the UL, in individuals who have sustained a TBI. Better identification of useful interventions can help select the best options to be used in the clinic and can contribute to evidence-based practice. Our question in the Population, Intervention, Comparison and Outcome (PICO) format was, “In individuals sustaining a TBI, does provision of rehabilitation interventions augment UL motor improvement post-intervention compared to pre-intervention?” Preliminary results have previously appeared as an abstract.

Methods

Systematic Literature Review

We performed a systematic search of the literature using Medline, Google Scholar, ISI Web of Science, Science Direct, and CINAHL. A Health Sciences Library Liaison was consulted to determine appropriate search strategies. Keywords and MeSH terms used included “traumatic brain injury”, “head injury”, “concussion”, “arm”, “upper limb”, “upper extremity”, “rehabilitation”, “intervention”, “motor recovery”, “impairment”, “activity limitation” and
“motor improvement”. We used the terms “AND” and “OR” to combine keywords. Searches involved additional limits to restrict the articles to the English language literature published from January 1990 through August 2020, human species and age range was restricted to adult participants. We reviewed the reference lists of retrieved studies to identify additional relevant citations. Inclusion criteria were i) exposure to or provision of rehabilitation interventions and ii) assessment of motor impairment and/or limitations in activities of daily living using the UL. Articles with i) assessment of the effects of provision of only cognitive rehabilitation or ii) rehabilitation focusing exclusively on lower limb outcomes were excluded. Additionally, review articles and expert opinion articles were excluded.

Data Abstraction and Analysis

Retrieved articles were grouped according to the intervention used. We developed a data abstraction form and used it to extract information from the selected articles. The extracted information included details about type of UL intervention, outcome of intervention and results of the study, and effect sizes. We quantified the effectiveness of interventions using effect sizes. Effect sizes ranging from 0.2-0.49, 0.5-0.79 and ≥0.8 were interpreted as small, medium and large, respectively.23 We assessed the quality of all the included studies using the modified version24 of the Downs and Black checklist.25

The Down’s and Black checklist is a reliable and valid assessment26 to evaluate the quality of published articles. Compared to the PEDro scale, we used the Downs and Black checklist as it is useful to assess the quality of both randomized and non-randomized study designs and the total scores of both assessments are highly correlated in studies involving individuals with brain injuries.27,28 The Downs and Black checklist has been previously used to
appraise quality of published studies for UL rehabilitation.\cite{29,30} Study quality assessment scores on the checklist were rated as “excellent” (score 24-28), “good” (score 19-23), “fair” (score 14-18), or “poor” (score ≤ 13).\cite{31} The quality of each study was independently evaluated by AFH and MKF, with discrepancies, if any, resolved by SKS.

Results

A total of 131 citations were identified through database searches (Figure 1). After removing duplicates, 125 citations were screened, of which 96 were excluded. Of the 29 full text articles assessed for eligibility, we excluded five studies, as they were reviews and/or expert opinions. Twenty-three articles were included in the qualitative synthesis. The different interventions used included those to reduce spasticity (n = 6), constraint induced therapy (n = 4), virtual reality based gaming (n = 5), non-invasive stimulation (n = 3) [including neuromuscular electrical stimulation (NMES; n = 1) and transcranial direct current stimulation (tDCS; n = 2)], arm motor ability training (n = 1), use of stem cells (n = 1), goal oriented task-specific practice (n = 1), feedback provision (n = 1) and forced use therapy (n = 1). The average (95% CI) age of participants was 36.4 (29.1 - 43.6) years. Totally, 292 men and 108 women with TBI participated across studies. All participants or legal guardians signed consent forms approved by the local institutional review boards before start of study procedures. Brief highlights of the studies are presented below, with details in the accompanying tables.
A. Interventions to Reduce Spasticity

We found six studies (quality ranging from fair to good on D&B scoring) that examined the effects of different interventions on UL spasticity (Table 1). Studies investigated the effects of different interventions on spasticity reduction including provision of Botulinum toxin A injections, oral medication, serial casting soft splinting and acupuncture.

Two studies\(^{32,33}\) investigated the effects of Botulinum toxin A injections on wrist flexor spasticity in individuals with TBI and moderate-to-severe spasticity. Botulinum toxin A injections were delivered to target muscles under EMG guidance. Changes in spasticity levels (quantified using Modified Ashworth’s Scale) and wrist extension range of motion (ROM; measured using goniometry) helped assess the effects of the injections. Spasticity decreased and wrist extension ROM increased following Botulinum toxin A injections (large effect sizes, ES > 0.8).

Meythaler et al\(^{34}\) assessed the effects of oral tizanidine administration on UL spasticity in a group of 17 individuals with acquired brain injuries (ABIs). Nine participants had sustained a stroke, and 8 TBIs. They administered either tizanidine or placebo in a crossover fashion for 6 weeks, tapered the drug for one week and then switched over to other medication after one more week. Administration of oral Tizanidine in the range between 12-36 mg/day decreased spasticity (assessed using Ashworth’s scale) on the affected side immediately after treatment (ES = -0.36), but this effect was not retained at 6 weeks (ES = -0.1). Participants reported no serious side effects, with somnolence being the most common moderate side effect.

Moseley et al\(^{35}\) studied individuals with TBIs and elbow flexion contracture, and randomized subjects into two groups (n = 13 in each group). One group received serial casting, and the other group received static positioning. Serial casting increased elbow range by 22
degrees over static positioning immediately post-intervention (ES = 1.85). One day after cast removal, elbow range gain decreased to 15 degrees in the serial casting group (ES = 1.17), which further decreased to 11 degrees two weeks post-intervention.

