Natural history, trajectory, and management of mechanically ventilated COVID-19 patients in the United Kingdom

Brijesh V Patel1 # *, Shlomi Haar2 #, Rhodri Handslip1 #, Teresa Mei-Ling Lee1, Sunil Patel1, J. Alex Harston2, Fergus Hosking-Jervis3, Donna Kelly5, Barnaby Sanderson5, Barbara Bogatta6, Kate Tatham7, Ingeborg Welters8, Luigi Camporota5, Anthony C Gordon9, Matthieu Komorowski9, David Antcliffe6, and John R Prowle10 #, Zudin Puthucheary10 #, A. Aldo Faisal11 #*; on behalf of the United Kingdom COVID-ICU National Service Evaluation‡.

Joint first authors; ‡ Joint senior authors;

Collaborators are listed in the supplementary appendix pp 3

*Corresponding Authors

Affiliations

1 Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London; Department of Adult Intensive Care, The Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, United Kingdom.

2 Brain and Behaviour Lab, Dept. of Bioengineering and Behaviour Analytics Lab, Data Science Institute, Imperial College London, London, United Kingdom

3 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, United Kingdom

4 Department of Critical Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom

5 Department of Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, St Thomas’ Hospital, London, United Kingdom

6 Department of Critical Care, Aintree University Hospital Foundation Trust, Liverpool, United Kingdom.

7 Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London; Department of Anaesthetics and Critical Care, The Royal Marsden NHS Foundation Trust, London, United Kingdom.

8 Department of Critical Care, Liverpool University Hospitals NHS Foundation Trust and University of Liverpool, United Kingdom

9 Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London; Department of Critical Care, Imperial College Healthcare NHS Trust, London, United Kingdom.

10 Critical Care and Peri-operative Medicine Research Group, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Clinical Science contact – Dr Brijesh V Patel MD PhD. Clinical Senior Lecturer & Consultant in Intensive Care Medicine. Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London; Department of Adult Intensive Care, The Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London SW3 6NP

email: brijesh.patel@imperial.ac.uk

Data Science contact – Professor A. Aldo Faisal PhD. Professor of AI & Neuroscience. Dept. Of Computing & Dept. Of Bioengineering and Behaviour Analytics Lab, Data Science Institute and UKRI Centre for Doctoral Training in AI for Healthcare, Imperial College London, SW7 2AZ London, UK, and MRC London Institute for Medical Sciences, London W12 0NN UK

email: aldo.faisal@imperial.ac.uk

Contributions:

Study concepts & design: BVP, SH, DA, JP, ZP, AAF

Literature search: BVP, SH, AAF

Database development: BVP, FHJ, RH, SH, TL

Data collection: All authors

Data science: BVP, SH, RH, TL, KT, DA, MK, LC, JP, ZP, AAF

Statistical analysis: SH, BVP, JP, ZP, AAF

Figures: SH, BVP, AAF

Online tool: JAH, AAF

Final manuscript review: All authors

Acknowledgements. The authors are grateful to the patients, families and NHS staff of those affected by COVID-19 for whom the NHS had the privilege of delivering care during the pandemic. The data extracted for this evaluation would not have been possible without the expertise and goodwill of multiple doctors, nurses, other allied health professionals, and data coordinators across the NHS hospital organizations that contributed. We also thank the Intensive Care Society for endorsing this national service evaluation. Collaborators are listed in the supplementary appendix page 3.
Funding. This study was supported through an internal research grant from the Imperial College London COVID-19 Research Fund to AAF and BVP; and an award from the Royal Brompton & Harefield Hospitals charity to BVP and general support from the NIHR Imperial Biomedical Research Centre. The funders had no role in the study design or writing. All authors had full access to all the data in the study. The writing committee had the sole responsibility for the decision to submit for publication.
Abstract

Background. To date the description of mechanically ventilated patients with Coronavirus Disease 2019 (COVID-19) has focussed on admission characteristics with no consideration of the dynamic course of the disease. Here, we present a data-driven analysis of granular, daily data from a representative proportion of patients undergoing invasive mechanical ventilation (IMV) within the United Kingdom (UK) to evaluate the complete natural history of COVID-19.

Methods. We included adult patients undergoing IMV within 48 hours of ICU admission with complete clinical data until death or ICU discharge. We examined factors and trajectories that determined disease progression and responsiveness to ARDS interventions. Our data visualisation tool is available as a web-based widget (https://www.CovidUK.ICU).

Findings. Data for 623 adults with COVID-19 who were mechanically ventilated between 01 March 2020 and 31 August 2020 were analysed. Mortality, intensity of mechanical ventilation and severity of organ injury increased with severity of hypoxaemia. Median tidal volume per kg across all mandatory breaths was 5.6 [IQR 4.7-6.6] mL/kg based on reported body weight, but 7.0 [IQR 6.0-8.4] mL/kg based on calculated ideal body weight. Non-resolution of hypoxaemia over the first week of IMV was associated with higher ICU mortality (59.4% versus 16.3%; P<0.001). Of patients ventilated in prone position only 44% showed a positive oxygenation response. Non-responders to prone position show higher D-Dimers, troponin, cardiovascular SOFA, and higher ICU mortality (68.9% versus 29.7%; P<0.001). Multivariate analysis showed prone non-responsiveness being independently associated with higher lactate (hazard ratio 1.41, 95% CI 1.03–1.93), respiratory SOFA (hazard ratio 3.59, 95% CI 1.83–7.04); and cardiovascular SOFA score (hazard ratio 1.37, 95% CI 1.05–1.80).

