Inconsistent with the intent of public health strategies on incidence and fatality in states with extra mandatory stay-at-home and face masks orders during COVID-19 pandemic in the US

Samuel Xi Wu and Xin Wu
Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center College of Medicine, Bryan, TX 77807

Address correspondence to:
Xin Wu, MD, MS
Department of Neuroscience and Experimental Therapeutics
College of Medicine, Texas A&M University Health Science Center
2012 Medical Research and Education Building
8447 Riverside Parkway, Bryan, TX 77807
Phone: 979-436-0325
Email: xinwu@tamu.edu

Conflict of Interest. The authors declare no competing financial interests.
Abstract

Backgrounds Coronavirus disease 2019 (COVID-19) is now recognized as a multi-system disease. The CDC recommends multiple preventive methods, including social distancing, hand hygiene, and wearing masks. In addition, some states imposed mandatory stay-at-home (SAH) and mandatory face mask (MFM) orders, to reduce the spread of COVID-19. The purpose of this study was to characterize the relationship between SAH and MFM approaches with the incidence and fatality. The research design is a cross-sectional study examining changes in incidence and fatality between states with and without SAH and MFM using available database from CDC during the pandemic periods of the date of the first positive case of each state to the date of 2020-08-23.

Results The daily new cases curve of the nation was flattened under the order of SAH and increased following the end of SAH and several nation-wide social gathering events. There were similar incidence rates among SAH + MFM states (95% CI, 1.19% to 1.64%. n=34), SAH + no-MFM states (95% CI, 1.26% to 2.36%. n=9) and no-SAH + no-MFM (95% CI, 1.08% to 1.63%. n=7). However, SAH+MFM states (n=34), SAH+no-MFM states (n=9) had significantly higher averages in daily new cases and daily fatality, case-fatality-ratio (CFR) and mortality rate (per 100,000 residents) than no-SAH+no-MFM states during pandemic periods (~171 days), respectively. When normalized to population density, beside higher CFR in no-SAH+no-MFM, there were no significant differences in total positive cases, average daily new cases and average daily fatality among the 3 groups during the pandemic periods. When comparing incidence during the period of SAH (~45 days. n=43 states), there were significantly higher incidence rates and average daily new cases in MFM states (n=12) than in no-MFM states (n=31). When normalized to population density, there were no significant differences in total positive cases and average daily new cases between the 2 groups during the period of SAH.

Conclusion This study provided direct evidence of a potential decreased in testing positivity rates, and a decreased fatality to save life when normalized by population density through strategies of SAH + MFM order during the COVID-19 pandemic. However, overall, our results were inconsistent with the intent of public health strategies of SAH and MFM in lowering transmission and fatality. From the policy making level, even if we can’t strictly isolate contagious source patients in separate isolated places and without effective massive contact tracing, we presume that following the CDC recommendations with sufficient testing, could be appropriate to help in mitigate the COVID-19 disaster with close monitoring of healthcare capacity.
Introduction

Coronavirus disease 2019 (COVID-19) is now recognized as a multi-system disease, caused by severe acute respiratory syndrome coronavirus-2, a new strain of coronavirus that has not been previously identified in humans. It is believed to spread primarily from person-to-person by the respiratory route and mainly through close contact\(^1\). Community mitigation strategies following the United States Centers for Disease Control and Prevention (US, CDC) recommendation can lower the risk for disease transmission by limiting or preventing person-to-person interactions. The CDC recommends practicing hand hygiene, social distancing, wearing face covering anywhere they will be around other people especially when cannot keep social distance, monitoring personal health, and staying at home when sick. However, increased mask use in public during COVID-19, along with a global supply shortage, has led to widespread use of homemade masks and face covering alternatives\(^2\text{-}^4\). The mask is a core component of the personal protective equipment (PPE) that clinicians and researchers in infectious diseases fields need in conjunction with gowns, gloves, and eye protection when caring for symptomatic patients. Even though wearing a face mask has been controversial in the general public during influenza-like illness season, it is believed to reduce the spread of respiratory infectious diseases because asymptomatic COVID-19 positive patients can also spread the virus\(^5\text{-}^8\). Many papers described public health strategies either focus on masking models, indirect stay-at-home and masking data, or school closure.\(^9\text{-}^1\text{3}\) There is no direct investigation on how COVID-19 mitigation efforts at the policy making level affect infection rate and case-fatality-ratios on the entire US pandemic database with a total population basis.

Because the COVID-19 pandemic is asynchronous and varies in transmission across the US, states differ in whether or not they require their citizens to follow stay-at-home (SAH) orders and/or mandated face masks (MFM) to limit COVID-19 spread. Apart from the CDC recommendation, individual states began implementing various community mitigation policies including SAH and MFM orders starting as of March 2020. The SAH and MFM orders can help reduce activities associated with community spread of COVID-19 by limiting or preventing person-to-person interactions outside the household\(^9\text{-}^1\text{4}\text{-}^1\text{5}\).