Thibaut et al \(^{36}\) randomized 17 participants with ABIs (stroke; n = 10 and TBI, n = 7) to receive either soft splinting, 30 minutes of manual stretching, or no treatment. Provision of soft splinting resulted in increased hand opening ability (2.39 cm of major-palm distance, ES = 0.55). Additionally, soft splinting and manual stretching decreased finger flexor spasticity after 30 minutes of treatment (ES = -0.53 and -0.55).

Matsumoto et al \(^{37}\) provided acupuncture at certain points of the body and assessed its effects on UL spasticity. They used a crossover study design providing acupuncture or no treatment, separated by one week. Acupuncture provision reduced the F/M ratio at the end of treatment (ES = -0.73). This effect continued to be significant 10 minutes after the end of treatment (ES = -0.7). Change in F/M ratio representing change in spinal motor neuron excitability suggested that acupuncture provision was effective in reducing spasticity in participants with TBI in the short-term.

Insert_Table_1_near_here

B. Constraint Induced Movement Therapy (CIMT)

We found four studies (fair quality on D&B; Table 2) that assessed the effects of CIMT on UL impairment, activity, and self-reported UL use levels. Page and Levine, \(^{38}\) in a case series involving 3 participants with TBI, constrained the less-affected side for five hours a day for a period of 10 weeks. The Wolf Motor Function Test - Functional Ability Scale (WMFT-FAS), Action Research Arm Test (ARAT) and Motor Activity Log (MAL) outcome measures helped
assess response to the intervention. All participants improved UL activity performance measured using the WMFT-FAS (ES = 3.0) and ARAT (ES = 1.78). Additionally, participants also improved the amount and quality of self-perceived use, assessed using the MAL.

In two separate studies, Taub and colleagues examined the effects of CIMT on participants with chronic TBI. In both studies, participants wore the mitt for on the less-affected limb during 90% of waking hours and participated. The Fugl-Meyer Assessment (FMA) assessed motor impairment while activity limitation was assessed using the WMFT-FAS. Self-perceived UL use was measured using the MAL. All participants (n = 22) in the first study reported improvements in FMA (ES = 1.4) and WMFT (ES = 0.7) immediately after treatment. Participants also reported an increase in self-perceived quality of movement immediately after the intervention (ES = 2.1), which was retained at one month (ES = 1.7) and at two years post-intervention (ES = 1.0), albeit to a smaller degree.

Participants in the other study (n = 29) decreased motor impairment assessed using the FMA (ES = 1.5), and increased activity performance measured using the WMFT FAS (ES = 0.4). No change was noted in timed component of the WMFT. Participants reported an increase in the amount (ES = 1.7) and quality (ES = 2.1) of self-perceived UL use, as assessed by the MAL after the intervention. Participants reporting better use of the more-affected UL had better global cognition (assessed using the Mini-Mental Scale) and visual attention and task switching (measuring using the Trail Making Tests A and B).

Cho et al examined the effects of CIMT on fine motor function of the hand in 9 participants with ABIs (n = 6 with stroke and n = 3 with TBI). The less-affected side was partially constrained with an opposition restriction splint that did not permit use of the thumb and index finger. All participants were evaluated weekly using the Perdue Pegboard test, until no...
Change was seen in 3 consecutive assessments. Constraining the less affected side using the opposition splint resulted in improved performance on the pegboard test (ES = 1.31), at the end of the intervention period.

C. Virtual Reality Gaming

We found five studies (fair to good quality on D&B; Table 3) that assessed the effects of VR on motor performance outcomes and UL functional outcomes.

In two studies, Ustinova and colleagues examined the effects of task-practice of reaching movements from a standing position. In the first study, 13 participants with TBI practiced 10 trials of reaching movements. Movements were recorded using a motion analysis system. At the end of 10 trials, participants reached faster to the targets (ES = 0.54), and further improved (ES = 0.74) at retention testing after 30 minutes of no practice. The participants also had straighter reaching movements (ES = -1.07), which was retained (ES = -0.97).

In a second study, Ustinova et al 43 examined the effects of multiple sessions of playing games on balance, reaching and co-ordination. Participants (n=15) with chronic TBI played different games per session for 15 sessions (thrice weekly). All participants were assessed at baseline, after practice and one-month post-practice. Dynamic balance (ES = 1.33) and reaching movement straightness (ES = -1.16) improved after practice and at one month, these changes were retained.

Mumford et al 44 examined the effects of repetitive practice of unimanual and bimanual UL movements in nine individuals with severe chronic TBI. Motor performance of the UL was assessed using kinematic measures of reaching as well as the number of blocks transferred on the
Box and Blocks Test (BBT). After training, all participants had more accurate movements (ES = 0.62) and transferred more blocks (ES = 0.42).

Syed and Kamal assessed the effects of virtual reality gaming on individuals with a variety of neurological disorders (n=34) including TBIs (n = 9). Participants received either virtual reality based training (n=17) or conventional training (n=17) for 12 sessions across 6 weeks. The Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire helped assess self-reported UL activity performance. The Berg Balance Scale (BBS) was used to assess balance. Both groups improved after training with greater changes noted with virtual reality (p<0.001) compared to conventional training (p < 0.05) for both BBS and DASH. When results were compared for only the participants with TBI, greater within group changes were noted after virtual reality training compared to before for both BBS (ES = 5.73) and DASH (ES = 2.35).

In another study, Buccellato et al examined the effects of virtual reality gaming on a group of participants with acquired brain injuries (ABIs) including those caused as a result of strokes (n = 4), TBIs (n = 13) or a combination of stroke + TBI (n = 4). These 21 participants were randomized to an early treatment group (n = 11) or a delayed treatment group (began training 3 weeks after study initiation). The effects of this system on UL function, dexterity and activity performance was assessed using the FMA, BBT and Jebsen Taylor Hand Function (JTHF) test, respectively. Early or delayed training did not result in improved function or activity performance. However, activity performance was improved (ES = 0.52).