Interpretation. A sizeable proportion of patients with progressive worsening of hypoxaemia were also refractory to evidence-based ARDS strategies and showed a higher mortality. Strategies for early recognition and management of COVID19 patients refractory to conventional management strategies will be critical to improving future outcomes.
Introduction

Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) was declared a global pandemic on March 11, 2020 by the World Health Organisation. COVID-19 related severe acute hypoxemic respiratory failure invariably leads to intensive care unit (ICU) admission. These patients fulfil Acute Respiratory Distress Syndrome (ARDS) criteria \(^1-3\). However, there remain major uncertainties around the extent of pathological and physiological differences between COVID-19 related ARDS and other causes of ARDS. This ambiguity leads to an ongoing debate on the application of existing evidence-based ARDS management to COVID-19 patients \(^4\). Reports based on compliance-based phenotypes and pulmonary angiopathy management in COVID-19 further fuel the uncertainties regarding the clinical management of these acutely unwell patients with a high mortality rate \(^5-9\), which we aim to clarify with this data-driven service evaluation.

Pre-COVID evidence-based guidelines for ARDS management include lung-protective ventilation \(^10\), prone positioning \(^11\), a conservative fluid strategy \(^12\), with the option of open lung strategy \(^13\) and neuromuscular blockade (NMBA) \(^14\). Patients with refractory respiratory failure should be considered for timely escalation to extracorporeal membrane oxygenation (ECMO) support \(^15,16\). Moreover, reports suggest that real-world compliance with evidence based ARDS management strategies is difficult at a system level \(^17\), particularly during times of workforce stress, such as during the first wave of the pandemic. Furthermore, these interventions are implemented at various stages of ARDS progression and are time-sensitive over the natural history of illness \(^18,19\). Monitoring of dynamic responsiveness to interventions is fundamental to clinical practise in critical care and is increasingly facilitated by advanced analytics \(^20\). Whilst there have been numerous reports of the epidemiological characteristics of hospitalised patients with COVID-19 admitted to intensive care \(^1,21-29\), there has been limited analysis of temporal clinical data combining use of and response to ARDS management strategies.

Accordingly, we undertook a cohort study across a representative set of intensive care units in the United Kingdom, to report the natural history of mechanically ventilated COVID-19 patients. Our specific aims were to ascertain use, compliance, duration and effect of established ARDS management strategies and, to define, from routine clinical measurements, factors associated with disease progression, responsiveness to prone positioning, and mortality.
Methods

Study design: We performed a multicentre, observational cohort study in patients with SARS-CoV-2 infection who required mechanical ventilation for severe COVID-19 infection in the United Kingdom.

Exposure: Adult patients (aged ≥18 years) with laboratory confirmed SARS-CoV-2 infection who required invasive mechanical ventilation (IMV) in the United Kingdom between March 1st and August 31st, 2020. Only patients transferred to the study sites within 48 hours of intubation were included, and patients progressing to ECMO were excluded due the nature of ECMO provision in the UK.

Ethical approval: The United Kingdom Health Research Authority determined that the study be exempt from review by an NHS Research Ethics Committee. Each site registered the study protocol as a service evaluation. The “Strengthening the Reporting of Observational Studies in Epidemiology” statement guidelines were applied (see supplementary appendix pages 4-5).

Data collection and procedures: To manage the considerable daily data flow we set up a standardised data processing pipeline where only routine, pseudonymised data were collected with no change to clinical care. In brief, the case report form captured admission demographics, twice daily (8am and 8pm) respiratory physiology and blood gas results, daily ARDS interventions, daily COVID-19 interventions, daily blood results and outcome status. Table S1 lists the participating sites. Patients were identified through daily review of paper or electronic medical records using a standardised case record form (CRF), with retrospective and prospective data collection permitted. Data were extracted from either electronic healthcare records (EHRs) or paper-based records into the COVID-ICU secure REDCap database (REDCap v10.0.10; Vanderbilt University, US).

Statistical analysis. Descriptive variables are expressed as percentage, or median and interquartile range (IQR), as appropriate. Continuous variables were analysed with Mann Whitney U or Kruskall Wallis tests, as appropriate. Categorical variables were compared using Fisher’s exact test or the Chi-square test for equal proportion, as appropriate. All statistical tests were 2-sided and $p \leq 0.05$ was considered statistically significant. The incidence and duration of interventions as well as ventilation settings were analysed and reported to current strategies e.g., low tidal volume ventilation and ARDSNet Positive End Expiratory Pressure (PEEP) tables. We defined an intervention period as a daily application of the intervention with a day of no intervention defining the end of the current period. For group-wise analysis, the outcome of the therapies was measured as categorical variables of “Mild, Moderate, or Severe”, “Survival or Death”, “resolver or non-resolver”, and “prone
responder or non-responder”. Definitions of categories are explained in the supplementary methods. The association between the change over time of each independent variable and the outcome measures was tested in repeated measures analysis of variance (ANOVA). Multivariate logistic regression models were applied (with screening univariate, p<0.1) to each outcome variable to test associations with independent admission variables. The variables included in these models are shown in Table S2 and missing value analysis is shown in Table S17. Analyses were carried out using MATLAB (MathWorks Inc., Natick, MA). Detailed data science methods are described in the supplementary appendix.

