Comparative analysis of point-of-care lateral flow immunoassays for the detection of IgM and IgG anti-SARS-CoV-2 antibodies in healthcare workers

Danielle Dias Conte¹, Joseane Mayara Almeida Carvalho¹, Luciano Kleber de Souza Luna*,¹, Klinger Soares Faíco-Filho¹, Ana Helena Perosa², Nancy Beller¹.

¹Department of Medicine, Discipline of infectious diseases, Universidade Federal de São Paulo
²Universidade Federal de São Paulo, Hospital São Paulo

*Corresponding author: Luciano Kleber de Souza Luna

Universidade Federal de São Paulo, Laboratório de Virologia Clínica. Rua Pedro de Toledo, Rua Pedro de Toledo, 781 - Vila Clementino. 04039-032, São Paulo, SP, Brazil. Phone: + 55 11 5576-4848, branch 2222. E-mail: lksluna@gmail.com

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Since the Coronavirus Disease 2019 (COVID-19) pandemic, Brazil has the third-highest number of confirmed cases and the second-highest number of recovered patients. SARS-CoV-2 detection by real-time RT-PCR is the gold standard in certified infrastructured laboratories. However, for large-scale testing, diagnostics should be fast, cost-effective, widely available, and deployed for the community, such as serological tests based on lateral flow immunoassay (LFIA) for IgM/IgG detection. We evaluated three different commercial point-of-care (POC) LFIAAs for anti-SARS-CoV-2 IgM and IgG detection in capillary whole blood of 100 healthcare workers (HCW) previously tested by RT-PCR: 1) COVID-19 IgG/IgM BIO (Bioclin, Brazil), 2) Diagnostic kit for IgM/IgG Antibody to Coronavirus (SARS-CoV-2) (Livzon, China); and 3) SARS-CoV-2 Antibody Test (Wondfo, China). A total of 84 positives and 16 negatives HCW were tested. The data was also analyzed by the number of days after symptoms (DAS) in three groups: <30 (n=26), 30-59 (n=42), and >59 (n=16). Overall detection was 85.71%, 47.62%, and 44.05% for Bioclin, Livzon, and Wondfo, respectively, with a specificity of 100%, and 98.75% for Livzon on storage serum samples. Bioclin was more sensitive (p<0.01), regardless of the DAS. Thus, the Bioclin can be used as a POC test to monitor SARS-CoV-2 seroconversion in HCW.

Keywords: SARS-CoV-2 detection, point-of-care, lateral flow immunoassay, healthcare workers.
1. Introduction

After almost seven months since the Coronavirus Disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Brazil reached, until late August 2020, the second place in the number of confirmed cases. Currently (on September 15, 2020), in the third position, accounts for 4,345,610 confirmed cases, with 132,006 deaths, and is the second country with the highest number of recovered patients (3,770,138) (Dong, Du, and Gardner, 2020).

The molecular detection of SARS-CoV-2 by real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) is the gold standard test but requires a certified laboratory infrastructure with high-cost equipment and trained personnel. This structure is suitable, and of paramount importance, for the diagnostic of hospitalized patients, as well as healthcare workers (HCW). However, for large-scale testing, RT-PCR is not the best option. Therefore, COVID-19 diagnostic tests should be fast, cost-effective, widely available, and deployed for the community. In general, those requisites are achieved by serological tests based on lateral flow immunoassay (LFIA). Many LFIA have been described for the detection of IgM and IgG immunoglobulins against SARS-CoV-2 (Vashist, 2020). Immunoglobulin response against viral infection begins with an early and transient IgM production, followed by a longer and lasting IgG response. In patients with COVID-19, the production of IgM and IgG could be simultaneous and detected after two days of symptoms onset, and could reach in some patients a plateau level after six days (Long et al., 2020; Zhao et al., 2020).

Moreover, the immunoglobulin levels are correlated positively with the severity of COVID-19 although the antibody response could be delayed in critical patients compared to non-critical cases (Qu et al., 2020).