Use of VR for UL motor rehabilitation seems promising, with improvements noted using both kinematic measures of motor performance (accuracy, movement straightness) and clinical measures of self-perceived UL use, dexterity and activity levels.
D. Non-invasive Stimulation

We found 3 studies (fair quality on D&B; Table 4) that assessed the effects of non-invasive stimulation including use of neuromuscular electrical stimulation (NMES; one study) and transcranial direct current stimulation (tDCS; two studies) UL motor improvement after TBI.

Alon et al47 assessed the effects of provision of NMES enabling reciprocal finger flexion and extension along with grasp and release in 20 individuals with chronic ABIs (stroke; n = 13 and TBI; n = 7). All participants received an average of 3.5 hours. stimulation daily over the course of the intervention, which lasted for almost 4 months. The effects of the intervention were assessed on resting postures of the elbow and wrist as well as passive and active ranges motion of these joints using goniometry. All participants had a more extended posture at the elbow (ES = 4.09) and wrist (ES = 3.71) at rest at the end of the intervention. At the wrist, participants improved their range of passive extension (ES = 2.69) as well as active flexion and extension (ES = 2.73). At the elbow, active ROM increased (ES = 6.91).

Kang and colleagues48 assessed the effects of 2 mA tDCS to the left dorsolateral prefrontal cortex on reaction time to an attention task. Nine participants with chronic TBI participated in a study where they were randomized to receive active tDCS for 20 minutes or sham stimulation after one week in a crossover fashion. All participants were assessed on a computerized reaction time task. Reaction time decreased after application of real tDCS vs sham stimulation at the end of the intervention (ES = 0.89). However, this change was not maintained at the two retention assessments (three hours and 24 hours after the end of stimulation).

Middleton et al49 examined the effects of bi-hemispheric stimulation followed by robotic training on five participants with ABIs (stroke; n = 3, TBI; n = 1 and stroke + TBI; n = 1). All participants performed strengthening and functional activities for a total of 40 minutes. Each
participant received concurrent stimulation of 1.5 mA intensity for the first 15 minutes. Changes in UL function and activity performance were assessed using clinical measures (FMA, BBT, Purdue Pegboard) and robotic assessment of reaching (using the KINARM robotic device). All participants improved function and dexterity (better scores in FMA and BBT) at the end of the intervention. Results for participants with TBI revealed improvements in FMA scores (ES = 0.47), which were retained (ES = 0.42). No changes were seen in BBT or Purdue Pegboard scores. Participants with TBI reached the targets faster at the end of the intervention (ES = 0.37; assessed by the robotic device) and continued to improve 6 months later (ES = 0.7).

Thus, preliminary evidence supports the efficacy of provision of non-invasive peripheral and transcranial stimulation to reduce UL motor impairment.

Insert Table 4 near here

E. Arm Ability Training (AAT)

We found 1 study (excellent quality on D&B; Table 5) that assessed the effects of AAT on motor performance outcomes and hand function. In this study by Platz et al.⁵⁰ 60 participants with ABIs including stroke (n = 45) and TBI (n = 15) were randomized into three groups: a control group, a group receiving AAT and a group receiving AAT + knowledge of results (KR) feedback (n = 20 each). Activity performance was assessed using the time to complete the TEMPA (Test Evaluant les Membres Superieurs des Personnes Agees). Kinematic assessment of an aiming movement on a stylus between two targets was also conducted. Provision of AAT resulted in faster performance on the TEMPA (ES = 0.95) and led to faster movements on the initial ballistic phase of the aiming movement (ES = 0.67). Provision of KR feedback did not enhance task performance. Activity performance using the TEMPA was re-assessed at the end of
one year, with retention of improvement (ES = 0.75). Evidence from this study supports the short-term and long-term efficacy of AAT on improving the time taken to perform activities using the more affected side.

Insert_Table_5_near_here

F. Stem Cell Transplantation

We found 1 study (fair quality on D&B; Table 6) assessing the effects of stem cell transplantation on motor impairment. This study,51 examined the effects of provision of injection of mesenchymal stem cells derived from the umbilical cord. Forty participants with moderate to severe TBI were randomized to receive the injections or to a control group (n = 20/group). The FMA helped assess motor impairment in both groups at baseline and 6 months after the injection. Assistance in activity performance was assessed using the FIM. The intervention group had significantly better FMA scores than the control group for both the UL (ES= 1.38) and lower limbs (ES = 0.88) as well as FIM scores (ES = 1.17). Thus, preliminary evidence supports the efficacy of injections of mesenchymal stem cells derived from the umbilical cord.

Insert_Table_6_near_here

G. Feedback and Other Interventions

We found three studies (fair quality on D&B; Table 7) that assessed the effects of different interventions on UL motor impairment and activity levels in individuals with TBI. Sietsema and colleagues52 assessed the effects of playing a game within an occupational context compared to rote exercises on UL movement patterns. Twenty individuals with mild to moderate severity participated in the study. Participants practiced 10 trials in both conditions. The total
forward reaching distance from the hip to the wrist was measured using motion analysis. Game playing resulted in greater reaching distance (13 cm more, ES = 0.63) than rote arm reaching exercises.

Croce and colleagues53 evaluated the effectiveness of provision of knowledge of results (KR) feedback at different schedules in subjects with severe TBI (n=51). All participants practiced 60 trials (5 trials/block, 12 blocks) of an anticipation task. Participants received KR feedback on timing errors after each trial at different schedules – no KR (n=12), 100% KR (n=14), summary KR (n=13) and average KR (n=12). They were then tested for immediate (after 10 minutes) and delayed (after one hour) retention. All the three KR groups were more accurate in the last block compared to the first block of trials (ES = 0.96). At early retention testing, this effect was decreased in the 100% KR group. However, the summary KR (ES = 1.21) and average KR (ES = 1.02) groups continued to improve accuracy. At the late retention testing, the effects were further reduced in the 100% KR group (ES = 0.37) and average KR group (ES = 0.77) but was retained in the summary KR group (ES = 1.21). Thus, provision of summary KR may facilitate motor learning in individuals with TBI.

