CSF of SARS-CoV-2 patients with neurological syndromes reveals hints to understand pathophysiology

Raphaël Bernard-Valnet, MD,PhD 1; Sylvain Perriot, PharmD, PhD 1; Mathieu Canales, MSc 1; Beatrice Pizzarotti, MD 1; Leonardo Caranzano, MD 1; Mayté Castro-Jiménez, MD 1; Jean-Benoit Epiney, MD 1; Sergiu Vijiala, MD 1; Paolo Salvioni Chiabotti, MSc 1, MD 1; Angelica Anichini, MD 1, Alexander Salerno, MD 1 Kadia Jaton, MD, PhD 2; Julien Vaucher, MD 3; Matthieu Perreau, PhD 4; Gilbert Greub, MD,PhD 2; Giuseppe Pantaleo, MD 4; Renaud Du Pasquier, MD 1

1. Service of Neurology and Laboratory of Neuroimmunology, Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Lausanne, Switzerland.
2. Institute of Microbiology, University of Lausanne and University Hospital of Lausanne, Switzerland.
3. Service of Internal Medicine, Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne, Lausanne, Switzerland
4. Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

*. Contributed equally to work

Corresponding Author:
Prof. Renaud Du Pasquier
Rue du Bugnon 46
1011 Lausanne, Switzerland
renaud.du-pasquier@chuv.ch

Word count:
 o Body: 2356
 o Abstract: 252
 o Introduction: 351
 o Discussion: 753

Figures: 2
Tables: 2
References: 30

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objective: Coronavirus disease (COVID-19) has been associated with a large variety of neurological disorders. However, the mechanisms underlying these neurological complications remain elusive. In this study, we aimed at determining whether neurological symptoms were caused by SARS-CoV-2 direct infection or by pro-inflammatory mediators.

Methods: We checked for SARS-CoV-2 RNA by RT-qPCR, SARS-CoV-2-specific antibodies and for 48 cytokines/chemokines/growth factors (by Luminex) in the cerebrospinal fluids (CSF) +/- sera of a cohort of 17 COVID-19 patients with neurological presentation and 55 neurological control patients (inflammatory [IND], non-inflammatory [NIND], multiple sclerosis [MS]).

Results: We found SARS-CoV-2 RNA and antibodies specific for this virus in the CSF of 0/17 and 8/16 COVID-19 patients, respectively. The presence of SARS-CoV-2 antibodies was explained by a rupture of the blood brain barrier (passive transfer) in 6/16 (38%). An intrathecal synthesis of SARS-CoV2-specific antibodies was present in 2/16 patients. Of the four categories of tested patients, the CSF of IND exhibited the highest level of chemokines (CCL4, CCL5, CXCL8, CXCL10, CXCL12, and CXCL13), followed by the CSF of MS patients (CXCL12, and CXCL13). There was no significant difference between COVID-19 and NIND patients, even if some chemokines (CCL4, CCL5, CXCL8, and CXCL10) tended to be higher in the former. Interestingly, among COVID-19 patients, the CSF of those with a severe disease (encephalitis/encephalopathy) contained higher levels CXCL8 and CXCL10 than those with other neurological presentations.

Interpretation: Our results do not show obvious SARS-CoV-2 infection of the central nervous system, but point to a mild inflammatory reaction reflecting an astrocytic reaction.
INTRODUCTION

Corona viruses’ outbreaks have been repeatedly associated with neurological disorders. Indeed, human tropic coronaviruses seem able to reach the central nervous system and are found in brain necropsies and in cerebrospinal fluid (CSF) of severe acute respiratory syndrome coronavirus (SARS-CoV) patients. In mouse model, it has been shown that a strain of human tropic coronavirus is able to reach the olfactory bulb through the cribriform plate and then to spread through a neuron-to-neuron transmission.

