Optimal test-assisted quarantine strategies for COVID-19

Bo Peng Ph.D.¹, Wen Zhou¹, Rowland W. Pettit¹, Patrick Yu M.D. FRCPC², Peter G. Matos D.O., M.P.H., M.S.², Alexander L. Greninger, M.D., Ph.D. ³, Julie McCashin, M.P.H..⁴, Christopher I. Amos Ph.D.¹*

¹. Institute for Clinical & Translational Research, Baylor College of Medicine, Houston, TX, 77030
2. Corporate Medical Advisors, Houston, TX, 77002
3. Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195
4. International SOS, Houston TX, 77002

* To whom all correspondence should be addressed.

Abstract:

Background: Until herd immunity occurs for COVID-19, quarantine will remain a pillar for disease mitigation. A 14-day quarantine, although widely recommended for self-quarantine after potential infections and mandated by many government agencies can be physically and mentally stressful for those under quarantine and leads to lost productivity. Testing during quarantine is currently implemented by businesses and governments as a promising method to shorten the duration of quarantine. However, to our knowledge, no study has been performed to evaluate the performance of test-assisted quarantines or to identify the most effective choices of testing schedule.

Methods: Based on statistical models for the transmissibility and viral loads of SARS-CoV-2 infections and the sensitivities of available SARS-CoV-2 testing methods, we performed extensive simulations to evaluate the performance of quarantine strategies with one or more tests administered during quarantine. Sensitivity analyses were performed to evaluate the impact of perturbations in model assumptions on the determination of optimal strategies.

Findings: We found that SARS-CoV-2 testing can effectively reduce the length of quarantine without compromising personal or public safety. Whereas a single RT-PCR test performed before the end of quarantine can reduce the duration of quarantine to 10 days, two tests can further reduce the duration to 8-days and three tests with a highly sensitive RT-PCR test can justify a 6-day quarantine. More strategic testing schedules and one more day of quarantine are needed if tests are administrated with a less sensitive but more cost-effective antigen test.

Interpretation: Testing during quarantine could substantially reduce the length of isolation, reducing the physical and mental stress caused by long quarantines. With increasing capacity and lowered costs of SARS-CoV-2 tests, testing-assisted quarantines could be safer and more cost-effective than 14-day quarantines and warrant more widespread use.
INTRODUCTION

Until herd immunity to COVID-19 develops through infection or vaccination, quarantine will remain the primary means of disease mitigation. The United States Centers for Diseases Control and Preventions (CDC) currently recommend a 14-day prophylaxis quarantine for anyone who comes into contact with a person who has COVID-19.\(^1\) The 14-day quarantine recommendation is based on clinical data of the observed incubation period.\(^2\) Projections indicated that a 14-day quarantine period can capture 99% of individuals who have been exposed and would ultimately develop COVID-19.

The CDC guideline on a 14-day quarantine has been adopted globally by most organizations and government agencies. Government agencies use quarantine after travel to reduce the introduction of potentially infected individuals into communities. Industry and organizations, such as professional sports teams and movie productions, have used quarantine to produce a COVID-19-free cohort to resume operations, as mandated by most governments.

Currently, jurisdictions are starting to loosen quarantine requirements due to perceived lower risk of infection, negative psychological effects caused by long quarantines,\(^3\) the costs of managing quarantines, loss of productivity, and needs to ensure continuity of operations of essential functions of critical infrastructures. For example, the state of New York announced on October 31, 2020 new COVID-19 travel guidelines that allow travelers to exit quarantine after they test negative 4 days post arrival if they also test negative 3 days prior to departure. As of September 11, 2020, the CDC’s guidance allows critical infrastructure workers to return to work without undergoing quarantine following workplace exposure.\(^4\) The European CDC (ECDC) published revised quarantine requirements allowing quarantine to be discontinued if the result from a SARS-CoV-2 RT-PCR test is negative on day 10 after the last exposure with the warning of “residual risk” for ending quarantine early.\(^5\)