Combating the pandemic will involve reducing both infection rates and severity of the disease. However, direct investigations on how COVID-19 mitigation efforts affect its transmission (e.g. incidence rate) and severity (e.g. case-fatality-ratios (CFR)) are lacking. The purpose of this study was to characterize the relationship between mitigation strategies and COVID-19 consequences around the US.

Methods

Study Data: Data on COVID-19 cases were collected from CDC provisional counts of United States COVID-19 cases and deaths by states over time (CDC 1 and CDC 2. Supplemental eTable 1). On 2020-08-23, there were more than 5-million positive cases and close to 170,000 fatalities from 50 states and the District of Columbia in the USA. Other data sources, such as state health departments and the Johns Hopkins Coronavirus Resource Center were examined as reference and listed in Supplemental eTable 1 and eTable 2. The hospital capacity and health professional data were collected from American Hospital Association and Association of American Medical Colleges.\(^9\text{-}^1\text{6}\) Data on state and territorial mandatory SAH and MFM orders for the general public...
were obtained from government websites containing executive or administrative orders or press releases (supplemental eTable 1). States differ on requiring their citizens to wear face coverings to limit COVID-19 spread. Between 2020-01-21 (first positive case in the US) and 2020-08-23, governors of 35 states and the mayor of Washington DC, signed orders mandating all individuals who can medically tolerate the wearing of a face mask do so in public settings (e.g. public transportation, park and grocery stores). This practice applies both indoors and outdoors where maintaining six feet of social distancing might not always be plausible. If there is no state-wide mandate (e.g. only for store employees, or only a couple counties or cities in the states), we will recognize these states as no-MFM (n=16 states). New Hampshire was counted as a non-MFM state because face coverings are only required for all persons who attend scheduled gatherings for social, spiritual, and recreational activities of 100 people or more. Between 2020-01-21 and 2020-08-23, 43 states and Washington DC signed orders mandating stay-at-home, or shelter-in-place (see eTable 1 and eTable 2 for references on MFM and SAH state list).

Experimental Approach and Experimental Outcomes: The research design is a US population-based cross-sectional study. This study was designed to evaluate the efficacy of SAH and MFM at the policy making level during the pandemic. The overall experimental protocol is illustrated in Figure 1. We primary organized all the states and DC into SAH + MFM states, SAH + no-MFM states, and no-SAH + no-MFM states. Two outcomes will be examined as incidence and fatality. To examine incidence, incidence rate, positivity rate and average daily cases with or without normalized to population density were investigated. To examine fatality, mortality rate (per 100,000 residents), CFR and average daily death with or without normalized to population density were investigated. Because COVID-19 is recognized as an acute disease, incidence rate or infection rate refers to the occurrence of new cases of COVID-19 in a state vulnerable population over a specified pandemic period. *The pandemic periods* are from the date of the first positive case in each state to the date of 2020-08-23. To examine severity of disease, CFR was investigated over the *fatality periods* during pandemic periods from the date of the first death in each state to 2020-08-23. The state-level COVID-19 testing rates and antigen and antibody positivity rates were also examined.

Statistical Analysis: We employed an event study, which is generally similar to a difference in-differences design, to examine whether statewide mandated SAH and/or the use of face masks in public affect the spread of COVID-19 based on the state variations noted earlier. This design allowed us to estimate the effects in the context of a natural experiment, comparing the changes in COVID-19 spread among the states with mandates to changes in COVID-19 spread in the states that did not pass these mandates, over a period of time.

Statistical tests were performed using SAS software (SAS Institute Inc., Cary, NC) and Origin 2020b (OriginLab Corporation, Northampton, MA). Nonparametric outcomes, such as two-peak occurrence, were compared between groups using the Chi-square Test (or Fisher Exact Test). Statistical comparisons of incidence rate and CFR were performed with one-way or two-way analysis of variance (ANOVA) as appropriate. Post hoc analyses were carried out to identify specific differences using Tukey’s HSD (honestly significant difference) for multiple comparisons. In all statistical tests, differences were considered statistically significant at 2-sided p<0.05. Data was expressed as the mean ± SEM.