Sterr and Freivogel54 examined the effects of shaping principles on UL activity performance in individuals with ABIs including TBI (n = 11) and stroke (n = 2). All participants were evaluated using the MAL, WMFT-FAS and Frenchay Arm Test. Compared to provision of Occupational Therapy, participants had greater motor improvement with task-practice using shaping principles on the MAL AoU (ES = 2.23) and QoM (ES = 1.98), WMFT-FAS (ES = 1.76) and the Frenchay Arm Test (ES = 0.72) scores.
Discussion:

We examined the effectiveness of different interventions to augment UL motor improvement in individuals with TBI. We found a variety of interventions to help augment UL motor improvement in this population, with majority of the studies reporting moderate to large effect sizes. In terms of study quality assessment, one study was excellent, one was good, and the rest were fair.

Outcomes used to assess motor improvement

A variety of outcomes were used to assess motor improvements seen in response to provision of various rehabilitation interventions at different levels of the International Classification of Functioning (ICF). At the motor impairment level, the FMA was the most commonly used clinical outcome. Goniometry and torque controlled passive extension helped assess changes in wrist and elbow ranges of motion. In addition, kinematic motor performance outcomes including speed, reaching path straightness and accuracy helped quantify motor impairment in some studies. These kinematic measures were obtained using motion capture equipment, robotic manipulandum or using instrumented tablets. All the above-mentioned measures have well established psychometric properties.

Spasticity was most commonly quantified using the Ashworth’s scale or the MAS. Other measures used included the Modified Tardieu Scale or neurophysiological (H-Reflex) measures. The MAS has been recommended as a measure of choice in published guidelines. However, both the MAS and Modified Tardieu Scale have poor inter-rater reliability. Use of the MAS alone does not distinguish between the tonic and phasic components of spasticity. Changes noted in H-reflex based parameters do not automatically translate to better functional
performance after rehabilitation. Additionally, the utility of other neurophysiological measures for e.g. based on spatial threshold control of muscle activation alone or in conjunction with existing clinical measures of spasticity remains to be estimated.

Similar to motor impairment, a variety of assessments used to measure activity limitations. The WMFT was the most commonly used clinical assessment across the different studies. Dexterity was measured by using the BBT, Purdue Pegboard Test, TEMPA and Jebsen Taylor Hand Function test in different studies. Limitations in ADL performance were also quantified using the FIM, the CHART, Frenchay Arm Test and the ARAT. In addition, studies also used the DASH and MAL amount of use and quality of movement scores. All the measures have excellent psychometric properties and the FIM and ARAT are part of the published guidelines for TBI. The use of the MAL and DASH across studies is encouraging, given the recommendation to include patient reported measures as outcomes of interventional studies in neurorehabilitation.

Follow-up assessments

Motor improvement after TBI is attributable in part to motor learning. Retention of improvements in performance noted at the end of the intervention signifies motor learning. However, only of the 23 studies included in this review included any form of retention testing. Even amongst the 10 studies, the timing of testing varied widely. Retention was tested at the following periods after the end of the intervention: 10 minutes, 20 minutes, 30 minutes, one hour, three hours post-intervention, 24 hours, four weeks, six weeks, six months, one year and two years.
Not all studies found that changes noted at the end of the intervention were retained. While changes in spasticity were retained in the short-term (≤24 hours) with provision of interventions such as casting and acupuncture, longer term retention (>24 hours) was not seen with provision of tizanidine. Only short-term retention was tested when using VR and feedback provision. Use of shaping principles with and without constraint as well as Arm Ability Training resulted in long-term retention. Both short and long-term retention were seen with the use of tDCS. Whether using VR technology and different interventions including Botulinum toxin A and acupuncture result in long-term retention in individuals with TBI is unknown.

Presence of cognitive and mood impairments

As mentioned previously, individuals with TBI have cognitive impairments in different domains. Dysfunction in different cognitive domains influences generalized motor improvement in individuals with TBI. Amongst the papers we reviewed, only two papers examined the association between UL motor improvement and cognitive impairment. Few other studies provided information on baseline levels of cognitive functioning, but did not assess the effects of baseline cognitive dysfunction with motor improvement. Only two of the included studies in this review measured the levels of baseline depressive symptomatology, which is known to predict motor improvement and satisfaction with life after discharge from rehabilitation in this population. In individuals with post-stroke hemiparesis, the presence of cognitive impairments and depressive symptoms influence motor improvement and motor learning. Future studies will need to focus on the relationship between cognitive dysfunction,
mood disorders and motor impairment in individuals with TBI to better understand their association with motor learning and improvement.

Level of injury severity

Out of the 23 studies included in this review, only few studies included information on initial levels of injury severity. The initial level of injury severity was quantified using the Glasgow Coma Scale, duration of post-traumatic amnesia or Rancho Los Amigos original scale. Information on initial injury severity is an essential piece of information. This information is an important prognostic indicator for improvement in overall motor improvement, levels of activity performance assessed using the Barthel Index as well as a composite score of activities of daily living and social participation (assessed using the Glasgow Outcome Scale Extended measure).

The other studies did not specify the level of injury severity, but some provided FMA scores. Scores ≥50/66 and ≤49/66 on the FMA represent as mild and moderate-to-severe levels of UL motor impairment in individuals with post-stroke hemiparesis. The FMA scores in the acute stage can predict subsequent UL recovery potential in individuals with stroke. Whether FMA scores can be used to make similar predictions in individuals sustaining a TBI with significant UL motor impairment remains to be estimated. Future studies should examine the extent to which prediction rules pertinent to post-stroke rehabilitation are applicable in TBI.