The recommendation from ECDC reflects both the benefits and uncertainties related to test-assisted quarantine. SARS-CoV-2 RT-PCR was initially developed for diagnostic purposes and later adopted for widespread screening of asymptomatic populations. As RT-PCR can detect very low viral loads, testing individuals before and during quarantine could identify individuals with sub-clinical disease prior to being infectious, improving the efficacy of quarantine. Faster and less sensitive antigen tests could potentially also be used during quarantine. These methods were not recommended to the public at the early stages of the pandemic due to insufficient testing capacity, and a lack of rigorous assessment of whether testing can sufficiently compensate for the elevated risks related to shortened quarantines. A recent, but as yet non-peer-reviewed theoretical study indicates the benefits of COVID-19 tests during quarantine.\(^6\)

Nevertheless, test-assisted quarantine has been performed frequently, especially for industries where the benefits of shortened quarantine outweigh the costs of SARS-CoV-2 testing.\(^4\) For example, for movie productions, we have previously proposed a quarantine strategy with a 3-day pre-travel quarantine, a 5-day post-travel quarantine, and then RT-PCR testing. For individuals who arrived late or had to travel and rejoin the production, more rapid clearance protocols that included daily or twice daily testing for 5 days were recommended. The proposed strategy was accepted by the Cities of
Chicago and Atlanta but denied by other governmental agencies. The recommendation and reservations of the ECDC and the mixed responses from governmental agencies support the need for a thorough investigation of the risks associated with test-assisted quarantine strategies and the potential to use tests with lower sensitivity, such as antigen testing, for managing cohorts of individuals undergoing quarantines.

Using an individual-based forward-time simulation method,\(^7\) we investigated the potential use of SARS-CoV-2 tests to have a shorter and more effective quarantine strategy. Based on high-sensitivity RT-PCR results, we identified situations in which a substantially shorter quarantine period is adequate to mitigate risk for assembling cohorts of protected individuals who will be closely interacting. We recommend guidelines for test-assisted quarantining using widely applied test methods and tests that have well-characterized analytic and clinic sensitivities, e.g., RT-PCR and rapid antigen tests. We also assessed the factors that may affect the performance of test-assisted quarantines. Here analytical sensitivity refers to the smallest amount of analyte (SARS-CoV-2 virus) in which a SARS-CoV-2 test will be positive for 95% of the time, i.e., the limit of detection (LOD), and clinical sensitivity refers to the proportion of positive index tests in patients who have the disease in question. We noted that clinical sensitivity could vary due to human, specimen, and collection factors even for the same test kits.

METHODS

Simulation method

We used a COVID-19 outbreak simulator to simulate the quarantine of a large number of individuals of varying infectivity patterns.\(^7\) While the simulator was initially designed to simulate the spread of the SARS-CoV-2 virus in a population, we used it to simulate the quarantine of a large number of individuals, compare the safety of various quarantine strategies, and identify ones with the shortest quarantine time with the smallest number of tests. We ignore uninfected individuals in our simulations because they do not help to evaluate the performance of quarantine strategies. An advantage of this approach was that it did not require any specific analytical form to evaluate viral spread and how interventions could affect transmission.

As depicted in Figure 1, simulated individuals were infected with the SARS-CoV-2 virus either right before entering quarantine or earlier but were asymptomatic at the time they entered quarantine. Using stochastic models for viral load and transmissibility described below and summarized in Table 1, we simulated the viral load and transmissibility throughout the course of infection and the times when individuals become infectious, show symptoms if symptomatic, infect others within or outside the quarantine period, and recover (i.e., no longer infectious but could have detectable viral load). Optional SARS-CoV-2 tests of specified sensitivity, specificity, and turnaround time were applied and individuals who tested positive or showed symptoms during quarantine were removed from the simulation. A quarantine was considered to have failed if the individual completed quarantine and caused one or more infection events after being released.
Model of transmissibility

A transmissibility model determines how many and when infected individuals transmit SARS-CoV-2 to others. We modeled the transmissibility of infected individuals using a piecewise function that started with a period of non-infectivity, followed by a period of increasing infectivity and a period of declining infectivity. The overall transmissibility (i.e., the probability of transmissibility integrated over the course of infection) was equal to the reproduction number (R₀) of the infected individual (Figure 2A).