Results
States with mandatory stay-at-home orders and face masks policies have mixed results of daily positive cases and case fatality ratio. To evaluate whether SAH and MFM are associated with protection of infection rates and severity of disease, we investigated test positivity rate, incidence rate and CFR among each state group. There was no significant difference in test percentage in the population of the states (24.01±1.48% in SAH + MFM states (n=34), 23.49 ± 3.21% in SAH + no-MFM states (n=9) and 24.85±5.40% in no-SAH + no-MFM (n=7. Figure 2A). The SARS-CoV-2 antigen (PCR) testing positivity rate in SAH + no-MFM states (95% confidence interval (CI), 5.66% to 12.40%) was significantly higher compared to positivity rate in SAH + MFM states (95% CI, 5.16% to 7.18%, p=0.03. Figure 2B) and was no significant difference compared to positivity rate in no-SAH + no-MFM states (95% CI, 4.36% to 8.27%). In comparing the COVID-19 infected level, the SARS-CoV-2 antibody positivity rate from available studies was also examined. The results indicated that there were no significant difference in antibody levels in sampled population among SAH + MFM (95% CI, 4.55% to 9.70%. n=31), SAH + no-MFM (95% CI, 1.32% to 3.85%. n=9), and no-SAH + no-MFM (95% CI, 0% to 8.08%. n=7. Figure 2C), respectively.

There were no significant differences in the results of incidence rate among SAH +&MFM states (95% CI of incidence rate, 1.19% to 1.64%. n=34), SAH + no-MFM states (95% CI, 1.26% to 2.36%. n=9) and no-SAH + no-MFM (95% CI, 1.08% to 1.63%. n=7) and no significant difference in pandemic periods (Figure 2D and E). However, SAH + MFM (p=0.003) and SAH + no-MFM (n=0.07) states have a higher average of daily new cases compared to the no-SAH + no-MFM (Figure 2F).

A geographic analysis of population density during the pandemic indicated that population density could be a factor that affects transmission and fatality. The information regarding state population density (people/mile²) have also been considered during analysis (Table 1). There was a significant difference in the population density in the groups of SAH + MFM, SAH + no-MFM, and no-SAH + no-MFM states (p<0.05, Table 1). The SAH + MFM states have a much higher population density when including Washington DC. We examined total positive cases and average daily new cases impacted by population density. There were no differences among total positive cases and the average daily positive cases when normalized with population density among the three groups (Figure 2G and H).

When comparing case severity level, states with SAH + MFM (95% CI, 2.72% to 4.07%) had a 2.6-fold higher CFR compared to no-SAH + no-MFM states (95% CI, 1.08% to 3.16%. p=0.009. Figure 3A). The fatality periods in states with no-SAH + no-MFM have 4.8% fewer days compared to SAH + MFM and SAH + no-MFM (p=0.017. Figure 3B). Because longer fatality periods could result more death numbers, we also compared daily death among 3 groups. The states with SAH + MFM (95% CI, 14.08 to 36.56) and SAH + no-MFM (95% CI, 5.04 to 31.79) had higher averages of death daily than no-SAH + no-MFM states (95% CI, 0.90 to 4.40. 9.53-fold in SAH + MFM (p<0.001) and 6.94-fold in SAH + no-MFM (p=0.055. Figure 3C). When total death normalized with population (per 100,000 residents), as mortality rates, the SAH + MFM (3.0-fold, p<0.05) and SAH + no-MFM (2.0-fold) states were higher than mortality in no-SAH + no-MFM states, respectively (Figure 3D). When CFR was normalized by population density, the no-SAH + no-MFM states had a significantly higher CFR when compared to SAH + MFM states (p=0.033. Figure 3E). However, there was no significant difference in average daily fatality per population density among the three groups (Figure 3F). These results suggested that SAH and MFM/no-MFM orders provided mixed effects for prevention of infection and reduction on severity of disease.
The state of Arkansas (22.2% testing percentage) issued MFM without a SAH order, and was excluded in the 3 state groups above. Mixed data were shown with 8.4% antigen testing positivity rate and 1.87% incidence rate, which were similar to SAH + no-MFM states, and 1.2% CFR that was similar to no-SAH + no-MFM states.

States with MFM policies have not shown preventive effects on incidence and average daily cases of COVID-19 during mandatory SAH order periods. To examine whether SAH overlapping with MFM (yellow rectangle box in the lower part of Figure 1) demonstrated better preventive effects, we examined incidence rate along with daily new cases during the SAH window (averaged about 45 days. n=43 states). The average overlapping periods for SAH and MFM was 28 ± 3 days, which was about 50% of overall SAH days. The incidence rate in MFM states (n=12) was significantly higher than no-MFM states (n=31. p=0.003. Figure 4A). Because the number of SAH days in MFM states was 23% longer than no-MFM states (p=0.11. Figure 4B) which could increase the positive cases data, we examined the average daily new cases between two groups during the SAH periods. The average daily new positive cases in MFM states was 4-fold higher than no-MFM states (p=0.004. Figure 4C).