In line with this neurological tropism, Coronavirus Disease 2019 (COVID-19) has shown a large range of neurological complications that may be classified as followed: critical care-related neurological syndromes either central (sub-cortical deficit characterized by attention and executive dysfunction) or peripheral (critical care-associated polyneuropathies or myopathies); anosmia/dysgueusia; myelo-meningo-encephalitis; Guillain-Barré Syndrome (GBS), and its variant affecting cranial nerves (Miller-Fischer Syndrome); and cerebrovascular disease (strokes).

If data from previous outbreaks point to a neurotropism of the coronaviruses, the pathophysiology underlying SARS-CoV-2-related neurological deficits remains elusive. Indeed, to date, SARS-CoV-2 has only been rarely found in the CSF, suggesting that direct brain infection is not obvious. Thus, the main hypotheses to explain neurological complications in COVID patients point at mechanisms either related to low grade presence of the virus in the CNS, to cytokine storm or to the presence of an auto-immune response, such as anti-neuronal antibodies by analogy to what occurs in autoimmune encephalitis. However, data firmly establishing one or the other hypothesis are still missing. Yet, the fact that encephalitis/encephalopathies caused by SARS-CoV-2 may respond to corticosteroids suggest involvement of immune mechanisms.

In an attempt to decipher mechanisms underlying neurological symptoms, we looked at SARS-CoV-2-encoding RNA, SARS-CoV-2-specific antibodies and at a panel of 48 cytokines/chemokines/growth factors in the CSF of 72 study patients. Seventeen of them were infected with SARS-CoV-2, and 55 were control SARS-CoV-2-negative patients suffering from inflammatory, including MS or non-inflammatory neurological disorders. We found that SARS-CoV-2 patients tend to have signs of blood brain barrier opening and possible astrocytes activation, but no strong immune response in the CSF or obvious CNS infection by the virus.

MATERIAL AND METHODS

Study population. All consecutive patients seen at Lausanne University Hospital (CHUV) during the first wave of COVID-19 (March to end of May 2020) with any neurological
manifestations and for whom a lumbar puncture including SARS-CoV-2 PCR was performed, were included in this study. The control cohort consisted of patients who were diagnosed with inflammatory neurological disorder (IND), non-inflammatory neurological disorder (NIND) or multiple sclerosis (MS) prior to the COVID-19 wave, thus who were SARS-CoV-2-negative by definition, and had been enrolled in the COOLIN'BRAIN cohort between 2005 and 2020. Samples (serum and CSF) for MS were all harvested during a clinical relapse of the disease before any treatment with corticosteroids.

Ethics. This study was approved by Canton de Vaud Ethical Committee (CER-VD) in the frame of CORO-NEURO study (authorization n° 2020-01123) and COOLIN-BRAIN study (authorization n°2018-01622). All patients included in this study signed specific informed consent.

SARS-CoV-2 PCR. SARS-CoV-2 tests in CSF specimens were performed using our automated platform with an in-house RT-qPCR targeting the E-gene with the primers and probe described by Corman and colleagues 14. SARS-CoV-2 tests in respiratory specimens were performed either using our automated platform (at the beginning of the pandemic) or using the cobas SARS-CoV-2 test on the cobas 6800 instrument (Roche, Basel, Switzerland), since 24th March 2020. Both methods were compared and exhibited 99.2% of concordant results 15.

SARS-CoV-2 serology. Anti-SARS-CoV2 IgG specific to the native trimeric Spike (S) protein were quantified using a multiplex bead assay as previously described 16. Anti-SARS-CoV2 IgG levels were expressed as a ratio of the mean fluorescent intensity (MFI) signals detected for the serum or CSF samples and the MFI signal detected in the negative control samples. Anti-SARS-CoV2 IgG ratio ≥6 in serum samples were considered positive.