Role of the funding source. This study was supported through an internal research grant from the Imperial College London COVID-19 Research Fund to AAF and BVP; and an award from the Royal Brompton & Harefield Hospitals charity to BVP and general support from the NIHR Imperial Biomedical Research Centre. The funders had no role in the study design or writing. All authors had full access to all the data in the study. The writing committee had the sole responsibility for the decision to submit for publication.
Results

Clinical characteristics on ICU admission

A total of 623 mechanically ventilated patients admitted to 12 UK National Health Service (NHS) Trusts with 17 ICU sites between 01 March 2020 and 31 August 2020 had complete daily data up to ICU death or discharge (figure 1). The variation in admissions amongst ICUs is shown in supplementary table S1. Baseline demographics were similar to the Intensive Care National Audit and Research Centre cohort with an ICU survival of 58.7% (figure 1, Tables S3, and S4). Median duration of symptoms prior to ICU admission was 8 (6-12) days. In total, 25.5% of patients were transferred within 48 hours of intubation from another ICU and were included in the analysis. Transfers over 48 hours after intubation were excluded for the purposes of this analysis.

The spread of severity of hypoxaemia at initiation of mechanical ventilation was 23.3% with mild hypoxaemia (PaO₂/FiO₂>26 kPa); 50.9% with moderate hypoxaemia (PaO₂/FiO₂: 26.7-13.3 kPa) and 25.8% with severe hypoxaemia (PaO₂/FiO₂<13.3 kPa) with a mortality gradient (figure 1). Increased severity was associated with increased intensity of mechanical ventilation, severity of organ failure (including dynamic respiratory system compliance, oxygenation index, and ventilatory ratio), and increased application of interventions (table 1). Time series analyses (over the first 14 days) showed no discernible pattern in differences between admission severity groups (figure S1).

Application of interventions

Application of PEEP>10 cmH₂O (74%), continuous neuromuscular blockade (70%), prone position (50%), inhaled nitric oxide (14%), inhaled prostacyclin (11%), and antimicrobial usage (70%) increased with increasing admission severity of ARDS (table 1). All reported percentages are out of the sub-group of patients for which we have the full records for each intervention (table 1). Prone position was applied earlier in patients with greater severity. Figure 2 shows the time of starting and duration of daily recorded interventions. The application, median start date and duration of the first episode of each intervention is shown in table S5. NMBA was commenced on admission (1[0-3] days) and lasted 4(1-7) days. Prone position was applied on day 2(0.5-5) and lasted 2(1-4) days. Inhaled nitric oxide and prostacyclin were commenced on day 6(3-9) and 7.5(3-15) and were continued for 4(2-7.3) days and 3(1-7) days, respectively. Tracheostomy was performed in 29% at a median 14(9-18) days. Tracheostomy was performed more in survivors (39.9% versus 11.5%; P<0.001). Diuresis was utilised in 75% and applied on day 1(1-3) and lasted 3(1-5) days. Renal replacement therapy was utilised in 38% of patients with a median commencement on day 3(1-6) after IMV, and a median duration of 5.5(3-11) days.
The reported body weight overestimated body weight (in comparison to ideal body weight; calculated from reported height; http://ardsnet.org) in 92.6% of patients (Figure 3). Hence, median tidal volume per kg on ideal body weight was 7.0 [IQR 6.0-8.4] mL/kg across all breaths and 5.6 [IQR 4.7-6.6] mL/kg on reported body weight. Three-quarters of all reported tidal volume values were above 6mL/kg of ideal body weight (figure 3). Survivors and non-survivors showed the same distribution of tidal volume variation. Over 65% of reported PEEP values were set outside +/-1cmH₂O and 53% set outside +/-2cmH₂O of the ARDSNet PEEP-FiO₂ tables (figure 3). Patients with BMI<40 had a higher set PEEP than recommended by the PEEP-FiO₂ table. In contrast, patients with BMI>40 had a lower set PEEP than recommended by the PEEP-FiO₂ table. Changes in PEEP were widespread over the first 7 days of IMV with both increases and decreases leading to unpredictable changes in PaO₂/FiO₂ (Figure 3).