The R₀ is the average number of secondary infections produced by an infectious person in a population. It can vary from population to population and in time based on demographics, public awareness, self-protection, and probably viral strain. Estimates of COVID-19 R₀ can be as high as 3-4⁸ and below 1 in many parts of the world. We used reproduction numbers from a normal distribution with a 95% confidence interval (CI) between 1·4 and 2·8 for symptomatic cases and 0·28 to 0·56 for asymptomatic carriers,⁹ as models for moderate population density and infectivity. The overall reproduction number for the population depends on the proportion of individuals who are asymptomatic carriers. The proportion of individuals who are asymptomatic carriers was drawn from a normal distribution with 95% CI of 0·1 and 0·4,¹² so on average, 25% of simulated individuals did not show any symptom. As discussed below, the choice of reproduction numbers had no impact when determining optimal quarantine strategies.

The infected individuals underwent an incubation period that followed a lognormal distribution with a mean of 5·5 days.¹³ Most pre-symptomatic transmission exposure occurs 1–3 days before a person develops symptoms, and viral loads are already at peak and declining at the onset of symptoms.¹⁴-¹⁶ Therefore, we allowed transmission probabilities to start 1 to 2 days after infection, peak before the onset of symptoms, and decline afterward. We set the period of infectivity after the onset of symptoms to follow a shifted lognormal distribution, so that 88% and 95% of individuals are no longer infectious after 10 and 15 days, respectively.¹⁵ The transmissibility curves for asymptomatic carriers were similar, although the overall communicable periods (periods in which carriers stay infectious) were shorter than for symptomatic cases.¹⁷,¹⁸

Model of viral load

Transmission of the SARS-CoV-2 virus is caused by viral shedding from infected individuals, and the probability of infecting other individuals is related to the viral load of the infector. Viral shedding begins 5 to 6 days before the appearance of symptoms and decreases monotonically after symptom onset.¹⁹ The mean viral shedding duration is quite long, approximately 18 days for upper respiratory tract (URT) and 15 days for lower respiratory tract with a maximum duration of RNA shedding of 83 and 59 days, respectively. However, the probability of detecting infectious virus drops below 5% after 15-2 days post-onset of symptoms.¹⁵

While symptomatic carriers have much higher transmissibility probabilities compared with asymptomatic carriers, recent studies found little to no difference in viral load between pre-symptomatic, asymptomatic, and symptomatic patients.¹⁹-²³ However, asymptomatic carriers could have faster clearance.¹⁷,²⁴ For example, Yang et al.¹⁸ reported a median duration of viral shedding of 8 days (interquartile range [IQR]: 2–12) for asymptomatic and 19 days (IQR: 16–24) for symptomatic carriers. We assumed that
the lower overall infectivity of asymptomatic carriers compared with symptomatic cases with similar initial viral loads was due to different immune responses to the infection. One hypothesis is that asymptomatic carriers have reduced viral transmission due to the lack of viral expectoration via cough and sneezing. The immune system of asymptomatic carriers could potentially fight the virus more efficiently and clear it faster.

Similar to a study by Larremore et al., we modeled individual viral load patterns as piecewise functions that follow the individual transmissibility curves. We extended the tails of the distributions to reflect a longer viral shedding period than communicable period and adjusted the distribution intensities, so symptomatic carriers and asymptomatic carriers had similar initial viral loads (Figure 2B).

Sensitivity of tests

We model the sensitivity of tests as both the LOD and clinical sensitivity. The former is affected by the number of virions that are obtained from infected individuals based on their stage of infection. Clinical sensitivity can be affected by clinically relevant real-life situations (e.g., variations among specimen sources, the timing of sampling, experience of medical staff). We modeled LOD as a cutoff value where the test’s sensitivity decreases proportionally to viral load at a viral load lower than the cutoff value but stays constant when the viral load is above the cutoff value (Figure 2B).