Cytokine detection by Luminex assay. The concentration of cytokines/chemokines/growth factors in serum and CSF was determined by multiplex bead assay (Thermofisher). The concentration of the following soluble markers was assessed: IL-1alpha, IL-1RA, IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27, IL-31, IFN-alpha, IFN-gamma, TNF-alpha, CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-1β), CCL5 (RANTES), CCL11 (Eotaxin), CXCL1 (GRO-α / KC), CXCL8 (IL-8), CXCL9 (MIG), CXCL10 (IP-10), CXCL12 (SDF-1α), CXCL13 (BLC), TNF-beta, NGF-beta, BDNF, EGF, FGF-2, LIF, PDGF-BB, PIGF-1, SCF, VEGF-A, VEGF-D, BAFF, GM-CSF and G-CSF. The assay was performed as per manufacturer’s instructions, as previously described 17.

Graphical representation and statistical analysis. Graphical representation and statistics were generated using PRISM software (version 8.1.2, GraphPad software, La Jolla, Ca, USA).
Multiple group analysis were made using Kruskal-Wallis test with Dunn’s multiple comparison test. For analysis with 2 group, Mann-Whitney test was used to determine statistical significance. Heatmaps and k clustering were made using ClustVis web-based tool.

RESULTS

Clinical characteristics.

From March to May 2020, 30 patients benefited from a research of SARS-CoV-2 by RT-qPCR and had a concomitant lumbar puncture. Among them, the diagnosis of COVID-19 was established in 17 based either on positive nasopharyngeal swab RT-qPCR (88%) or serology (12%). Clinical description of SARS-CoV-2 patients is summarized in Table 1. These 17 patients presented with various neurological presentation including encephalopathy (7), encephalitis (2), myelitis (1), optic neuritis (1), Guillain-Barré Syndrome (1), mononeuritis multiplex (1) and headache (3) (Table 2). Half of them were admitted to Intensive Care Unit (ICU) and 6 (35%) required mechanical ventilation. No prominent MRI abnormalities were found, especially neither leptomeningeal enhancement nor diffusion restriction, in contrast with a previous report. All electroencephalographic (EEG) recording showed some abnormalities, consisting mainly in encephalopathic slowing but also irritative activity in one patient with encephalitis. Several patients also exhibited alterations in nerve conduction, including mononeuritis multiplex, polyradiculopathy and critical myopathy/polyneuropathy.

The SARS-CoV-2-negative control cohort consisted of patients with IND, including 21 patients with encephalitis/meningitis (viral, bacterial, Lyme’s disease, paraneoplastic, etc), vasculitis, Guillain-Barré Syndrome and other inflammatory associated conditions (43% of them admitted at the CHUV during SARS-CoV-2 outbreak); NIND, including 19 patients with epilepsy, stroke and neurodegenerative disease (32.5% of them admitted at the CHUV during Sar-Cov-2 outbreak); and, finally, 15 patients with active relapsing-remitting MS (Table 2).

CSF characteristics.

COVID-19 patients showed abnormal lumbar puncture characterised mainly by elevation of protein level and elevated albumin index. Furthermore, oligoclonal bands were found in a minority of patients and consisted mostly in identical bands in the serum and the CSF (type 4; Table 2). These features point toward an opening of the blood brain barrier. Pleocytosis was encountered only in few patients with encephalitic presentation. As expected, the CSF profile was characterized by high protein level and pleocytosis in most IND patients and oligoclonal bands restricted to the CSF (type 2) in all MS patients (Table 2).
SARS-CoV-2 RNA and antibodies detection in the serum and CSF.

All 17 COVID-19 patients enrolled in this study underwent a RT-qPCR for detection of SARS-CoV-2 RNA in the CSF. It came back negative in all, despite positivity for most (88%) in the nasal swab (Fig. 1C).

Most tested patients (8/9) had positive serology for SARS-CoV-2 in the blood with high titers (positivity threshold >6). Two patients with IND had SARS-CoV-2-specific antibodies above the positive threshold in the blood, however the overall titer was low (Fig. 1C). Of note, both patients presented with pathologies regularly associated with cross-reactive antibodies: sarcoidosis and paraneoplastic syndrome.