Progression of hypoxaemia in COVID-19-induced respiratory failure

To ensure comparability with pre-COVID ARDS studies we chose an analysis horizon spanning the first 7 days. The movement of patients across severity groups (mild, moderate and severe hypoxaemia) showed deterioration in 31.4% of cases, remained static in 45.1% and resolved in only 23.5% of patients over the first 7 days (Table 2; Figure 4). Overall, progression to a worse PaO₂/FiO₂ severity group occurred in double the number of patients as compared to pre-COVID studies of ARDS (Table 2). To evaluate features associated with progression of hypoxaemia, we analysed evolution of hypoxaemia over the first 7 days of invasive mechanical ventilation and categorised them into two groups, “resolvers” and “non-resolvers”. Patients who resolved, remained mild, or got discharged from ICU were considered “resolvers” while those who deteriorate, remained moderate or severe, or died, were considered “non-resolvers”. ICU mortality in hypoxaemia resolvers was significantly lower than non-resolvers (16.3% versus 59.4%; P<0.001; Figure 4). Differences between resolvers and non-resolvers were apparent in demographic, ventilatory, physiological, and laboratory parameters on admission as shown in Table S6. Unsurprisingly, non-resolution was associated with increased application of interventions. Resolvers were younger (57[47-64] vs 60[54-67] years; P<0.001) and showed a longer duration of symptoms prior to ICU admission 9.5 (6.5-14) vs 7 (6-11) days (p=0.003). Non-resolvers had a longer duration of IMV and ICU stay (Table S6). Resolvers had prone position applied significantly earlier (2[1-5] vs 4[2-7] days; P=0.006). There were also clinically, and statistically higher admission counts of blood lymphocytes and eosinophils in resolvers, whereas non-resolvers had higher ferritin and high-sensitivity (hs)-troponin on admission (Table S6). Interestingly, the distribution of SOFA score was similar between groups. Time series
analysis over the first 7 days showed statistically significant interactions between groups in respiratory failure indices, cumulative fluid balance, acid-base status, renal function, D-dimer, CRP and SOFA score (Figure 4 and Table S7). Multivariate regression showed that increased age, lower sodium, lower eosinophils, and increasing cardiovascular SOFA were associated with worsening of hypoxaemia within the first week of IMV (Figure 4; Table S8).

Responsiveness to prone positioning

In this first wave of the pandemic, prone position was used in 43% of patients (27% once, 16% twice or more) and 57%, not at all. Mortality was 51% and 34% in those patients who did and did not undergo prone positioning, respectively. While patients that did not undergo prone position may overall have had milder disease, we found that 76% of these patients who had moderate hypoxaemia and 46% who had severe, at any stage of admission, did not undergo prone position at all.

We analysed change in PaO$_2$/FiO$_2$ over 36 hours around the first prone intervention. The median duration of first prone cycle was 2(1-4) days. Responsiveness to prone position was found to decrease the later the prone episode was initiated after intubation (Figure 5; Spearman r=0.15, P=0.02). We further considered the longer-term effect on PaO$_2$/FiO$_2$ after prone positioning and defined prone responsiveness as maintenance of a mean PaO$_2$/FiO$_2$ > 20kPa over 7 days after the first prone episode. Only 44.4% of patients maintained a mean PaO$_2$/FiO$_2$ > 20kPa over 7 days after the initiation of prone position. Mortality was significantly lower in prone responders than in non-responders (29.7% versus 68.9%, p<0.001 as seen in Figure 4). Non-responders to prone position tended to be older and had higher lactate, hs-troponin, cumulative fluid balance, D-dimer, and higher Cardiovascular and Respiratory SOFA scores. There were no significant differences either in the duration of IMV prior to the first prone period or the duration of the first period or the number of future periods between responders and non-responders. A prone response with respect to oxygenation was associated with an improved ventilatory ratio, oxygenation index, and lower cumulative fluid balance (Figure 5A; Table S10). Moreover, multivariate logistic regression analysis shows that greater age, higher lactate, cardiovascular SOFA and respiratory SOFA values of pre- and post-pronation independently predict poor prone responsiveness (Figure 5; Table S11).

Determinants of mortality

Survival to ICU discharge was 58.7%, and admission characteristic differences between survivors and non-survivors are shown in supplementary table S13. Statistically significant interactions were noted
in the group-wise ANOVA within several parameters (Figure S3; Table S13) between survivors and non-survivors.

The multivariate model showed clinical variables independently associated with mortality are higher age (hazard ratio 2.11 per decade, 95% CI 1.69–2.62), male gender (hazard ratio 2.47, 95% CI 1.39–4.37), higher lactate (hazard ratio 1.59 per quartile (0.6 mmol/L), 95% CI 1.26–1.99), and higher coagulation SOFA score (hazard ratio 2.11 per SOFA point, 95% CI 1.31–3.38) (Figure S3; Table S15). Active withdrawal of organ support occurred in 46% of patients and cardiac arrest in 8.5% of patients (Table S16). 99.5% of deaths were attributed to COVID-19.
Discussion

The United Kingdom saw 10,834 patients admitted to 258 intensive care units between 1st February and 31st August with 7702 requiring advanced respiratory support 23. We describe a complete natural history of a group of patients with COVID-19 undergoing invasive mechanical ventilation (IMV) including detailed interventions for COVID-19 induced respiratory failure. We report differences between 1) admission severities of ARDS, 2) early (< 1 week) resolution and non-resolution; 3) prone responders vs non-responders; and 4) survivors vs non-survivors. Most patients showed disease severity consistent with moderate ARDS, however, severity of hypoxaemia was greater, median length of mechanical ventilation in survivors was longer as compared to the pre-COVID LUNG-SAFE study (15(8-28) vs 8(4-15) days, respectively) 19. This longer period of COVID-19 ventilation has significant implications to provision of critical care bed capacity and further analysis of the impact of COVID-19 therapies on this outcome will be needed 26. The COVID-19 pandemic has highlighted the potential for significant deviations in care through several mechanisms including overwhelmed healthcare systems to application of local guidelines from small single centre reports. There was considerable heterogeneity in application of interventions between centres, and our granular analyses of the time course and duration of interventions advise on areas where clinical management could be better standardised and improved. Finally, this may prompt specific clinical trials to be conducted to evaluate these interventions in this new disease.