RESULTS

Model validation

We implemented and tested multiple strategies, including one that uses normal distributions to model transmissibility of both symptomatic and asymptomatic carriers. For this investigation, we used piecewise models for computational efficiency. We validated our models extensively using simulations that summarized the characteristics of the models, including generation time; serial intervals; and proportions of asymptomatic, pre-symptomatic, and symptomatic infections.

We generated secondary infection events using a transmissibility density function, which is affected by individual reproduction number, incubation period, and communicable period. The average number of infection events agreed well with specified reproduction numbers. The average communicable period was 10·30 days for symptomatic cases and 5·35 for asymptomatic carriers. Due to the long tails of the distributions used, some infected individuals had extra-long communicable periods of more than 20 days, which agrees with some observed extreme cases.

The distribution of generation time, defined as the time between the infection of the source and the infection of the recipient for source-recipient transmission pairs, was 4·25 ± 2·75 days (mean ± standard deviation) days. This result is more spread-out, and therefore more conservative, than that reported in Ferretti et al (5·0 ± 1·9 days; Figure 2D). The distribution of serial intervals, defined as days between the primary case developing symptoms and secondary case developing symptoms, from 10,000 infection events followed a normal distribution with a mean of 4·25 and standard deviation of 3·62. This result agrees with estimated mean serial intervals of 4·628 and 3·96 days. The serial intervals followed a normal distribution with approximately 12% of pairs showing
negative serial intervals, i.e., the infected individuals show symptoms before the infector (Figure 2D). This is due to the wide spread of pre-symptomatic transmission times and is consistent with observed data.28,30 The proportions of asymptomatic, pre-symptomatic, and symptomatic transmissions are 6\%, 48\%, and 44\%, respectively, with the default parameters we used12.

Impact of testing frequency

We assumed 1) the use of an RT-PCR test with a clinical sensitivity of 0.95 and 1-day turnaround time and 2) a worst-case scenario for which everyone studied was infected just prior to quarantine. We quarantined people from 1 to 14 days and tested individuals at the end of the quarantine period. Note that we mark the days of testing as days on which test results are obtained at the end of that day, so in practice testing on day 10 with a 1-day turnaround time means testing at the beginning of day 10 with result available at the beginning of day 11; and testing on day 10 with a rapid antigen test means testing at the beginning of day 11 with results available shortly after.

The simulations found that testing significantly reduced the failure rate in the subsequent work-cohort of quarantines (Figure 3A). The failure rate for 14-day quarantine was reduced from 0.12\% to 0.006\% when people were tested before releasing them from quarantine. Using a 95\% sensitivity RT-PCR test, a 9-day quarantine with a pre-release test had a failure rate of 0.09\% and was slightly lower risk compared with a 14-day quarantine. A longer quarantine would be needed if using less sensitive tests. For example, a test with 80\% sensitivity would require an 11-day quarantine to achieve similar risk mitigation. Notably, testing at the beginning of the quarantine, such as for a 1-day quarantine, had no effect because we assumed all individuals were infected recently and have no detectable viral load at the beginning of the simulation.

Increasing the number of tests led to shorter quarantines outperforming a 14-day quarantine, mostly by reducing false-negatives through repeated testing. Assuming a 95\% sensitivity RT-PCR test and 1-day turnaround time, the “quickest” way to release people from quarantine was a 6-day quarantine with tests at days 4, 5, and 6. Individuals would be released at the end of day 6 if all three tests are negative. The next best option was a 7-day quarantine with tests on days 4/5/6 and 7 (Table 2). Adding more quarantine days or more tests would improve the performance of these strategies but would incur unnecessary cost and burden to those under quarantine.

Impact of test sensitivity

Tests that were less sensitive increase the chance of false negatives, which resulted in higher quarantine failure rates (Figure 3A and 3B). Based on simulations of a 10-day quarantine with an RT-PCR test performed 1 day before release, a test with 90\% sensitivity would perform comparably to a 9-day quarantine with a test with 95\% sensitivity.