Antibodies against SARS-CoV-2 were detected in the CSF of half of COVID patients. Of interest, there was evidence of an intrathecal synthesis of SARS-CoV-2-specific antibodies in 2/17 patients (Reiber index > 2; data not shown). Conversely, SARS-CoV-2 antibodies were not detected in the CSF of any control study patients, except for the patient suffering from neurosarcoidosis, where it was also positive in the serum (Fig. 1C).

Cytokines/Chemokines/Growth factors in the serum and CSF

First, the analysis of the cytokine panel in the serum of the 9 SARS-CoV-2-infected patients for whom it was available showed an increased cytokine production compared to the serum of SARS-CoV-2-negative patients with other neurological disorders, inflammatory (IND) or not (NIND) (Fig. 1D). As previously demonstrated IL-6, CXCL-10 and IL-1-RA were significantly elevated in SARS-CoV-2-infected patients (Fig. 1E). Contrary to previous works, increase of CXCL8 and TNFα were not observed in the serum of our patients (Fig. 1E and data not shown)20,21.

While the cytokine profile of SARS-CoV-2-infected patients with neurological conditions was inflammatory for some in the serum (especially for ICU patients), this was not the case in the CSF. Indeed, the analyses performed in the CSF revealed that SARS-CoV-2-infected patients were mainly clustered with NIND and MS ones, while the CSF of IND patients exhibited a stronger immune signature, characterized by elevated levels of several cytokines, chemokines and growth factors (Fig. 2A). This unbiased clustering was confirmed by individual cytokine/chemokine analysis with significant elevation of IL-6, CCL4, CCL5, CXCL8, CXCL10, CXCL12, CXCL13, G-CSF and VEGF-A in the CSF of IND patients (Fig. 2B and data not shown). Of note, we observed an increased level of several chemokines, including CXCL8 and CXCL10, and to a lesser extent CCL4 and CCL5, in SARS-CoV-2-infected patients compared...
to NIND controls, but which did not reach significance (Fig. 2B). Interestingly, this increase was more pronounced in SARS-CoV-2-infected patients with a more severe involvement of the CNS (eg. encephalopathy, encephalitis, myelitis), as compared to the ones with milder COVID-19 associated neurological disorders (headaches without meningitis) or with predominant peripheral nerve involvement (Fig. 2C).

Even if they did not display strong immune signature, MS patients showed higher levels of CXCL12, CXCL13 and G-CSF in the CSF (Fig. 2B and data not shown).

DISCUSSION

In this study, we attempted to understand the pathogenesis of neurological impairments in the context of COVID-19 disease.

First, we did not detect SARS-CoV-2 RNA in the CSF of any of our 17 patients (Fig 1.B). Only few authors reported that, in severe encephalitis with neuronal and astroglial destruction, SARS-CoV-2 RNA could be found in the CSF but this remains an exception. Interestingly, in vitro experiments using human induced pluripotent stem cells (hiPSC)-derived brain organoids demonstrated the capacity of SARS-CoV-2 to infect neurons and astrocytes but at a very low yield. Thus the lack of SARS-CoV-2 detection in the CSF does not rule out the presence of viral RNA in the brain parenchyma, but does suggest that, if present, its concentration is too low to be detected.

Second, we found that half of our SARS-CoV-2-infected patients exhibited virus-specific antibodies in their CSF (Fig 1.C). Two of them showed evidence of an intrathecal synthesis of antibodies against SARS-CoV-2. These findings suggest that a humoral immune response against the virus may take place in the CNS, but this mechanism may concern only a subset of patients. Indeed, the fact that we found an increased permeability of the blood-brain barrier (increased albumin in the CSF, type 4 oligoclonal bands) in almost all SARS-CoV-2-infected patients suggests that a large proportion of the virus-specific antibodies found in the CSF may come from the periphery. Nevertheless, wherever these antibodies come from, they may be instrumental in the antiviral response in the brain. Supporting these findings, authors recently showed that the CSF from a COVID-19 patient displayed neutralizing antibodies able to prevent neuronal infection in an hiPSC-derived brain organoid model.