Mechanical ventilation strategies

Most patients received lung protective ventilation with tidal volumes less than 8mL/kg and plateau pressures less than 30cmH\textsubscript{2}O. This was despite systematic errors in measurement of height and derived ideal body weight. However, PEEP was set higher than the ARDSNet PEEP table, and changes in PEEP over 12 hours did not correspond to improvements in PaO\textsubscript{2}/FiO\textsubscript{2}. Given the knowledge now that COVID-19 shows significant pulmonary vascular perfusion defects secondary to significant endothelial dysfunction and coagulopathy, the overzealous application of PEEP with lack of responsiveness with respect to pulmonary recruitment and oxygenation could suggest that overdistension of lung units may be an important factor to avoid in future management. Our data shows the decline in dynamic compliance with increasing severity of disease despite the application of higher PEEP, suggesting a more measured application of PEEP may be required.

Disease progression

Although clear differences exist in admission markers of inflammation (LDH (Lactate dehydrogenase), CRP, ferritin, procalcitonin), thrombosis (platelets, D-dimers) and cardiac
dysfunction (troponin and BNP (Brain Natriuretic Peptide)) between patients that survived and died, time series mixed model analysis suggests survivors also show progressive reductions in CRP and neutrophils, in addition to restoration of lymphocyte and platelet counts. Indeed, survivors show improvements in dynamic respiratory system compliance along with reductions in ventilatory requirements over the first week. Consistent with other studies, increasing age and male gender are associated with mortality\(^\text{21}\). Higher lactate and coagulation SOFA were associated with an increased risk of death. This is consistent with recent data showing lower platelet counts being associated with the hyperinflammatory phenotype of ARDS which is associated with worse outcome\(^\text{27}\).

The extent to which patients resolve is dependent on progression of disease as well as the responsiveness to various ARDS interventions. These data show that within the first week, only 25% of patients resolved their hypoxaemia whereas three-quarters, remained static or worsened, despite the increased application of adjunctive ARDS interventions such as PEEP>10cmH\(_2\)O, prone position and inhaled vasodilators in the non-resolving group. This is in stark contrast to previous pre-COVID ARDS studies showed progression of 15%\(^\text{19}\) and 13.5%\(^\text{25}\) (see table 2), underlining the severity of this disease in the critically ill population. Non-resolvers were older, had a shorter duration of symptoms prior to ICU admission (suggesting an earlier stage and/or more aggressive course of disease), and a mortality of 59.4% whereas, patients whose hypoxaemia resolved in the first week had a 16.3% mortality. Additionally, resolvers showed improvements in non-respiratory SOFA score and faster reduction in CRP and resolution of lymphopenia. The latter provide some support to the approach using interleukin-7 therapy for the augmentation of lymphocyte numbers to enhance recovery from COVID-19 (ClinicalTrials.gov identifier: NCT04379076). Resolvers had earlier initiation of prone position after intubation in comparison to non-resolvers (2 days vs 4 days; P<0.01). Higher age and male gender independently predicted non-resolution in the first week of IMV.

Prone Positioning

In this study, less than half of patients who underwent prone positioning showed a sustained response in PaO\(_2\)/FiO\(_2\) over the next week. Prone responders showed improvements in PaCO\(_2\) with immediate reductions in oxygenation index. Non-responders had a higher peri-pronation lactate, Ferritin, D-dimer, and worse cardiac indices (i.e. higher cardiovascular SOFA score, creatinine kinase, troponin and BNP) suggesting possible right heart dysfunction. These data suggest the need for closer attention to measures indicative of pulmonary vascular inflammation, thrombosis, and subsequent right heart dysfunction as determinants of which COVID-19 patients fail prone position\(^\text{8}\) and, for appropriate escalation to more advanced support such as ECMO\(^\text{28,29}\). Non-responders underwent prone positioning a day later than responders and showed nearly double the mortality of
responders. Importantly, responsiveness to prone positioning decayed with duration of IMV prior to the first prone position intervention suggesting that prospective studies should examine whether earlier prone positioning could beneficially modulate disease progression, especially given the current use of prone position prior to mechanical ventilation. Pre-COVID ECMO referral criteria in the UK have a critical time window, usually within 7 days of mechanical ventilation, and once a patient is refractory to interventions such as prone position. Understanding personalised responsiveness of prone position in COVID-19 may enable these traditional criteria to be re-evaluated. Of importance half of patients with severe ARDS were not pronated, suggesting that factors outside the scope of the current dataset (e.g. systems-related or lack of clinical awareness) may need to be assessed in future prospective studies.