We examined total positive cases and average daily new cases impacted by population density. There were no significant differences in the number of total positive cases (Figure 4D) and average daily cases (Figure 4E) impacted by population density between MFM and no-MFM states. Thus, these results suggested that MFM policy during the SAH period may not have an advantage over no-MFM policy.

Trends in the daily new COVID-19 cases in the US decreased due to stay-at-home orders and increased following some social gathering events. The incubation period was defined as the interval between the potential earliest date of contact with the transmission source, and the potential earliest date of symptom onset or the time that most likely will be received positive test results. The incubation period for COVID-19 was thought to from 5 days extend to 14-23 days.20 21 There were some cause and effect phenomena in this curve (Figure 1). The curve trends were going up following spring break (late February to early April) and peaked on 2020-04-11. The average start date of SAH from all states was the date of 2020-03-27 ± 1.2 (n=43 states). In Figure 1, the daily new cases curve of the nation was flattened about 16 days after SAH with the first peak date of 2020-04-11. 6 out of 43 SAH states had the peak (or first peak. Table 1 and Figure 1) before the date of 2020-04-11. The second rise of the curve followed 23 days after ending the SAH order, society phased reopening, and 8 days post-Memorial Day. The trends generally increased following nation-wide gathering events during May and June, and the July 4th holiday. The most recent peak date (or second peak date if a state had already peaked) was about on 2020-07-23, 19 days post the July 4th.

13 out of 34 SAH + MFM states and 2 out of 7 no-SAH + no-MFM states had two peaks. 0 out of 9 SAH + no-MFM states had a second peak (p=0.03 vs SAH + MFM. Table 1). There was a significant difference in the number of days from the date of the first case in each state to the most recent peak between SAH + no-MFM states and no-SAH + no-MFM states (Table 1). Thus, these results indicated that SAH helped flatten the transmission curve possibly through reducing the number of days to reach the peak.

Discussion

This study is the first report to evaluate all available COVID-19 positive cases and fatality data in the US from policy making levels during pandemic periods until date of 2020-8-23, not theoretical modeling and not selected regional database. The data included more than 5-million
positive cases and close to 170,000 fatalities among 330 million vulnerable populations in the US. Our results were inconsistent with the intent of public health strategies in lowering infection rates and fatality. This study provided direct evidence of a potential decreased in testing positivity rates when comparing SAH + MFM to SAH + no-MFM, and a decreased fatality to save life when normalized by population density through strategies of SAH + MFM order during the COVID-19 pandemic (Figure 2). During the SAH order, the flattened national daily new cases curve represented decreased transmission (Figure 1). However, when normalized to population density, there were no significant differences in total positive cases, averaged daily new cases and average daily fatality among SAH + MFM, SAH + no-MFM and no-SAH + no-MFM state groups during pandemic periods. In addition, there was no difference in total positive cases and average daily new cases between MFM and no-MFM groups during SAH period after being normalized to population density.

Pathogenesis is the process by which an infection leads to asymptomatic or symptomatic signs of the disease. Theoretically, this process is always a balance between viral invasion (i.e., enough quality-virulence factors, enough quantity-virus load and enough contact time with contagious source-15 min as the CDC estimated) and human defense (i.e. physical and mental health). Most vaccines contain a small amount of attenuated or inactivated virus. What we can do from a prevention standpoint is to hinder the pathogen from reaching the sufficient virus load by using physical barriers such as face coverings and hand hygiene, and to avoid contact time through SAH, social distancing and reducing exposure to unknown crowds. Prolonged time in an indoor crowded environment (e.g. Bars and restaurants) will increase your contact time with a possible contagious source. Human defense is the choosing of a healthy lifestyle to boost your immune system to fight the virulent factors and to receive medical care in time as a last resort. Around the US, federal and state governments have been fighting the COVID-19 pandemic through a variety of strategies, including testing to find patients, isolating patients, controlling transmission and finally providing necessary clinical care when needed.

The first step is to find the contagious source - patients. Testing is critical in the public health field on mitigation efforts, helping investigators to characterize the incidence rate, spread and contagiousness of the disease. Early testing helps identify anyone who came into contact with an infected person so they too can be quickly quarantined or isolated and then treated if needed. However, the disadvantages for un-justified testing are potentially wasted limited amounts of resources and a delay in the lab results for actual patients. The sooner patients receive test results, the sooner infected individuals can be isolated before they transmit their infection to others. Among all three with or without SAH and MFM states, the testing percentages (about 22%), SARS-CoV-2 antigen and antibody positivity rates, and COVID-19 incidence rate had no significant differences during the pandemic period.