RT-PCR has a low LOD and can detect the RNA of SARS-CoV-2 from samples with 10^3 copies/ml31 to as little as 10^2 copies/ml.32 Antigen tests have a higher LOD of 10^6–10^6 copies/ml33 and would have a lower chance of detecting COVID-19 carriers at the beginning and end of infection. Based on the false-negative rate, the LOD of tests had
substantial impact on clinical sensitivity at the beginning of infection, which reduced around days 5 and 6 when carriers have highest viral load and increased at a later stage of infection. (Figure 3C).

Impact of model assumptions

Our quarantine strategy is more effective for asymptomatic than symptomatic carriers because asymptomatic carriers have a shorter communicable period and are less likely to infect others if not detected and released from the quarantine. Therefore, the quarantine would be more effective if there are a higher percentage of asymptomatic carriers in the population. The failure rates of all quarantine strategies were higher in populations with a higher proportion of symptomatic cases. However, the relative performance of quarantine strategies was not affected by the proportion of asymptomatic cases (results not shown).

R_0 is a measure of the ability of the disease to infect others. For the simulation, it only affected people after they were released from quarantine. The real-time effective number is a baseline R_0 that is modified according other factors that could influence propensity to infect others. In our model, real-time R_0 is zero during quarantine and positive based on working environments after release. The failure rate of a quarantine was higher if released individuals work in an enclosed environment without social distancing than in a more protected environment with social distancing and mask use. Increasing the real-time R_0 in the work environment increased failure rates; however, it did not affect the relative performance of quarantine strategies (results not shown).

Optimal strategies for widely used SARS-CoV-2 tests

PCR-based tests can detect the existence of SARS-CoV-2 RNA from URT samples of recovered patients for up to 12 weeks, even when replication-competent virus was not detected more than 3 weeks after symptom onset.\(^{34,35}\) The clinical sensitivity of COVID-19 tests is affected by test design, the viral loads of infected individuals, and many human and non-human factors. Therefore, although sensitivity for COVID-19 tests that are derived from testing samples with the SARS-CoV-2 virus in a lab environment are generally very high (usually > 95%), real-world performance of these tests can be significantly poorer \(^{36}\). For example, a systematic review of five studies involving 957 patients showed false negative rates ranging from 2 to 29% \(^{37}\). More recent studies, however, attributed the lower sensitivity of the earlier studies partly to the use of oropharyngeal instead of nasopharyngeal swabs and found that RT-PCR tests generally have more than 90% sensitivity. \(^{38}\) We have therefore modeled RT-PCR tests with a sensitivity of over 90%.

To evaluate the performance of commonly used SARS-CoV-2 tests, we choose to model 1) a best-case scenario in which highly sensitive RT-PCR tests are applied to samples collected from nasopharyngeal or midturbinate swabs, 2) a common scenario with a regular RT-PCR test on anterior nasal swabs that misses positives due to lower viral loads ($Ct >30–32$), and 3) a scenario in which antigen tests are preferred for its faster turnaround time (1 hour) and lower cost. Instead of modeling tests with constant and prespecified sensitivities, we model the sensitivities of the tests with a baseline sensitivity value (95%) that reflects common factors unrelated to test themselves and LOD cutoff values (1, 2, and 3 respectively) that reflect analytic sensitivities of the tests.
The observed sensitivity of these tests varies over the course of the infection (Figure 3C). The average sensitivities depend on when tests are administrated and range from 90% to 95% for two RT-PCR tests, and 80% to 90% for the antigen test.

Assuming default parameters for R0 and proportion of asymptomatic carriers in the population, we evaluated the performance of quarantine strategies with all possible combinations of testing schedules using these three tests, for those undergoing quarantine with either simultaneous or mixed onset of infections (Table 2 and Supplementary Table 1). We found a large number of quarantine strategies that perform better than 14-day quarantine and reported only those with the shortest quarantine or smallest number of tests. Quarantine strategies have higher failure rates when everyone got infected right before quarantine and fewer strategies could outperform a 14-day quarantine in this scenario.