Finally, our results bring an unprecedented insight on the inflammatory mechanisms involved in neurological complications of COVID-19. Indeed, we first compared to inflammatory and non-inflammatory neurological controls and have been able to show that, contrary to patient with inflammatory disorders, SARS-CoV-2-infected patients do not display specific immune signature in the CSF. Interestingly, the sera of these SARS-CoV-2-infected patients exhibited...
a inflammatory response, suggesting that the bulk of the immune response against the virus takes place outside of the CNS. Our findings are in line with a previous report showing low concentrations of IL-6, IL-10 and IFNγ in the CSF of SARS-CoV-2-infected patients with neurological complications 24. However, to the best of our knowledge, no other authors have looked so far at such an extensive number of inflammatory mediators, nor have they included such selected control cohorts of study patients.

We found that SARS-CoV-2-infected patients with a severe neurological condition affecting the CNS (encephalopathy/encephalitis) tended to have higher CSF levels of CXCL8, CXCL10, CCL4 and CCL5 (RANTES) than NIND patients or SARS-CoV-2 patients with lesser CNS involvement. These results, in line with a previous case report 7, point towards a CNS-specific cytokine/chemokine profile with local inflammatory mediator production rather than leakage from the blood. Indeed all the chemokines mentioned above were detected at low levels in the serum. Interestingly, these chemokines are all commonly secreted by astrocytes in response to pro-inflammatory stimuli (IL-1β, IFNγ, TNFα) 25, suggesting an implication of those cells in the COVID-related neuropa-thophysiological mechanisms. Supporting this hypothesis, recent studies have found signs of astrocytes activation/injury in brain and serum of COVID-19 patients 26-29.

Our observation of blood brain barrier alterations in COVID patients also favours the hypothesis of astrocytes activation. Indeed, astrogliosis can lead to the disruption of the blood brain barrier via reduction of astrocytic gap junctions, among other mechanisms 30. In addition, astrocytes dysfunction, even in absence of a strong inflammatory milieu, can affect directly neuronal functioning and integrity, such as suggested by high neurofilament levels in the serum of COVID-19 patients 27.

To conclude, our results suggest that moderately severe neurological complications in SARS-CoV-2-infected patients are not due to a major viral infection of the brain nor to a massive inflammatory response in this organ. However, the absence of such a massive response does not mean that the brain of COVID-19 patients with neurological features is unharmed by inflammation. Indeed, it is possible that the CSF only imperfectly reflects the inflammatory mechanisms taking place in brain tissue. Supporting this hypothesis, we can refer to our cohort of patients with active MS, whom we know exhibit a solid inflammation in the brain that needs corticosteroids to be tamed, but in the CSF of whom only a slight elevation of few chemokines can be detected. Precisely, others have reported that corticosteroids improve the neurological symptoms in COVID-19 patients with neurological complications 7,13.
REFERENCES

ACKNOWLEDGEMENTS

We are grateful to Mrs Géraldine Le Goff for her help in collecting study subjects samples. This work was made possible by grants to RDP from the Swiss National Foundation 320030-179531 and from the Swiss Multiple Sclerosis Foundation.
Demographic data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean [range]</td>
<td>58 [19-90]</td>
</tr>
<tr>
<td>Sex, Male/Female</td>
<td>8/9</td>
</tr>
<tr>
<td>BMI, mean [range]</td>
<td>28 [18-41]</td>
</tr>
<tr>
<td>Pre-existing comorbidities:</td>
<td></td>
</tr>
<tr>
<td>Neurodegenerative disease</td>
<td>4 (23)</td>
</tr>
<tr>
<td>Stroke</td>
<td>2 (11)</td>
</tr>
<tr>
<td>Immunosuppressive condition/HIV</td>
<td>1 (6)</td>
</tr>
<tr>
<td>Malignancy</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