Limitations:

Amongst the 23 studies included in this review, only nine studies were designed as RCTs.
Although the wide variability in presenting symptoms and underlying severity of injuries present serious challenges in designing RCTs in individuals with TBI, encouraging efforts are underway in this direction. Only three studies included in this review had explicit sample size calculations and one study provided an estimate for numbers of participants needed for future trials. Nine of the 23 studies included participants with stroke and TBI. Thus, it may be difficult to generalize the findings of these studies, except for two studies, which conducted separate analyses for individuals with TBI. Future studies should include only individuals with TBI or conduct separate sub-analyses for this population.

Conclusion

Preliminary evidence supports the efficacy of rehabilitation interventions to facilitate UL motor improvement in individuals with TBI. This is applicable across the different severity levels. This systematic review has identified several new questions that need to be answered. The questions that have arisen include whether provision of: i) Botulinum toxin A followed by intensive rehabilitation results in better long-term reduction of spasticity; ii) constraint induced movement therapy results in better UL motor improvement compared to traditional therapy; iii) a combination of interventions such as VR based gaming and provision of tDCS is more beneficial than provision of one single intervention; and iv) provision of knowledge of performance feedback is useful and results in similar or better improvement than knowledge of results feedback. Answers to these questions will help better understand which interventions are best suited to reduce impairment and improve activity performance in individuals with UL hemiparesis after a TBI.
Funding Support:

SKS was supported by a seed grant from the School of Health Professions, UT Health San Antonio.

Conflict of Interest:

The authors have nothing to disclose

References

31. O’Connor SR, Tully MA, Ryan B, Bradley JM, Baxter GD, McDonough SM. Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic

Figure Legends

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram [*Reasons for Exclusion: Conditions other than TBI (n= 20); no upper limb outcomes (n=60) and assessment only with no intervention component (n = 10)].
<table>
<thead>
<tr>
<th>Study: Down’s and Black score</th>
<th>Sample size (n)</th>
<th>Intervention details</th>
<th>Outcome</th>
<th>Results</th>
</tr>
</thead>
</table>
| Yablon et al 1996; DBS 17 (fair) | 21 individuals with TBI; 9 acute TBI (injury ≤12 months prior to study participation); 12 chronic TBI (injury >12 months prior to study participation). Participants had severe spasticity and majority of them had severe injuries (GCS ≤8). | 20-40 units of Botox; injected under EMG guidance. After injection, ROM therapy, casting and/or modalities provided. as required | Wrist passive ROM using goniometry; Modified Ashworth’s scale | Acute TBI:
- Decrease in spasticity measured by Modified Ashworth Scale; ES = -2.83
- Improvement in wrist extension ROM; ES = 1.52.
Chronic TBI:
- Decrease in spasticity measured by Modified Ashworth Scale; ES = -1.63
- Improvement in wrist extension ROM; ES = 1.74 |
| Pavesi et al. 1998; DBS 14 (fair) | 6 individuals with severe TBI, one participant in vegetative state. | 20-40 units of Botox; injected under EMG guidance. | Wrist passive ROM using goniometry; Modified Ashworth’s scale. | • Decrease in spasticity measured by Modified Ashworth Scale; ES = -2.38
• Improvement in wrist extension ROM; ES = 2.11 |
| Meythaler et al 2001; DBS 22 (good) | 17 individuals with ABIs; 8 TBI; spasticity for >6 months. Level of initial injury severity not provided. | Oral Tizanidine for a maximum of 36 mg/d or does tolerated for 8 weeks followed by placebo or vice versa administered as in a randomized crossover fashion. | Combined Ashworth’s scale score for UL spasticity in shoulder abductors, elbow extensors and/or flexors and wrist extensors. Functional Independence Measure (FIM) and Craig Hospital Assessment and Reporting Technique used to assess activity limitations | • Decreased UL spasticity immediately after Tizanidine provision, ES -0.36 as well as after placebo, ES -0.23.
• Greater reduction with active drug compared to placebo (p< 0.05).
• Effect not retained at 6 wks.
• No effects were seen at the level of activity limitations. |
Moseley et al 2006; DBS 22 (good)

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Participants</th>
<th>Methods</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| 26 individuals with severe TBI (GCS ≤ 5) around ≤ 6 months prior to study participation. | Individuals randomly assigned to serial casting (n=14) or positioning (n=12) group. Serial casting group had synthetic casts with elbow in a stretched extended position for 14 days, with progressive extension of stretch range after first 7 days. Positioning group had passive stretch applied for one hour/day for a minimum of 5 days/week. In some cases, family members applied stretched over weekends. Stretch position maintained using sandbags, slings or splints. Both groups also received therapy designed to improve individual motor skills. Both groups performed exercises with the study arm for 15 minutes/day, five days/week. | All assessments conducted at 4 wks when maximum tolerated dose was reached. Retention assessment at 6 wks only when active drug was administered. | Primary: Torque controlled elbow extension. Secondary: Spasticity assessed using Modified Tardieu Scale; Upper limb function assessed using the Test Évaluant la Performance des Membres Supérieurs des Personnes Âgées (TEMPA). All assessments conducted at baseline, immediately after cast removal, and one month after end of intervention. An additional assessment was conducted one day after cast removal for the primary outcome. | Primary Outcome
- Improved elbow extension range by 22° after serial casting for 2 weeks; ES = 1.31
- One day after cast removal, gain in elbow range decreased to 15 degrees; ES = 1.17
- Gain of 11° elbow extension range maintained 1 day after removal of stretch; ES = 0.29
- Change was not maintained 1 month after intervention. *Secondary Outcomes*
- Spasticity reduced immediately after serial casting compared to positioning (ES = -1.19), but this effect was not retained.
- Both groups improved slightly on TEMPA, with no between group differences seen. |

Thibaut et al 2015; DBS 20 (good)

<table>
<thead>
<tr>
<th>Study Details</th>
<th>Participants</th>
<th>Methods</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| 17 individuals with ABIs (7 TBI; severe TBI sustained ≥ 3 months prior to study) | Participants admitted due to lack of consciousness received three different one-hour long interventions in a randomized crossover fashion. | Finger flexors Modified Ashworth Scale Distance from thumb to fingers | Stretching and splinting:
- Spasticity: Immediate decrease in Modified Ashworth Scale score at POST; ES = -1.08
- Reduction maintained at RET compared to PRE, but higher than POST; ES = -0.54 |
The three one-hour treatments consisted of stretching (30 minutes) and splint (30 minutes), splint (30 minutes) and no treatment (30 minutes) or manual stretching (30 minutes) and no treatment (30 minutes).