The second step of the strategy is mandatory isolation of patients and voluntary quarantine of close contactors followed by contact tracing and social support services, etc. This is the most important preemptive step because better control of a contagious source will greatly reduce transmission in the community. Thus, reducing the positivity rate, incidence rate and fatality in the community. However, one big shortcoming of the US response to the coronavirus pandemic right now, at least in some parts of the country, involves shortage of contact tracers and effectiveness of contact tracing. When new daily cases reach a certain level (such as 200/day in Houston Area, TX), it will be very difficult to effectively trace and help isolate further spread of the virus (TMC in eTable 1). In Texas alone, thousands more contact tracers are needed.
The third step of the strategy is preventive transmission control through the CDC recommendation of washing your hands often, maintaining good social distance, covering with a mask when around others, and monitoring your health daily. During influenza-like-illness season, including COVID-19 outbreak before April, 2020, the CDC and World Health Organization (WHO) did not recommend face masks to the general public because there is no evidence from trials of effectiveness in reducing transmission.\(^5\) However, the CDC recommends using face masks in general public if you are sick, taking care of a sick patient, have underlying situations such as immunocompromised persons and have to be in a crowded environment. As COVID-19 continues its global spread, WHO and CDC recommended that it was possible that one of the strategies in pandemic control, such as face masks, might at least help reduce the severity of disease and ensure that a greater proportion of new positive cases are asymptomatic infections.\(^2\)\(^4\)\(^26\)\(^27\) Furthermore, dismissing a low-cost intervention such as mass masking as ineffective because there is no evidence of effectiveness in clinical trials, is potentially harmful.\(^2\)\(^8\) We believed SAH and MFM in the general public could help with mitigation, and even save life during the COVID-19 pandemic as shown in part of our data in Figure 1 to 3 with population density, and in the balance of pathogenesis mentioned above.\(^2\)\(^9\) Several studies found a reduction of the spread of COVID-19 after stay-at-home, school closure and social distancing mandates were enacted in most states.\(^9\)\(^13\) The national overall daily new cases curve was consistent with these reports. There were several significant cause and effect relationships in the daily case trend curve (Figure 1). The daily new case curve trend was bent following a mandating SAH order. When US states began to reopen their economies and communities started gathering, the daily new cases observed an upward surge. This suggested the efficacy of SAH and social distancing measures, and could influence future public health policy making. However, the pandemic results indicated there was no significant difference among 3 groups in positivity rates and incidence rate during pandemic periods.

The impact of population density on emerging highly contagious infectious diseases has rarely been studied. In theory, dense areas over a certain threshold level lead to more close interactions among residents, which makes them potential hotspots for the rapid spread of pandemics. On the other hand, dense cities may have better access to healthcare systems.\(^1\)\(^8\)\(^19\) Our research design for the current COVID-19 pandemic is a perfect population-based cross-sectional study to investigate these relationships. Our data indicated that the top 8 states in population densities are in the SAH + MFM group with higher average daily new cases, mortality, CFR and average daily fatality. However, after being normalized with population density, there were no significant differences in daily new cases and average daily fatality among 3 groups during pandemic periods (Figure 2 and 3), as well as between MFM and no-MFM groups during SAH periods (Figure 4). Our results were inconsistent with the goals of preventive protocol, including SAH and MFM, to combat the pandemic and to reduce both infection rate and severity of disease. Because a limitation of this study was its focus on the difference of state-level policies. In order to find out why SAH and MFM orders did not show significant changes in incidence rate and fatality, we may need analysis of individual county or city socioeconomic data, patient isolating data, contact tracing data, health care systems data, and law enforcement efforts during these mandating requirements (see limitations section).

Recent studies indicated that not all face masks have equal efficiency in reducing the transmission of particles or droplets, those most likely involved in COVID-19 people-to-people transmission.\(^2\)\(^4\) Among all tested masks, fitted N95, used by health professionals who take care of COVID-19 patients with other necessary PPEs, perform best. Three-layer surgical masks, used by professionals in the hospital and clinical setting also showed very good results.
mask alternatives, such as neck fleeces or bandanas, offer very little protection. From a public policy perspective, during a pandemic similar to the COVID-19 pandemic, shortages in supply for surgical face masks and N95 respirators, as well as concerns about side effects and the discomfort of prolonged use from the masks, have led to public use of a variety of solutions which are generally less restrictive and usually of unknown efficacy (Table 2). In our opinion, if contagious patients did not strictly isolate themselves in the designated places and stay around the community, and if the general public did not inform the correct types of masks with other personal protective equipment, proper methods to wear one, and knows how to properly social distance, the community transmission will most likely be inevitable.