COVID-19 Evolution

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay between first symptoms and admission (days), mean [range]</td>
<td>7.6 [0-21]</td>
</tr>
<tr>
<td>ICU admission, n (%)</td>
<td>9 (53)</td>
</tr>
<tr>
<td>Mechanical ventilation, n (%)</td>
<td>6 (35)</td>
</tr>
<tr>
<td>Pulmonary embolism, n (%)</td>
<td>1 (6)</td>
</tr>
<tr>
<td>COVID-19 specific treatments:</td>
<td></td>
</tr>
<tr>
<td>Any treatment</td>
<td>4 (23)</td>
</tr>
<tr>
<td>Lopinavir</td>
<td>4 (23)</td>
</tr>
<tr>
<td>Tocilizumab</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Hydroxychloroquine</td>
<td>2 (12)</td>
</tr>
</tbody>
</table>

Neurological characteristics of SARS-CoV-2 infection

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological diagnosis</td>
<td>(cf table 1)</td>
</tr>
<tr>
<td>Delay between onset of neurological symptoms and lumbar puncture (days), mean [range]</td>
<td>4.5 [0-21]</td>
</tr>
<tr>
<td>Initial neurological symptoms</td>
<td></td>
</tr>
<tr>
<td>Brain MRI, n performed:</td>
<td>15</td>
</tr>
<tr>
<td>Diffusion restriction, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Leptomeningeal Gadolinium enhancement, n (%)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>EEG, n performed:</td>
<td>8</td>
</tr>
<tr>
<td>Encephalopathy, n (%)</td>
<td>7 (87.5)</td>
</tr>
<tr>
<td>Irritative, n (%)</td>
<td>1 (12.5)</td>
</tr>
<tr>
<td>Nerve conduction study, n performed:</td>
<td>6</td>
</tr>
<tr>
<td>Myopathy, n (%)</td>
<td>1 (16)</td>
</tr>
<tr>
<td>Polyneuropathy, n (%)</td>
<td>4 (66)</td>
</tr>
<tr>
<td>Mononeuritis multiplex, n (%)</td>
<td>1 (16)</td>
</tr>
<tr>
<td>Polyradiculopathy, n (%)</td>
<td>1 (16)</td>
</tr>
<tr>
<td>Neuropsychological, n performed:</td>
<td>5</td>
</tr>
<tr>
<td>FAB, median [range]</td>
<td>7 [1-13]</td>
</tr>
<tr>
<td>MoCA, median [range]</td>
<td>15.25 [4-26]</td>
</tr>
</tbody>
</table>

Table 1 - Detailed clinical and paraclinical characteristics in SARS-CoV-2 infected patient.

Abbreviations: EEG (electroencephalogram), MRI (magnetic resonance imaging), FAB (frontal assessment battery), MoCA (Montréal Cognitive Assessment), ICU (intensive care unit), BMI (body mass index), HIV (human immunodeficiency virus)
Demographic data
- **Age, mean [range]**
 - SARS-CoV-2+ (n=17): 58 [19-90]
 - IND (n=21): 58 [22-92]
 - NIND (n=19): 54 [24-84]
 - MS (n=15): 39 [28-51]