Considering only strategies that outperform a standard 14-day quarantine for individuals with both simultaneous and mixed onset of infections, a single RT-PCR test administrated one or two days before the end of quarantine can reduce the duration of quarantine to 10 days. Two RT-PCR tests, administrated on days 6 or 7, and then day 8, can further reduce the duration to 8-days. In cases where the shortest quarantine is needed, a 6-day quarantine with tests on days 4, 5, and 6 using a highly sensitive RT-PCR test can be justified.

Antigen tests, due to their high LOD, are less sensitive in detecting the presence of the SARS-CoV-2 virus at both early and later stages of infections. A single antigen test with test administrated on day 9 or 10, can reduce the quarantine to 11 days. Persons in quarantine who are tested negative at the beginning of days 8 and 9 can be released at the beginning of day 10 if they do not show any symptoms (a 9-day quarantine with tests on days 7 and 8). Shorter quarantines, even with daily antigen testing, could not achieve the same level of safety as a 14-day quarantine.

DISCUSSION

We simulated scenarios in which individuals are quarantined either after simultaneous infection or exposure to SARS-CoV-2, or have been infected at mixed intervals but have not shown symptoms. These simulations reflect the two major applications of quarantine; namely 1) quarantine a group of people after simultaneous exposure to a common source of potential infection i.e. shared close contact with an infected individual or participation in an event with known SARS-CoV-2 positive attendees, and 2) pre-quarantine individuals with unknown stage of infection before their necessary assembly i.e. sporting events, business meetings, etc. Our results indicate that quarantine on people with mixed onset of infections have much lower failure rates (generally 1/10) and a wider choices of safe test-assisted quarantine strategies compared to quarantine with simultaneous onset of infections (Table 2). For simplicity we only recommend quarantine strategies that fare well in both situations.

A major difference between test-free and test-assisted quarantine is that test-assisted quarantines identify asymptomatic carriers and carriers who have recovered but are still shedding, i.e., those who would pass test-free quarantine unnoticed. Testing in cohorts with uninfected individuals, especially repeated testing in large cohorts, generates false positives. Whereas RT-PCR tests have very high specificity (between 99.9% to 99.95%)
and subsequently produce false-positives only through human errors during pre-analytical and analytical processes, antigen tests have lower specificity (e.g. 98.5% for BinaxNow39) so positive tests obtained through antigen tests are recommended to be confirmed with a RT-PCR test.40 Unless a physician suggests otherwise, people who test positive should complete a 10-day isolation as recommended by the CDC. The value of test-assisted quarantine is therefore releasing uninfected people earlier, rather than shortening isolation for people who are infected with the virus.

CONCLUSION

We evaluated the performance of test-assisted quarantines with considerations for repeated administration of SARS-Cov-2 tests with different sensitivities and turnaround times to carriers at different stages of infection, and applications for specific application scenarios, based on our existing knowledge on the progression of SARS-CoV-2 infection and performance of common RT-PCR and antigen tests.

Our findings indicate that the current 14-day quarantine approach is excessively conservative, and the duration of quarantines could be significantly reduced if testing is performed during the quarantine period (Table 2). One RT-PCR test, or two antigen tests could reduce the quarantine time to 10 days. More tests can further reduce the length of duration and a 6-day quarantine can be justified with three highly sensitive RT-PCR tests. We modeled uninterrupted quarantine in isolation with tests with relatively short turnaround time. If in practice the turnaround time of a test is longer than 1 day, the quarantine should be extended to wait for the results of the tests.

The effectiveness of test-assisted quarantine depends on sensitivity of tests. Because SARS-CoV-2 tests have lower sensitivity when they are applied at an early stage of infection with low viral loads, quarantines shorter than 6 days will be ineffective even with daily SARS-CoV-2 testing. Quarantine strategies with testing at the beginning and end of quarantine, or traveling with pre-travel testing could incur residual risk. For example, the failure rate for the New York travel recommendation, resembling a 8-day quarantine strategy with testing on days 1 and 8, is 0.024% and 60% higher than a 14-day quarantine, even if we assume that travelers will not be infected during travel. Because tests with lower than 85% clinical sensitivity are unlikely to provide enough benefit of reducing the length of quarantine, we do not recommend the use of test-assisted quarantine with novel tests with unknown clinical sensitivities.