The fourth and last step of the strategies is to provide protective clinical care and ensure a high healthcare capacity during the pandemic. Hospitals and other healthcare facilities play a critical role in national and local responses to COVID-19. Currently, only one antiviral remdesivir treatment is approved with debatable benefit-risk assessment on 2020-10-20 by United States Food and Drug Administration on 2020-10-20, and no vaccine is available, except for supportive care solutions and the ability to manage underlying conditions. When mitigation steps are compromised, as our data from COVID-19 pandemic indicated, the final step is to ensure we have sufficient healthcare capacity, especially intensive care unit (ICU) capacity. COVID-19 patients need rooms with negative pressure (e.g. ICU) to prevent contamination to the outside and need ventilators because of the respiratory issues associated with the disease. How do we define the hospital capacity needed to handle a potential outbreak need during phased reopening? The CDC does not have clear recommendations yet. In Texas, if COVID-19 patients made up less than 15% of all hospitalizations, an increase in reopening capacity every 14 days was allowed (Texas reopening in eTable 1). The hospital capacity data in Figure 5 indicates that we currently have sufficient healthcare capacity to take care of the COVID-19 patients nationwide if based on Texas’s 15% suggestion and in the worst scenario elective surgery can be suspended. In addition, there are 900,000 active licensed physicians including at least 70,000 physicians of ICU, emergency, intensive care, and respiratory specialists. Moreover, there are 3 million nurses and 129,000 respiratory therapists available in the US (Figure 5). The mitigation steps might be appropriately strengthened and relaxed following the balance among patient’s privacy, people’s freedom, and law enforcement following hospital capacity changes.

Limitations: This study has several limitations. First, these results were limited to the state policy levels. We did not consider data on statewide schools and nonessential businesses closure and a county-level mandatory face masks in the public in no-MFM states, such as those in the state of Florida. Second, we only examined confirmed COVID-19 provisional cases and reported death cases. The cases and fatality data can lag. There is evidence by the CDC of a higher infection rate in the community than what is reflected in the number of confirmed COVID-19 cases, especially with asymptomatic patients. In addition, we did not examine the percentage of patients who died with do-not-resuscitate status that could responsible for increased mortality. Third, we did not examine socioeconomic and demographic factors (e.g. such as age, sex, education level) between states. Crowding can result from socioeconomic conditions that force many people to live in a small space or from cultural preferences for living in multigenerational households. Fourth, we did not measure enforcement of the mandates, which might affect compliance. Fifth, we also did not investigate the percentage of patients in nursing homes and assisted living facilities. Those with higher proportions of minority residents are more likely to have more COVID-19 cases. Sixth, because COVID-19 is recognized as an acute disease,
when calculating incidence rate, we presumed the people or patients only count once and that the population in that state will remain constant, even though people pass away and babies are born during the period from the date of first case in that state to 2020-08-23.

Conclusion

This study provided direct evidence of a potential decreased in testing positivity rates, and a decreased fatality to save life when normalized by population density through strategies of SAH + MFM order during the COVID-19 pandemic. However, overall, our results were inconsistent with the intent of public health strategies of SAH and MFM in lowering transmission and fatality. As states begin to reopen, we are considering the possibility of a uphold wave of the COVID-19 or COVID-19 combined with regular flu. From the policy making level, even if we can’t strictly isolate contagious source patients in separate isolated places and without effective massive contact tracing, we presume that following the CDC recommendations with sufficient testing, could be appropriate to help in mitigate the COVID-19 disaster with close monitoring of healthcare capacity. With the world facing an unprecedented threat, we must learn the lessons of this pandemic now, and ensure that our response is based on vulnerable patients, people’s freedom, community risk, and hospital capacity, to make the world a safer place in the future.
Authors’ contributions:

SW and XW conceived the study and collected the data. SW and XW searched the literature. SW and XW wrote the manuscript. SW and XW analyzed the data. All authors were involved in data interpretation and made meaningful contributions to the final submitted manuscript.

Funding/Support: not applicable.

Ethical approval: Not required.

Data sharing: All data are public available and with information in supplemental eTable 1 and eTable 2.
References:

randomised controlled trial. *BMJ Open* 2020;10(9):e042045. doi: 10.1136/bmjopen-2020-042045
Figure legends:

Figure 1. Daily Trends in Number of COVID-19 New Cases in the US Reported to CDC. Date is the time of COVID-19 pandemic periods: from the case 1 in the USA to 2020-08-23. This is daily new cases raw data and 7-day averaged data. The first peak was on 2020-04-11, the turning points for second rise was 2020-06-08 and second peak (i.e. most recent peak) was 2020-07-23 from 7 days average curve. All holidays or events are indicated in the figure. The curve was flattened after stay at home order. Daily cases collected from 50 states and Washington DC. The overlapping between states mandating stay-at-home and mandating face masks is emphasized with a yellow rectangle box.
Figure 2. Characteristics of Mandating Face Masks (MFM) and Stay-at-Home (SAH) in average daily cases and incidence rate. A. There is no significant difference in testing percentage of the state population among SAH + MFM (n=34 states), SAH + no-MFM (n=9 states), and no-SAH and no-MFM (n=7) states. B. There is a significantly higher in testing positivity rate in SAH + no-MFM state when comparing to SAH + MFM and no-SAH + no-MFM states. When compared to SAH + MFM, SAH + no-MFM has about 46% higher in positivity rate. There are no significant differences in antibody positivity rates (C), incidence rate (D) and periods of pandemic (E) among the three groups. F. The average daily positive cases are significantly higher in SAH + MFM and SAH + no-MFM states when compared to no-SAH + no-MFM states. There is no significant difference in positive cases reported (G) and in average of daily positive cases (H) per state population density during the pandemic among SAH + MFM (Washington DC population density included), SAH + no-MFM, and no-SAH + no-MFM states. FM: face mask. Each bar represents the mean ± SEM. *p<0.05 vs SAH + MFM states.
Figure 3. Characteristics of Mandating Face Masks and Stay-at-Home order in case-fatality-ratios. A. The CFR is higher in SAH + MFM (2.7-fold, p<0.05, n=34) and SAH + no-MFM (1.7-fold, n=9) states while comparing to no-SAH + no-MFM (n=7) states. B. Because the fatality periods from the first death in each state to 2020-08-23 might affect CFR, we examined the periods of 3 groups. There is about 5% fewer days when counting fatality in no-SAH + no-MFM than in SAH + MFM states. There is no significant difference in days of fatality periods between SAH + no-MFM and no-SAH + no-MFM states. C. Because there is a difference in the fatality periods between SAH + MFM and no-SAH + no-MFM, we examined the average daily death numbers among 3 groups. The average death number in no-SAH + no-MFM states has significantly fewer death than SAH + MFM and SAH + no-MFM states. D. The mortality rates per 100,000 population of SAH + MFM (3.0-fold, p<0.05) and SAH + no-MFM (2.0-fold) states are higher than mortality in the no-SAH + no-MFM states. E. The CFR per state population density is significantly higher in no-SAH + no-MFM when compared to SAH + MFM states. No significant difference in CFR per population density between SAH + no-MFM states and SAH + MFM states. F. There is no significant difference in the average daily death cases reported per state population density during pandemic among SAH + MFM, SAH + no-MFM, and no-SAH + no-MFM states. Each bar represents the mean ± SEM. *p<0.05 vs SAH + MFM states.
Figure 4. Characteristics of states overlapping with mandating masks in the transmission of COVID-19 during the periods of a mandatory stay at home (SAH) order. A. The infected cases in no-MFM states (n=31) have a significantly lower incidence rate than overlapping MFM states (n=12) with SAH order. B. There is no significant difference in SAH period between no-MFM and MFM states. C. The average daily positive cases in no-MFM states showed significantly fewer numbers than MFM states. There are no significant differences in total positive cases (D) and average daily cases (E) per state population density between MFM and no-MFM states during the periods of SAH. Each bar represents the mean ± SEM. *p<0.05 vs MFM states.
Figure 5. US hospital capacity during COVID-19 pandemic. The periods are from the date of 2020-04-01 to 2020-09-04. The chart includes numbers of hospital beds, all hospitalized patients, ventilators, intensive care unit (ICU) beds, all ICU patients, and all COVID-19 patients. From the numbers in this chart, it is possible that individual hospitals might have a shortage of beds. However, we believed that there are sufficient hospital capacities for COVID-19 patients during the pandemic season.
Table 1. Characteristics of new daily new positive case curve trend and population information.

<table>
<thead>
<tr>
<th></th>
<th>SAH + MFM</th>
<th>SAH + no-MFM</th>
<th>No-SAH + no-MFM</th>
</tr>
</thead>
<tbody>
<tr>
<td># of States and DC</td>
<td>34</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>States with second peak</td>
<td>13</td>
<td>0 *</td>
<td>2</td>
</tr>
<tr>
<td>Days to first peak (or most recent peak if only 1 peak of that state)</td>
<td>97.82 ± 9.2</td>
<td>122.78 ± 9.66</td>
<td>121.85 ± 17.64</td>
</tr>
<tr>
<td>How many states with peak before the first peak on the date of 20200411 in Figure 1</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Days to most recent peak in Figure 1</td>
<td>133.06 ± 7.93</td>
<td>122.78 ± 9.66</td>
<td>150.15 ± 5.67 &</td>
</tr>
<tr>
<td>Averaged Population density (people/mile²)</td>
<td>561.09 ± 308.13</td>
<td>129.93 ± 36.24 *</td>
<td>28.43 ± 7.96*, &</td>
</tr>
</tbody>
</table>