Neurological diagnosis
- **Headache, n (%)**
 - SARS-CoV-2+ (n=17): 3 (17)
 - IND (n=21): 1 (4.8)
 - NIND (n=19): 3 (16)
 - MS (n=15): 0 (0)
- **Vascular/Stroke, n (%)**
 - SARS-CoV-2+ (n=17): 0 (0)
 - IND (n=21): 1 (4.8)
 - NIND (n=19): 2 (10.5)
 - MS (n=15): 0 (0)
- **Encephalitis/ Meningitis, n (%)**
 - SARS-CoV-2+ (n=17): 3 (17)
 - IND (n=21): 14 (67)
 - NIND (n=19): 0 (0)
 - MS (n=15): 0 (0)
- **Encephalopathy, n (%)**
 - SARS-CoV-2+ (n=17): 7 (41)
 - IND (n=21): 2 (9.5)
 - NIND (n=19): 0 (0)
 - MS (n=15): 0 (0)
- **Neuro-degenerative disease, n (%)**
 - SARS-CoV-2+ (n=17): 0 (0)
 - IND (n=21): 0 (0)
 - NIND (n=19): 7 (41)
 - MS (n=15): 0 (0)
- **Myelitis, n (%)**
 - SARS-CoV-2+ (n=17): 1 (5.8)
 - IND (n=21): 0 (0)
 - NIND (n=19): 0 (0)
 - MS (n=15): 0 (0)
- **Peripheral nerve, n (%)**
 - SARS-CoV-2+ (n=17): 2 (12)
 - IND (n=21): 2 (9.5)
 - NIND (n=19): 4 (21)
 - MS (n=15): 0 (0)
- **Multiple sclerosis, n (%)**
 - SARS-CoV-2+ (n=17): 0 (0)
 - IND (n=21): 0 (0)
 - NIND (n=19): 1 (5,8)
 - MS (n=15): 0 (0)
- **Epilepsy, n (%)**
 - SARS-CoV-2+ (n=17): 0 (0)
 - IND (n=21): 0 (0)
 - NIND (n=19): 1 (5,8)
 - MS (n=15): 0 (0)
- **Else, n (%)**
 - SARS-CoV-2+ (n=17): 3 (17)
 - IND (n=21): 1 (4,8)
 - NIND (n=19): 14 (67)
 - MS (n=15): 4 (21)

CSF characteristics
- **CSF proteins**
 - Level, mean [range]
 - SARS-CoV-2+ (n=17): 477 [264-715]
 - IND (n=21): 1479 [309-10588]
 - NIND (n=19): 402 [161-895]
 - MS (n=15): 422 [264-594]
- **Pleocytosis**
 - Level, mean [range]
 - SARS-CoV-2+ (n=17): 4 [0-21]
 - IND (n=21): 71 [0-540]
 - NIND (n=19): 0.9 [0-4]
 - MS (n=15): 15.6 [0-51]
- **Elevated Barrier index, n (%)**
 - SARS-CoV-2+ (n=17): 8/12 (67)
 - IND (n=21): 15/19 (78,9)
 - NIND (n=19): 2/16 (12,5)
 - MS (n=15): 3/15 (20)
- **Oligoclonal bands pattern, n performed**
 - Type 1, n (%)
 - SARS-CoV-2+ (n=17): 7 (58)
 - IND (n=21): 8 (38)
 - NIND (n=19): 11 (58)
 - MS (n=15): 0 (0)
 - Type 2, n (%)
 - SARS-CoV-2+ (n=17): 1 (8)
 - IND (n=21): 5 (24)
 - NIND (n=19): 1 (5)
 - MS (n=15): 9 (60)
 - Type 3, n (%)
 - SARS-CoV-2+ (n=17): 1 (8)
 - IND (n=21): 5 (24)
 - NIND (n=19): 0 (0)
 - MS (n=15): 6 (40)
 - Type 4, n (%)
 - SARS-CoV-2+ (n=17): 3 (25)
 - IND (n=21): 0 (0)
 - NIND (n=19): 2 (10,5)
 - MS (n=15): 0 (0)
 - Type 5, n (%)
 - SARS-CoV-2+ (n=17): 0 (0)
 - IND (n=21): 1 (4,8)
 - NIND (n=19): 0 (0)
 - MS (n=15): 0 (0)