Assessments carried out before (PRE), immediately after treatment (POST) and 60 minutes after treatment (RET).

| Matsumoto-Miyazaki et al. 2016; DBS 20 (good) | 11 individuals with severe TBI (vegetative state; loss of consciousness) sustained ≥ 8 months prior to study participation. | Acupuncture or sham stimulation provided. one week apart in a crossover randomized manner. Both sessions were one week apart. Stimulation provided. on the face, dorsum of the hand near the second metacarpal and anterior aspect of leg near the tibialis anterior muscle. Stimulation provided. for a total of 10 minutes. 16 F waves recorded for the Abductor Pollicis Brevis | Abductor Pollicis Brevis F/M ratio measured at baseline, immediately after removal of the needle or 10 minutes after baseline and at 20 minutes | • Hand opening distance: Increased hand opening at POST compared to PRE; ES = 0.55
• Change not maintained at RET

Splinting only and no treatment:

- Spasticity: Immediate decrease in Modified Ashworth Scale score at POST; ES = -0.68
- Reduction maintained at RET compared to PRE, but higher than POST; ES = -0.33
- Hand opening distance: Increased hand opening at POST compared to PRE; ES = 0.75
- Change not maintained at RET

Stretching only and no treatment:

- No significant changes seen at POST or RET.

| Acupuncture | Decrease in F/M ratio after immediately after stimulation (10 mins); ES = -0.73
• Change maintained at retention assessment (20 mins); ES = -0.70.

| Sham stimulation | No change in F/M ratio seen post-stimulation or at retention. |
muscle with stimulation provided at the median nerve.

DBS: Downs and Black Checklist Score; TBI: Traumatic Brain Injury; GCS: Glasgow Coma Scale; EMG: Electromyography; ROM: Range of Motion; ABI: Acquired Brain Injury; ES: Effect Size
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Intervention Details</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page and Levine 2003, DBS 15 (fair)</td>
<td>3 individuals with TBI chronic TBI (≥ 1-year prior to study participation)</td>
<td>All individuals wore the mitt 5 days/week, for 5 hours/day for 10 weeks on the less-affected side. In addition, they also received sessions/week of both PT and OT for 10 wks. Each session lasted 30 minutes. In the OT sessions, 20-25 minutes focused on 2-3 UL activities chosen by the patients.</td>
<td>Motor Activity Log Quality of Movement (MAL-QoM) and Amount of Use (MAL-AoU) scales, Wolf Motor Function Test – Functional Assessment Scale (WMFT-FAS) and Action Research Arm Test (ARAT)</td>
<td>• Improvements in MAL QoM and AoU scales above MCID levels. • Improved WMFT – FAS (ES = 3.0) and ARAT scores (ES = 1.78) after completion of therapy.</td>
</tr>
<tr>
<td>Shaw et al 2005, DBS 18 (fair)</td>
<td>22 individuals with chronic TBI (≥ 1-year prior to study participation)</td>
<td>All individuals were involved in performance of UL activities for 6 hours/day, 5 days/week for 2 weeks. The mitt was worn 90% of waking hours on the less-affected side.</td>
<td>FMA, WMFT-FAS, and MAL-QoM scale. FMA and WMFT-FAS were only assessed before and after intervention. MAL-QoM was assessed before and after intervention as well as at 2 retention periods (1-month post-practice and 2 years post-practice)</td>
<td>• The intervention led to improvements in FMA scores (ES = 1.4) and WMFT-FAS (ES = 0.7). • MAL-QoM scores improved at the end of the intervention (ES = 2.1). Changes were retained at 1 month (ES = 1.7) and 2 years post intervention (ES = 1.0).</td>
</tr>
<tr>
<td>Morris et al. 2006, DBS 17 (fair)</td>
<td>29 individuals with chronic TBI (≥ 1-year prior to study participation)</td>
<td>All individuals were involved in performance of UL activities for 6 hours/day, 5 days/week for 2 weeks. The mitt was worn 90% of waking hours.</td>
<td>FMA, WMFT-FAS, WMFT time to complete activities and MAL QoM and AoU scales. Assessments conducted before and after the intervention period.</td>
<td>• The intervention led to improvements in FMA scores (ES = 1.5) and MAL QoM (ES = 2.1) and AoU (ES = 1.7) scores. • Increase in self-perceived arm use correlated with better global cognition, visual attention and task-switching.</td>
</tr>
<tr>
<td>Cho et al. 2005;</td>
<td>9 individuals with ABIs (3 TBI); injury sustained</td>
<td>All participants wore a splint on the less affected side that</td>
<td>Perdue Pegboard test Weekly, scores on the Perdue Pegboard test recorded and</td>
<td>• Wearing splint resulted in improved performance on the test (ES = 1.31).</td>
</tr>
<tr>
<td>DBS 14 (fair)</td>
<td>≥12 weeks from study participation Level of initial injury severity not provided.</td>
<td>prevented opposition of the thumb. The three participants with TBI wore splints for two, three or five weeks.</td>
<td>scoring stopped when no change was seen for 3 consecutive weeks.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Participants Details</th>
<th>Gaming Details</th>
<th>Outcome Measures</th>
<th>Results/Findings</th>
</tr>
</thead>
</table>
| Ustinova et al. 2011; DBS 18 (fair) | 13 individuals with mild to moderate motor impairment. All participants had sustained a TBI between 2-10 years prior to study participation. | Single session, 10 trials of games (90 sec each) to pop balloons. Each trial consisted of 20-25 reaching movements for a total of 200-250 reaches. | Trajectory straightness and movement time. | • Participants had straighter movements at POST; ES = 1.07.
• These changes persisted after 30 mins at RET testing; ES = 1.0