MFM: mandating face mask; SAH: Stay at home; DC: District of Columbia. * p < 0.05 vs SAH + MFM; &p < 0.05 vs SAH + no-MFM. ##: There was no significant difference among 3 groups if excluded DC population density in SAH + MFM states. Washington DC population density was included in all normalization in the results session. Each number is represented as the mean ± SEM. Population density data see supplemental eTable 1.
Table 2. Facts behind face mask: cost and effectiveness

<table>
<thead>
<tr>
<th>Issues</th>
<th>How to resolve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td></td>
</tr>
<tr>
<td>Economic and Cost</td>
<td></td>
</tr>
<tr>
<td>1) Not everyone will be able</td>
<td>1) Reusable standardized cloth masks with daily washing because of the</td>
</tr>
<tr>
<td>to afford to purchase one-</td>
<td>cost and availability^{35}.</td>
</tr>
<tr>
<td>time-use disposable masks.</td>
<td>2) Homemade masks and face covering alternatives may not be as effective as</td>
</tr>
<tr>
<td>2) Worsened by global shortage</td>
<td>commercially available masks. Schools and companies should provide free</td>
</tr>
<tr>
<td>of commercial supplies because</td>
<td>disposable masks during ILI season if they can provide free toilet papers</td>
</tr>
<tr>
<td>production is based on society</td>
<td>and hand towels. Financial supports from Tax deduction & governments.</td>
</tr>
<tr>
<td>demands during non-pandemic</td>
<td>3) Stockpiles at home and FEMA</td>
</tr>
<tr>
<td>3) Waste of natural resources</td>
<td></td>
</tr>
<tr>
<td>and environments if universal</td>
<td></td>
</tr>
<tr>
<td>masking in any situation in all</td>
<td>states?</td>
</tr>
<tr>
<td>states?</td>
<td></td>
</tr>
<tr>
<td>Compliance/Adherence</td>
<td></td>
</tr>
<tr>
<td>Feasibility and Adaptations.</td>
<td>Culture difference: traditionally. Western societies consider only those</td>
</tr>
<tr>
<td>Very difficult for healthy</td>
<td>infected should wear masks because of potential spreading the virus. In Asia,</td>
</tr>
<tr>
<td>people including children</td>
<td>wearing a mask is not just mainly for protecting them from getting infected,</td>
</tr>
<tr>
<td>younger than 2 years old for a</td>
<td>but also minimizing the possibility of potential infection in you from</td>
</tr>
<tr>
<td>long-time use. Not everyone</td>
<td>spreading to other people. Education (protecting you and community).</td>
</tr>
<tr>
<td>can wear because of health</td>
<td></td>
</tr>
<tr>
<td>issues^{6}</td>
<td></td>
</tr>
<tr>
<td>Effectiveness</td>
<td></td>
</tr>
<tr>
<td>Works well if you know how</td>
<td>Education on the proper use, disposal of used face masks, daily washing for</td>
</tr>
<tr>
<td>to use face masks that meet</td>
<td>cloth mask^{35}, and hand hygiene (example: wash hand before touch mask;</td>
</tr>
<tr>
<td>the standards or approved by</td>
<td>wash hands before and after disposal masks, etc.).</td>
</tr>
<tr>
<td>the FDA and proper use of</td>
<td></td>
</tr>
<tr>
<td>face masks</td>
<td></td>
</tr>
<tr>
<td>Adverse effects</td>
<td></td>
</tr>
<tr>
<td>Ignoring social distancing</td>
<td>Most side effects disappear once mask is removed, otherwise seek professional</td>
</tr>
<tr>
<td>and hand hygiene. Skin</td>
<td>care.</td>
</tr>
<tr>
<td>breakdown, acne, Impaired</td>
<td></td>
</tr>
<tr>
<td>cognition, headaches, skin</td>
<td></td>
</tr>
<tr>
<td>sensitivity, acne, anxiety,</td>
<td></td>
</tr>
<tr>
<td>short of breath, mask mouth</td>
<td></td>
</tr>
<tr>
<td>(bad breath, dental problems,</td>
<td></td>
</tr>
<tr>
<td>Yeast and bacterial infection)</td>
<td></td>
</tr>
<tr>
<td>Society security and safety</td>
<td></td>
</tr>
<tr>
<td>issues</td>
<td></td>
</tr>
</tbody>
</table>

ILI: influenza-like illness; FEMA: The Federal Emergency Management Agency. #: reference in CDC3 in supplemental eTable 1.