Acknowledgements:

The authors appreciate financial support from a major technology client, for whom simulations were initially developed. The authors appreciate a scientific editor, Kat H. Sippel, for her assistance in the preparation of this manuscript.

Author contributions: BP designed the study, implemented the simulations, and drafted the manuscript. WZ executed simulations and analyzed results. BP, WZ, and PY verified the data and results. PY, PM, AG, and JM provided real-world data, industrial practices, and government regulations for COVID-19 quarantines. CA supervised the study. PY, RP, and CA contributed substantially to the manuscript. All authors reviewed and agreed with the content of the manuscript.
Data sharing statement:

The simulation program (covid19-outbreak-simulator), that is used for all simulations for this study is publicly available at https://github.com/ictr/covid19-outbreak-simulator under a BSD 3-clause license. All simulated scenarios and their results will be made available in the “Applications” section of the homepage of the simulator.
Table 1: Summary of assumptions for the progression and infectivity of SARS-CoV-2 infection.

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R0</td>
<td>Normal(2.10, 0.36)</td>
</tr>
<tr>
<td></td>
<td>Incubation period</td>
<td>LogNormal(1.62, 0.42)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>Duration of Infection after onset of symptoms</td>
<td>2 + LogNormal(0.87, 1.03)</td>
</tr>
<tr>
<td></td>
<td>Infectivity Starts</td>
<td>1/5 of incubation period</td>
</tr>
<tr>
<td></td>
<td>Infectivity Peaks</td>
<td>2/3 of incubation period</td>
</tr>
<tr>
<td></td>
<td>R0</td>
<td>Normal(0.42, 0.07)</td>
</tr>
<tr>
<td></td>
<td>Duration of infection</td>
<td>3 + LogNormal(0.97, 0.50)</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>Infectivity starts</td>
<td>1/10 of duration of infection</td>
</tr>
<tr>
<td></td>
<td>Infectivity peaks</td>
<td>4/10 of duration of infection</td>
</tr>
</tbody>
</table>

Models used to model the progression and infectivity of SARS-CoV-2 infection for symptomatic and asymptomatic cases. The communicable period of symptomatic cases includes an incubation period modeled by a log normal distribution, and a period of infection after onset of symptoms, which is modeled by a shifted log normal distribution. The communicable period of asymptomatic carriers follows a shifted log normal distribution. Transmissibility probabilities are modeled by piecewise linear functions with a period with no infectivity, followed by a period with increasing infectivity, and then a period of decreasing infectivity.
Table 2: Optimal quarantine strategies with the shortest duration or fewest number of tests that had better performance than a 14-day quarantine.