Table 2 - Clinical and CSF characteristics in the tested cohort. Abbreviations: CSF (cerebrospinal fluid). Oligoclonal bands pattern: Type 1: Normal CSF, Type 2: Oligoclonal IgG restricted to CSF, Type 3: Oligoclonal IgG in CSF with additional identical bands in CSF and serum (combination of types 2 and 4), Type 4: Identical oligoclonal bands in CSF and serum, Type 5: Monoclonal IgG bands in CSF and serum (myeloma or monoclonal gammopathy of uncertain significance).
Figure 1 – SARS-CoV-2 PCR/serology and Serum Cytokines/Chemokines/Growth factors in COVID-19 patients. (A) Schematic representation of experimental design. Twenty-nine patients sampled during COVID-19 first wave and 42 (the latter being all SARS-CoV-2-uninfected) from the biobank of the Service of neurology were tested for SARS-CoV-2 RNA expression and/or SARS-CoV-2 serology and/or Luminex assay for 48 cytokines/chemokines/growth factors. (B) SARS-CoV-2 viral load detected in nasal swab (left panel) and in the CSF (right) were plotted as log10 for patient with SARS-CoV-2 infection (red circles, n=14), IND (green circles, n=9) or NIND (blue circles, n=4). Only the 30 patients enrolled during the COVID-19 pandemic were tested by SARS-CoV-2 PCR. (C) Antibodies against SARS-CoV-2 detection in the serum and/or the CSF of patient with SARS-CoV-2 infection (red circles, n=9 for serum, n=16 for CSF), IND (green circles, n=12 for serum, n=21 for CSF) or NIND (blue circles, n=15 for serum, n=14 for CSF), MS (yellow circles, n=14 for serum, n=15 for CSF). All 72 study patients were tested for SARS-CoV-2 serologies either in the serum, or the CSF or in both compartments. Dotted line represent positivity threshold in the serum. (D) Unbiased heat map comparisons of cytokines within serum of SARS-CoV-2 infected (SARS-CoV-2+) and uninfected (SARS-CoV-2-), either IND or NIND patients. Expression is represented in log10 scale. K-means clustering was used to determine patients clusters (Cluster 1, n=16; Cluster 2, n=23). Cytokines with no variations across all patients are not displayed. (E) Bar plot representation (mean ± SEM) with log10 scale of IL-6, CXCL8, IL-1-RA, and CXCL10 expression in the serum of patient with (red circles, n=9) or without (blue circles, n=30) SARS-CoV-2 infection. Statistical significance was calculated using Mann-Whitney test (ns: not significant, adjusted p:* ≤ 0.05 *** ≤ 0.001, **** ≤ 0.0001).
Figure 2 - CSF Cytokines/Chemokines/Growth factors in COVID-19 patients. (A) Unbiased heat map comparisons of cytokines within CSF of SARS-CoV-2 infected, and uninfected, i.e IND, NIND and MS patients. Expression is represented in log10 scale. K-means clustering was used to determine patients clusters (Cluster 1, n=1; Cluster 2, n=11; Cluster 3, n=59). Cytokines/chemokines with no variations across all patients are not displayed. Period refer if patient were sampled during COVID-19 pandemy or before it (prior) (B) Bar plot representation (mean ± SEM) with log10 scale of CCL4, CCL5, CXCL8, CXCL10, CXCL12 and CXCL13 expression in the CSF of patient with SARS-CoV-2 infection (red circles, n=16), IND (green circles, n=21) or NIND (blue circles, n=19). Statistical significance comparing to NIND group calculated using Kruskal-Wallis with correction for multiple comparisons (adjusted p:* ≤ 0.05 *** ≤ 0.001, **** ≤ 0.001). (C) CCL4, CCL5, CXCL8 and CXCL10 expression (mean ± SEM) in SARS-CoV-2 infected patient according to neurological presentation either Headache/peripheral nerve/else (white bar, n=5) or encephalopathies/encephalitis/myelitis (grey bar, n=11). Representation corrected by detection limit. Statistical significance was calculated using Mann-Whitney test (p:* ≤ 0.05).