Movement Time
• Participants took less time to complete reaches at POST; ES = 0.5
• These changes were retained; ES = 0.5. |
| Mumford et al. 2012; DBS 17 (fair) | 9 individuals who sustained an injury a median of 9 months prior to study participation. All participants had severe to very severe injuries (duration of PTA ranging from 26-270 days) | 12 one-hour sessions of exploratory and goal directed point to point reaching movements ordered and random targets, tracing shapes and responding only to cues and not distractors. Each session was 40 minutes long and the intervention duration was four weeks. | Reaching Accuracy
Box & Blocks Test (BBT).
All assessments performed twice at baseline and once after the completion of intervention.
Comparisons made between scores obtained at POST and average of the 2 PRE scores. | • Improved reaching accuracy (Lt UL ES: = 0.63, Rt UL ES = 0.54).
• Greater numbers of blocks transferred at completion of intervention using both right (ES = 0.61) and left hands (ES = 0.42). |
| Ustinova et al. 2014; DBS 18 (fair) | 15 individuals who sustained an injury 1-17 years prior to study participation
Severity of injuries ranged from mild (<30 minutes of PTA) to severe (>24 hours of PTA) | 15 sessions of exergaming involving re-training whole body co-ordination, including arm co-ordination, posture and gait. Games played including reaching out for flowers, collecting coins while avoiding distractors and popping bubbles. Each session was about an hour in duration, with 2-3 sessions/week. | Trajectory straightness for the upper limb.
Assessments conducted before and after the intervention period. | • All participants had straighter reaching movements at the end compared to before the start of the intervention (ES = 0.92). |
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>Allocation</th>
<th>Rehabilitation</th>
<th>Assessments</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syed and Kamal 2019; DBS 16 (fair)</td>
<td>34 individuals with different neurological conditions; (9 TBI). Level of initial injury severity not provided.</td>
<td>Participants allotted to one of two groups, performing exercises in virtual reality or conventional rehabilitation (n=17 each). VR exergaming involved moving within base of support, stepping, sit-to-stand activities, jumping, skipping and jogging. Conventional rehabilitation involved walking, picking up objects from the floor, moving within base of support, jumping, skipping and jogging. All participants received 2 sessions/ week of 40 minutes duration for 6 weeks.</td>
<td>Self-perceived upper limb use using the Disabilities of Arm Shoulder and Hand (DASH) questionnaire and Balance using the Berg’s Balance scale (BBS). Assessments carried out before and after the intervention period.</td>
<td>• Participants with TBI in the VR exergaming group improved significantly on the DASH and BBS post treatment (p < 0.05). • For only the participants with TBI, greater within group changes were noted after virtual reality post training compared to pre-training for both BBS (ES = 5.73) and DASH (ES = 2.35).</td>
<td></td>
</tr>
<tr>
<td>Buccalleto et al. 2020; DBS 19 (good)</td>
<td>21 individuals with ABIs (17 TBIs) sustained a mean of 66 months prior to study participation. Level of initial injury severity not provided.</td>
<td>Participants randomized to an early (n = 11) or a delayed treatment group (n = 10; began training 3 weeks after study initiation). VR exergaming using the BrightBrainer system involved playing unimanual and bimanual games in a seated position. All participants started with unimanual games and then progressed to playing bimanual games using handheld controllers. Games trained cognitive and motor aspects of UL movements.</td>
<td>FMA, BBT and Jebsen Taylor Hand Function Test. Assessments carried out before and after the intervention period.</td>
<td>• No change seen in FMA or BBT scores. • Improved scores on the Jebsen Taylor test for both groups after intervention (ES = 0.52).</td>
<td></td>
</tr>
</tbody>
</table>

DBS: Downs and Black Checklist Score; TBI: Traumatic Brain Injury; ABI: Acquired Brain Injury; PTA: Post Traumatic Amnesia; FMA: Fugl Meyer Assessment; BBT: Box and Blocks Test; ES: Effect Size
<table>
<thead>
<tr>
<th>Study</th>
<th>Participants</th>
<th>NeuroMuscular Electrical Stimulation</th>
<th>Transcranial Direct Current Stimulation</th>
</tr>
</thead>
</table>
| Alon et al. 1998; DBS = 17 (fair) | 20 in with ABIs (7 TBI) sustained an average of 7 years prior to study participation. Level of initial injury severity not reported. | Provision of NMES enabling reciprocal finger flexion and extension along with grasp and release. The system consists of a forearm-hand splint with five surface electrodes positioned over the extensor digitorum, extensor pollicis brevis, flexor digitorum superficialis, flexor pollicis longus, and thenar muscles groups. Pulses set in an interrupted mode; contraction and relaxation intervals ranged between 3-7 secs. All participants received an average of 3.5 hrs. stimulation daily over the course of the intervention, which lasted for almost 4 months. | • More extended posture at the elbow (ES = 4.09) and wrist (ES = 3.71) at rest at the end of the intervention in all participants.
• Increased range of passive extension (ES = 2.69), active flexion and active extension (ES = 2.73) at the wrist joint.
• Increase in active ROM of elbow extension (ES = 6.91).