<table>
<thead>
<tr>
<th>Test Name</th>
<th>Quarantine Days</th>
<th>Number of Tests</th>
<th>Test Days</th>
<th>Failure Rate (Simultaneous onset of infections)</th>
<th>Failure Rate (mixed onset of infections)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO TEST</td>
<td>14</td>
<td>0</td>
<td></td>
<td>0.12%</td>
<td>0.015%</td>
</tr>
<tr>
<td>PCR95</td>
<td>6* 3 4, 5, 6</td>
<td>0.12%</td>
<td></td>
<td>0.006%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 2 4/5, 6</td>
<td>0.05% - 0.12%</td>
<td>0.010% - 0.014%</td>
<td>0.005% - 0.008%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 2 4/5/6, 7</td>
<td>0.11%</td>
<td></td>
<td>0.013%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 2 3, 7</td>
<td>0.01%</td>
<td></td>
<td>0.006%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 2 5, 6</td>
<td>0.01%</td>
<td></td>
<td>0.012%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8* 2 4/5/6/7, 8</td>
<td>0.02% - 0.08%</td>
<td>0.002% - 0.004%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 1 8/9</td>
<td>0.10% - 0.11%</td>
<td>0.014% - 0.014%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCR90</td>
<td>7 2 6, 7</td>
<td>0.01%</td>
<td></td>
<td>0.014%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 2 5, 8</td>
<td>0.011%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8* 2 6/7, 8</td>
<td>0.08% - 0.10%</td>
<td>0.007% - 0.009%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2 5, 7</td>
<td>0.014%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2 4, 8</td>
<td>0.013%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2 5, 8</td>
<td>0.012%</td>
<td></td>
<td>0.010%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2 3, 9</td>
<td>0.015%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2 4/5/6/7/8, 9</td>
<td>0.04% - 0.12%</td>
<td>0.004% - 0.010%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 1 8</td>
<td>0.014%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10* 1 9/10</td>
<td>0.08% - 0.10%</td>
<td>0.011% - 0.012%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antigen</td>
<td>8 3 5, 6, 7</td>
<td>0.013%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 2 6, 8</td>
<td>0.014%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9* 2 7, 8</td>
<td>0.10%</td>
<td></td>
<td>0.012%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 2 6, 7</td>
<td>0.014%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 2 6, 8</td>
<td>0.10%</td>
<td></td>
<td>0.011%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 2 5, 8</td>
<td>0.013%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 2 4/5/6/7/8, 9</td>
<td>0.06% - 0.12%</td>
<td>0.007% - 0.013%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11* 1 9/10</td>
<td>0.09% - 0.10%</td>
<td>0.013% - 0.013%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 1 8</td>
<td>0.10%</td>
<td></td>
<td>0.011%</td>
<td></td>
</tr>
</tbody>
</table>

Quarantine strategies with the shortest duration or fewest number of tests that had better performance than a 14-day quarantine, for two RT-PCR tests with sensitivities 95% and 90% and a 1-day turnaround time (PCR95 and PCR90), and an antigen test with 1-hour turnaround time (Antigen). Test days represent days at which test results would be available at the end of day. Strategies that are recommended are marked with asterisks. Strategies with the same last test day are combined with other test days separated by
forward slashes. Failure rates are calculated for 1) simultaneous onset of infections when infection happen simultaneously from a single source of contact or event, and 2) mixed onset of infections when onsets of infection are assumed to be any time during the course of infection for asymptomatic carriers, and any time during incubation period for symptomatic cases. Failure rates that are higher than those of a 14-day quarantine are not listed. Strategies with more tests or longer quarantine time than the listed strategies will perform better and are not listed. A complete list of quarantine strategies is provided in Supplementary Table 1.
Figure 1: Diagram of a quarantine process with one test performed before the end of quarantine. In our simulations zero, one, or more tests could be performed, and the carrier could show symptoms any time before the end of quarantine and be removed.

Figure 2: Transmissibility (A) and viral load models (B) for five symptomatic (red lines) and five asymptomatic individuals (blue lines). The x-axis represents days after infection. The y-axis represents the average number of infections per day over the course of infection. The red dots are infection events. The curves of viral load of these individuals follow the timeline of transmissibility, but with slower rate of decline, and viral load roughly following log10 copies/ml of virus. The horizontal line reflects the limit of detection of a test under which the sensitivity of test decreases proportionally to viral load. C) Density functions of communicable period for symptomatic and asymptomatic carriers. D) Density functions of serial interval and generation time for symptomatic carriers. All densities were estimated from 10,000 replicate simulations.
Figure 3: A) Failure rate for quarantine from 1 to 14 days with and without testing on the day before release. B) Impact of test sensitivity on failure rate. The results are based on a 10-day quarantine with testing on the day before release. C) The observed sensitivity, derived from the proportion of false-negatives caused by the low viral load of carriers, of tests with a baseline sensitivity of 95% when performed at days 2, 3, 4, 6, 8, 10 of quarantine. D) Failure rates of the quarantine strategies with the same tests as conducted in (C) also performed at the end of quarantine with a 1-day turnaround time.
References

40. FDA. Potential for False Positive Results with Antigen Tests for Rapid Detection of SARS-CoV-2 - Letter to Clinical Laboratory Staff and Health Care Providers. 2020.