In the present study, we evaluated the sensitivity of three different commercial Point-of-care (POC) LFIA for anti-SARS-CoV-2 antibody detection, in HCW with confirmed tests (positive or negative) for COVID-19 by RT-PCR assay.
2. Material and methods

Three commercial POC LFIAs for detection of anti-SARS-CoV-2 IgG and IgM were tested: 1) COVID-19 IgG/IgM BIO (Bioclin, Brazil), 2) Diagnostic kit for IgM/IgG Antibody to Coronavirus (SARS-CoV-2) (Livzon, China); and 3) SARS-CoV-2 Antibody Test (Wondfo, China). Bioclin and Livzon LFIAs independently detect IgG and IgM, whereas Wondfo detects IgG and IgM combined.

A total of 100 HCW from University Hospital São Paulo, previously tested for SARS-CoV-2 infection by real-time RT-PCR, were enrolled in the study. From them, 84 were confirmed positive, and 16, negative. Furthermore, 80 storage serum samples, collected during 2018 and 2019, were also tested with Livzon LFIA, the only test available for this additional analysis.

The indicated volume of capillary whole blood for each test, collected preferably from the skin of annular fingertip with a lancing device, was added immediately into the cassette sample wells, following the addition of sample diluent according to the manufacturer instructions. All LFIAs were tested simultaneously in the moment of blood draw of each investigated HCW. Similarly, the recommended serum volume for testing the 80 storage serum samples with Livzon LFIA was also applied accordingly. Results were read within 1-15 minutes.

Sensitivity was calculated as the proportion of positive results of LFIAs in relation to the positive RT-PCR confirmed cases, and specificity was calculated as the proportion of LFIAs negative results in relation to the negative RT-PCRs. The 95% confidence intervals (CI) of sensitivity and specificity proportions were calculated by the modified Wald method. The results were also analyzed according to the number of days after symptoms (DAS), distributed in three distinct groups: <30 (n=26), 30-59 (n=42), and >59 (n=16). The proportion of results accounted for IgM and IgG, alone or combined, regarding DAS, and pairwise comparison within LIFAs was analyzed by Cochran's Q and McNemar tests, for a p-value <0.05. The analysis was made using software R version 4.0.2 (Team, 2020).

The study was approved by the São Paulo hospital Research Ethics Committee (CEP n. 34371020.5.0000.5505).
3. Results

The age of investigated HCWs varied from 20 to 67 years (mean = 37.45, median = 36). Overall detection of IgM and IgG, individually or combined, are described in table 1.

Table 1: Comparison of LFIA results with 84 positive RT-PCR for SARS-CoV-2.

<table>
<thead>
<tr>
<th>LFIA</th>
<th>number / Sensitivity in % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IgG/IgM</td>
</tr>
<tr>
<td>Bioclin</td>
<td>72 / 85.71 (76.52-91.79)</td>
</tr>
<tr>
<td>Livzon</td>
<td>40 / 47.62 (37.28-58.17)</td>
</tr>
<tr>
<td>Wondfo</td>
<td>37 / 44.05 (33.92-54.70)</td>
</tr>
</tbody>
</table>

N.A., not available.

In general, Bioclin LFIA showed the highest sensitivity (85.71%), followed by Livzon (47.62%) and Wondfo (44.05%).

In comparison to the 16 negative RT-PCR individuals, the sensitivity of all LFIA was 100% (77.31% to 100%, 95% CI). However, one storage serum sample from 2018 was IgG reagent by Livzon LFIA and therefore the sensitivity of this additional test was 98.75% (92.59% to 99.99%, 95% CI).

The results according to the groups of DAS (<30, 30-59, and >59), are depicted in table 2.
<table>
<thead>
<tr>
<th>Antibody</th>
<th>DAS</th>
<th>HCW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number (%)</td>
<td>Bioclin</td>
</tr>
</tbody>
</table>
| IgM/IgG1 | <30 | 26 | 22 (88.00) | 14 (56.00) | 13 (52.00) | 0.0022*
| | 30-59 | 42 | 38 (88.37) | 21 (48.84) | 17 (39.53) | <0.001*
| | >59 | 16 | 12 (75.00) | 5 (31.25) | 7 (43.75) | 0.0131*
| IgM2 | <30 | 26 | 19 (76.00) | NA | 11 (44.00) | 0.0047*
| | 30-59| 42 | 21 (48.84) | NA | 11 (25.58) | 0.03892*
| | >59 | 16 | 6 (37.50) | NA | 3 (18.75) | 0.0833
| IgG2 | <30 | 26 | 22 (88.00) | NA | 10 (44.00) | 0.0005*
| | 30-59| 42 | 38 (88.37) | NA | 15 (34.88) | <0.001*
| | >59 | 16 | 12 (75.00) | NA | 5 (31.25) | 0.0081