| Kang et al. 2012; DBS = 18 (fair) | 9 individuals who sustained a TBI ≥ 2 months prior to study participation and had attention deficit. Level of initial injury severity not reported. | Real (2mA anodal) or sham stimulation applied over the DLPFC in a crossover manner. tDCS stimulation applied for 20 minutes. Sham stimulation consisted of 1 min ramp up and ramp down. | Reaction time on Contrast reaction time task, where participants had to press a button corresponding to a certain color appearing on the screen. All participants were assessed before, immediately after
• Tendency (p = 0.056) to reduce reaction time after real compared to sham stimulation; ES = 0.89.
• This change was not maintained 3 hours post stimulation (ES = 0.1).
• However, better retention of change in reaction times seen 24 hours post |
| Middleton et al 2014; DBS = 14 (fair) | 5 individuals with ABIs; 2 with TBI sustained 9 months or 206 months prior to study participation. | Bihemispheric stimulation of 1.5 mA for 20 minutes. Stimulation followed by intensive task-specific practice of UL gross and fine motor activities. Gross motor activities included tasks like reaching for items on shelves, hitting a balloon with a racquet or hand, and simulating household chores. Fine motor activities included flipping playing cards and manipulations small change. Total of 24 sessions, sessions held thrice weekly. | Clinical: FMA and BBT Kinematic: Movement straightness and speed assessed using the robotic manipulandum. Assessments completed immediately after practice and at 6-month retention assessment. | In the participants with TBI-
• Intervention led to better FMA scores (ES = 0.47), which was retained (ES = 0.42).
• Number of blocks transferred using the more-affected arm increased at the end of intervention (ES = 0.26) with changes retained (ES = 0.2).
• All participants moved faster (ES = 0.37). At retention, participants continued to move faster (ES = 0.70). |

DBS: Downs and Black Checklist Score; TBI: Traumatic Brain Injury; ABI: Acquired Brain Injury; FMA: Fugl Meyer Assessment; BBT: Box and Blocks Test; ES: Effect Size
| Platz et al. 2001; DBS = 25 (excellent) | 60 individuals with ABIs; 15 participants with TBI. Injury sustained ≥ 6 weeks prior to study participation. Level of initial injury severity not reported. | Participants randomized into groups to received Arm Ability Training, Ability Training with knowledge of results feedback or no Arm Ability Training. Arm Ability Training included activities involving dexterity manipulation, aiming for targets and gripping objects of different sizes. The group receiving knowledge of results feedback received average feedback. Details on what the no Arm Ability Training group received are missing. | Clinical: Hand function evaluated using the Test Evaluant les Membres superieurs des Personnes Agees. Kinematic: Movement time for aiming movements performed using a stylus. Clinical assessment performed before, immediately after the intervention and at 1-year retention testing. | • Immediately after the intervention, participants who received Arm Ability Training took less time to complete the TEMPA (ES = 0.95). Changes were retained at one year (ES = 0.82). • Participants in the Arm Ability Training group had faster movements at the end of the intervention (ES = 0.73). • Provision of feedback did not result in additional gains. |

DBS: Downs and Black Checklist Score; TBI: Traumatic Brain Injury; ABI: Acquired Brain Injury; ES: Effect Size
Table 6: Stem cell transplantation

| Wang et al 2013; DBS = 18 (fair) | 40 individuals who had sustained a TBI > 4 year previously. All participants had mean Glasgow Coma Scale score of 6.6. Injuries ranged from severe to moderate. | Participants were randomized into two groups to receive stem cells or a control group. All participants in the stem cell group received an injection of umbilical cord mesenchymal stem cells. 2ml of stem cell suspension (containing 1×10^7 stem cells) injected into subarachnoid space between lumbar vertebrae 3 and 4 or 4 and 5. No details are provided. on what was done with the control group or whether the participants received any rehabilitation. | FMA and FIM. Assessment was performed before stem cell implantation and 6 months post injection. | • Compared to the control group, the stem cell group had significantly improved their FMA scores at the end of 6 months for both the UL (ES= 1.38) and lower limbs (ES = 0.88) as well as FIM scores (ES = 1.17). |

DBS: Downs and Black Checklist Score; TBI: Traumatic Brain Injury; FMA: Fugl Meyer Assessment; FIM: Functional independence Measure; ES: Effect Size
<table>
<thead>
<tr>
<th>Table 7: Other interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siestama et al. 1993; DBS = 18 (fair)</td>
</tr>
<tr>
<td>Croce et al. 1996; DBS = 18 (fair)</td>
</tr>
<tr>
<td>Severity (Glasgow Coma scale scores from 8-12).</td>
</tr>
</tbody>
</table>

| Sterr and Freigvogel; DBS = 18 (fair) | 13 individuals with ABIs (11 with TBI and 2 with stroke). Participants with TBI had sustained an injury 24-150 months prior to study participation. Levels of initial injury severity not provided.. | All participants initially received OT for 90 minutes for 4 weeks in phase A. This was followed by forced use therapy involving principles of shaping for another 4 weeks in phase B. The participants practiced 4-10 tasks in each session. | The Frenchay Arm Test; MAL AoU, MAL QoM as well as WMFT-FAS were assessed at the end of phases A and B, and one month after the end of Phase B. Immediately at the end of Phase B: Significant improvements seen in Frenchay Arm Test scores (ES = 0.72), MAL AoU (ES = 2.38), MAL QoM (ES = 1.98) and WMFT-FAS (ES = 1.76). Retention at 4 weeks post practice: Changes were not retained compared to end of Phase A in any of the 4 clinical outcomes. |

Records identified through database searching (n = 135)

Additional records identified through reference lists (n = 5)

Records after duplicates removed (n = 120)

Records screened (n = 120)

Full-text articles assessed for eligibility (n = 30)

Full-text articles excluded (n = 7)

Studies included in qualitative synthesis (n = 23)