Strengths and Limitations

There are clear limitations of this analysis, not least its observational, retrospective nature, with testing not standardized across sites, and some sites not being able to complete all data for all patients. Hence, we have not included an analysis between sites and have focussed on the physiology and progression of patients solely undergoing invasive mechanical ventilation for COVID-19. In contrast, to many studies with a focus on all hospitalised patients we chose to focus on patients undergoing mechanical ventilation as this remains a key defining criteria for admission to ICU as well as a decision for active treatment21,30. Further limitations include bias towards ICUs that could contribute data and 38% of patients were managed in specialist severe acute respiratory failure centres often out of necessity as these centres saw a significant number of capacity related transfers (34%). Finally, patients progressing to ECMO were excluded due to the lack of data prior to ECMO support.

Regarding strengths, we opted for a twice daily collection of data in contrast to a worst daily value, to appreciate the progression of disease and impact of complex interventions. The novelty of this analysis is the utilisation of routinely measured clinical physiological and laboratory parameters over time to determine trajectories and application of interventions. Furthermore, we obtained the most complete ICU dataset published thus far with most data missingness likely due to the variations in care22. Further analysis will enable the development of tools to assess effectiveness and the risk stratification of these various interventions.

Implications for clinical service provision

First, whilst admission characteristics correlate with severity and outcome, our data suggests that disease trajectory changes significantly after admission with 75% of patients continuing to
deteriorate over the first 7 days, resulting in a significantly longer period of mechanical ventilation than non-COVID ARDS. Secondly, the time series analyses of longitudinal disease trajectory emphasises the importance of routine and frequent assessment of inflammation, thrombosis, and cardiac dysfunction in unpicking lack of clinical response to advanced ARDS management. This is reflected in the fact that while the utility of severity scores such as APACHE II have been questioned, the use of SOFA score, particularly its cardiovascular and coagulation components, may be useful for prediction of progression. Regarding prone positioning, less than half of patients maintain a PaO$_2$/FiO$_2$ above 20kPa after its application, and crucially, its effectiveness reduces the later it is applied. In keeping with non-respiratory causes of an attenuated response, prone positioning responsiveness is diminished in those with a higher peri-pronation cardiovascular SOFA and lactate.

The natural history of COVID-ARDS appears to differ compared with “usual” ARDS, with greater baseline severity and longer duration of ventilation. We describe key clinical determinants, hypoxaemia resolution and responsiveness to prone position, which may be more reliable for understanding disease trajectory and prognostication in COVID-19 associated ARDS. These data advocate for the development of randomised controlled trials to develop a COVID-19 specific evidence-base for established ARDS interventions in this phenotypically distinct population. Particular priorities would be assessment of indications and efficacy of prone position ventilation, benefit and hazards of higher PEEP in "open lung" strategies, and optimisation of fluid management. While this evidence-base is developed, recommendations for the practical clinical management include, pro-active, serial re-evaluation of clinical response to advanced ARDS management strategies, and higher quality assessments of ideal body weight and target tidal volume.

Conclusions

Mechanically ventilated patients with COVID-19 have a different natural history and trajectory from descriptions of non-COVID ARDS patients, not predictable from admission physiology. Non-responsiveness to advanced ARDS management is associated with hypercoagulation and cardiovascular instability. Variations in clinical practise and subsequent clinical trajectories occur which may benefit from re-evaluation and standardisation of evidence-based practise, as evidenced in this study by data-driven means. Our granular data-driven approach and digital online tool demonstrates how a form of "standing" multi-centre service evaluation could help monitor and inform better clinical practice.
Figure Legends

Figure 1. (A) Study population flowchart. (B) Age, ethnicities, and pre-admission co-morbidities of COVID-19 patients undergoing invasive mechanical ventilation [Cardiovascular Disease (CVD); Hypertension (HT), Chronic Kidney Disease (CKD), Venous thromboembolism (VTE), Chronic Obstructive Pulmonary Disease (COPD), Immunosuppression (IS). (C) Admission dates to intensive care unit (ICU) (D) Outcome to ICU admission. Grey vertical lines labelled 25%, 50%, 75% indicate the time points (8, 14 and 23 days, respectively) by which the stated proportion of patients that were either discharged or deceased. (E) ICU survival curves for the different admission severities of hypoxaemia following the 3 ARDS severity groups as defined in the main text. [(B, C, D) Discharged (green) and died (red) distributions are stacked one over the other. Percentages are out of the total number of patients (N=623).]

Figure 2. (A) Outcome of adjunctive interventions application (bold colours) versus no application (lighter colours): from the bottom we stack discharged and intervened (solid green), deceased and intervened (solid red), discharged and not-intervention (light green), deceased and non-intervention (light red). Percentages are out of the total number of patients (N=623). Most patients will have had multiple interventions, so the bar chart does double count. (B) Percentages of patients being in a low or high hypoxaemia severity (PaO₂/FiO₂ ratio > or < 20kPa) at the last time point before the intervention (i.e. either morning of the day of the intervention or the evening before). (C) Visualisation of the variability of when and how long interventions were applied for and their associated patient outcome (green - discharge, red - deceased) showing data in a separate boxed panel for each intervention. Each boxed panel contains a scatter plot of the number of days of invasive mechanical ventilation (IMV) at which first intervention was applied (x-Axis) vs duration of the first period of that intervention in days (y-Axis). Parallel to the respective axis we show the marginal histogram of the data points in the scatter plot (e.g. the histogram for start of first intervention on the x-Axis). In the bottom left of the boxed panel we show the histogram of the number of repeated intervention periods a patient underwent (see main text for details). See Table S5 for an overview of the interventions and their respective use statistics.