DAS, days after symptoms. HCW, healthcare workers.

* significant for p<0.05

1Cochran's Q test, p<0.05

2McNemar test, p<0.05

The Bioclin LFIA was significantly more sensitive, in comparison to Livzon and Wondfo, regardless of the DAS or detection of IgM and IgG combined (Cochran's Q test, p<0.05). The posthoc analysis of pairwise comparisons with McNemar tests also have shown that Bioclin was more sensitive than Livzon and Wondfo for IgM and IgG individually, and no differences were observed between Livzon and Wondfo regardless of the DAS or immunoglobulin class (table 2). The proportion of positives within each LFIA in relation to the DAS have shown any significant difference for overall IgM and IgG detection (Bioclin, p=0.316; Livzon, p=0.744; Wondfo, p=0.33), IgG alone (Bioclin, p=0.316; Livzon, p=0.894), or IgM (Bioclin, p=0.054; Livzon, p=0.208), although Bioclin is likely to be more sensitive for IgM in the group of <30 (p=0.054).
4. Discussion

In the present study, we analyzed three different commercial LFIAs for the detection of anti-SARS-CoV-2 IgG and IgM in HCW. For the POC test format, capillary whole blood is more suitable than serum or plasma and does not require a laboratory infrastructure for venous blood draw.

The use of POC based tests for rapid antibody detection can be helpful in identifying patients at different stages of infection, due to the early production of IgM followed by IgG response, even though in patients with COVID-19 the IgM and IgG response could be simultaneous. Our results demonstrated that overall sensitivity achieved by Bioclin LFIA (85.71%) with whole blood samples is compared to those obtained with serum or plasma, in contrast to Livzon and Wondfo LFIAs which showed sensitivities below 50% (Costa et al., 2020; Santos et al., 2020; Silveira et al., 2020; Tuaillon et al., 2020).

Similar to the results here described, Santos et al. (2020) have shown, for capillary whole blood, a sensitivity of 55% for the Wondfo LFIA test in HCWs. On the other hand, the detection sensitivity in serum samples was much higher (96%). In a larger study with hospitalized patients, Costa et al. (2020) evaluated the Wondfo LFIA, in serum samples or plasma, and obtained a sensitivity of 85.8%. In another evaluation of the Wondfo LFIA, Wu et al. (2020) have shown a sensibility of 75.8% in serum samples. In the same manner, Livzon LFIA, when tested in serum samples of hospitalized patients, presented a sensibility of 80% for IgM and 86.7 for IgG, with a specificity of 95% and 100% respectively.

An advantage of the present study is due to the fact that all LFIAs were carried out simultaneously at the time of blood draw from each HCW. On the other hand, a limitation of the study was the impossibility of follow up on each HCW to observe possible variations in the detection of IgM and IgG over time, or to expand the study to include hospitalized patients or low-income individuals from the general community.
5. Conclusion

Bioclin LFIA demonstrated high sensitivity and specificity for IgG detection (85.71%), and a reasonable detection of IgM (54.76%), with the use of capillary whole blood in HCW. On the other hand, Livzon and Wondfo LFIAs presented overall sensitivity below 50%. Thus, the Bioclin LFIA is a suitable POC test to monitor SARS-CoV-2 seroconversion in HCW.

Acknowledgments

J.M.A.C. and L.K.S.L. are fellows of the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil. D.D.C. is a fellow of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil. We are grateful to Anderson Scorsato for the statistical support.

Declarations of interest: none

CRediT authorship contribution statement

References