Figure 3. Overview of weight effect on tidal volume and PEEP management. (A) The distributions of reported (light blue) and calculated ideal (light red) body weights highlighting systematic differences. (B) The distributions tidal volumes in ml/Kg for reported and ideal body weights. (C) The management of PEEP as a function of FiO₂ plotted in a scatter plot for non-morbidly obese patients (BMI<40, left) and morbidly obese (BMI>=40, right). Each plot shows the pre-COVID recommended PEEP ladder of ARDSNet (solid black line) against actual data points showing clearly visible departure
from recommended pre-COVID PEEP ladder. Data points are colour coded by Days after initiation of IMV (see colour bar in the next sub-figure). (D) Visualisation of the changes in PEEP against the change in PaO₂/FiO₂ ratio. The changes are measured across two adjacent time points with the PEEP change being introduced at some point between the two time points. Data points are colour coded by days after initiation of IMV (see colour bar).

Figure 4. (A) Alluvial diagram of patient movements between ARDS severity groups: Mild hypoxaemia (PaO₂/FiO₂>26), Moderate hypoxaemia (PaO₂/FiO₂: 26.7-13.3), and severe hypoxaemia (PaO₂/FiO₂<13.3) and patient outcome (Discharged - green, deceased - red). Each solid bar represents an ARDS severity group at a given number of days since initiation of IMV. Shaded coloured streams between bars represent transitions of patients between the severity groups from one time point to the next, which is either their new severity or their outcome. The height of the bars represents the proportion of patients at that time point (i.e., they stack up to 100%) and the height of a stream field represents the size of the components contained in both bars connected by the stream. (B) ICU survival curves for patients who were showing improvement in hypoxaemia category over the first week on IMV (resolvers, light blue) versus deterioration in hypoxaemia category (non-resolvers, yellow). (C) Each panel presents the time-series of a physiological measure of resolvers (light blue) versus non-resolvers (yellow) over the first 3 weeks of IMV (*P<0.05 interaction with mixed model ANOVA over the first week of IMV, see table S7). The Solid lines are the group medians and the shaded areas are the semi-interquartile range. The number of subjects decay over time as patients die and discharge and the initial and final numbers available for each measure are presented on the graph. (D) The odds ratio and their 95% confidence interval for Univariate and Multivariate logistic regression models where a higher odds ratio is the increased likelihood for progression of hypoxaemia for each step increase in the admission variable and physiological measures. Continuous variables were discretely sized by a split into quartiles (see supplementary methods for details and table S8 for the full stats). All variables (of the list in table S2) with less than 40% missingness were included in the model. Subjects with more than 20% missing data were removed from the analysis.

Figure 5. Responsiveness to prone position with responders defined as maintenance of a mean PaO₂/FiO₂ >20kPa over 7 days after the first prone episode. (A) Each panel presents the time-series of a physiological measure of prone responders (blue) versus non-responders (red) from a day before the first prone manoeuvre to 7 days after (*P<0.05 interaction with mixed model ANOVA over this period, see table S10). The Solid lines are the group medians and the shaded areas are the semi-interquartile range. The number of subjects decay over time as patients die and discharge and
the initial and final numbers available for each measure are presented on the graph. (B) Changes in PaO₂/FiO₂ ratio over 36 hours around the first prone manoeuvre (from the last measurement before until the first measurement the day after) as a function of the duration of IMV prior to the manoeuvre. The dots are colour coded by ARDS severity prior to the manoeuvre. The red line presents an exponential fit, and the reported r is the Spearman rank correlation. (C) ICU survival curves for prone responder (blue) versus non-responder (red) versus patients who received no prone position (grey). (D-E) The odds ratio and their 95% confidence interval for Univariate and Multivariate logistic regression models where a higher odds ratio is the increased likelihood of not responding to prone position for each step increase in the admission variable and in the (D) pre-pronation (the last record within 24 hours prior intervention) or (E) post-pronation (the first record in the day after intervention) physiological measures. Continuous variables were discretely sized by a split into quartiles (see supplementary methods for details and table S11 and S12 for the full stats for pre- and post-prone respectively). All variables (of the list in table S2) with less than 40% missingness were included in the model. Subjects with more than 20% missing data were removed from the analysis.

Figure S1. Time-series analyses of admission severity. Each panel presents the time-series of a physiological measure over the first 2 weeks of IMV, grouped by hypoxaemia on IMV initiation: Mild (PaO₂/FiO₂>26), Moderate (PaO₂/FiO₂: 26.7-13.3), and severe (PaO₂/FiO₂<13.3). The Solid lines are the group medians, and the shaded areas are the semi-interquartile range. The number of subjects decay over time as patients die and discharge and the initial and final numbers available for each measure are presented on the graph.

Figure S2. Variations in the reported application of interventions between sites. On the y axis are the percentages of patients who received each intervention in each site. On the bars are the number of the patients who received each intervention in each site over the total number of patients from that site.

Figure S3. (A) Each panel presents the time-series of a physiological measure of patients who were discharged (green) versus died (red) over the first 2 weeks of IMV (*P<0.05 interaction with mixed model ANOVA over the first week of IMV, see table S14). The Solid lines are the group medians, and the shaded areas are the semi-interquartile range. The number of subjects decay over time as patients die and discharge and the initial and final numbers available for each measure are presented on the graph. (B) The odds ratio and their 95% confidence interval for Univariate and Multivariate logistic regression models where a higher odds ratio is the increased likelihood of dying for each step increase in the admission variable and physiological measures. Continuous variables
were discretely sized by a split into quartiles (see supplementary methods for details and table S15 for the full stats). All variables (of the list in table S2) with less than 40% missingness were included in the model. Subjects with more than 20% missing data were removed from the analysis.
Table Legends

Table 1 - Clinical and physiological characteristics, outcomes and interventions according to severity of hypoxaemia on admission.

Table 2 - Progression of hypoxaemia in COVID-19 as compared to pre-COVID ARDS publications. Tables show patient numbers and proportions changing between mild, moderate, and severe hypoxaemia categories from day 1 to day 7 of invasive mechanical ventilation. Table 2a – COVID-ICU database; 2b – LUNG-SAFE study \(^{19}\); 2c – Berlin definition study \(^{25}\).

Table S1 - Individual site contributions

Table S2 - Variables included in logistic regression models

Table S3 - Distribution of comorbidities with a) severity on admission and b) ICU outcome

Table S4 - Comparison between COVID-ICU and the UK Intensive Care National Audit and Research Centre (ICNARC)

Table S5 - The application, median start date and duration of the first episode of interventions

Table S6 - Clinical and physiological characteristics, outcomes, and interventions according to resolution of hypoxaemia over the first week of invasive mechanical ventilation.

Table S7 - Time series mixed model ANOVA according to resolution of hypoxaemia over the first week of mechanical ventilation.

Table S8 - Uni- and multivariate model analysis of factors associated with progression of hypoxaemia over the first week of invasive mechanical ventilation.

Table S9 - Clinical and physiological characteristics, outcomes and interventions according to prone responsiveness.

Table S10 - Time series mixed model ANOVA according to prone responsiveness.

Table S11 - Uni- and multivariate model analysis of pre-pronation factors associated with prone responsiveness.

Table S12 - Uni- and multivariate model analysis of post-pronation factors associated with prone responsiveness.
Table S13 - Clinical and physiological characteristics, outcomes and interventions according to ICU outcome.

Table S14 - Time series mixed model ANOVA according to ICU outcome.

Table S15 - Uni- and multivariate model analysis of factors associated with ICU mortality.

Table S16 - Cardiac arrest and end of life decisions.

Table S17 - Percentages of missing values for each parameter in each site.
References

1032 patients

- 118 transferred from another ICU after 48 hours of MV
- 96 received ECMO
- 106 did not receive mechanical ventilation
- 63 repatriated to another ICU with no outcome measure
- 26 admitted after 31 Aug 2020

B

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td><25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

Percentage of subjects by ICU admission date

D

Percentage of subjects by days of invasive mechanical ventilation

E

Probability of ICU survival by days of invasive mechanical ventilation
Figure 2

A

B

C

Neuro-muscular blockade

Prone positioning

Inhaled nitric oxide

Inhaled prostacyclin

Tracheostomy

APRV

Bronchoscopy

Renal replacement therapy

Diuretics

Corticosteroids

Therapeutic heparin

Anti-Bacterial
Table 1

<table>
<thead>
<tr>
<th>Clinical Characteristics</th>
<th>All</th>
<th>PaO2<90</th>
<th>PaO2>90</th>
<th>PaO2<80</th>
<th>PaO2>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median [IQR]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOFA</td>
<td>6.0 [4.0 8.0]</td>
<td>5.0 [3.5 6.5]</td>
<td>6.0 [4.0 8.0]</td>
<td>5.0 [3.5 6.5]</td>
<td>6.0 [4.0 8.0]</td>
</tr>
</tbody>
</table>

Note: This table represents key clinical characteristics for patients with severe COVID-19 pneumonia, focusing on the PaO2/FiO2 ratio and its comparison across different PaO2/FiO2 ranges. The data are presented in median [IQR] format, allowing for a clear comparison of outcomes across different PaO2/FiO2 intervals.
<table>
<thead>
<tr>
<th>COVID-ICU</th>
<th>LUNG SAFE</th>
<th>Berlin Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P/F on Day 7</td>
<td>P/F on Day 7</td>
</tr>
<tr>
<td></td>
<td>>26.7</td>
<td>13.3-26.6</td>
</tr>
<tr>
<td>P/F on Admission</td>
<td>>26.7</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>13.3-26.6</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td><13.3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Overall</td>
<td>58</td>
</tr>
</tbody>
</table>

P/F on Admission: P/F on Day 7 P/F on Day 7 P/F on Day 7

P/F on Day 7: 31.4% 23.5% 15.0% 13.5%

P/F on Day 7: 23.5% 45.1%