Title: Risk Factors Associated with Increased Antibiotic Use in COVID-19 Hospitalized Patients

Authors: Alysa J. Martin, PharmD#; Stephanie Shulder, PharmD, BCIDP1; David Dobrzynski, MD2; Katelyn Quartuccio, PharmD, BCPS3; Kelly E. Pillinger, PharmD, BCPS-AQ ID, BCIDP1

1University of Rochester Medical Center Strong Memorial Hospital, Department of Pharmacy, Rochester, NY, USA
2University of Rochester Medical Center, Division of Infectious Diseases, Rochester, NY, USA
3University of Rochester Medical Center Highland Hospital, Department of Pharmacy, Rochester, NY, USA

Address correspondence to: Alysa J. Martin, PharmD, alysa_martin@urmc.rochester.edu

Running title: COVID-19 antibiotic risk factors

Key words: COVID-19, antimicrobial stewardship, antibiotics, community-acquired pneumonia, bacterial infection

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Literature suggests that antibiotic prescribing in COVID-19 patients is high, despite low rates of confirmed bacterial infection. There are little data on what drives prescribing habits. This retrospective, multi-center, observational study sought to determine antibiotic prescribing rates and risk factors for antibiotic prescribing in hospitalized patients. Patients admitted from March 1, 2020 to May 31, 2020 and treated for PCR-confirmed COVID-19 were included. The primary endpoint was the rate of antibiotic use during hospitalization. Secondary endpoints included risk factors associated with antibiotic use, risk factors associated with receiving more than one antibiotic course, and rate of microbiologically confirmed infections. A total of 208 encounters (198 patients) were included in the final analysis. Eighty-three percent of patients received at least one course of antibiotics, despite low rates of microbiologically confirmed infection (12%). Almost one-third of patients (30%) received more than one course of antibiotics. There was a low rate of respiratory cultures obtained (32%). Risk factors identified in a univariate analysis for both antibiotic prescribing and receiving more than one course of antibiotics were more serious illness, increased hospital length of stay, ICU admission, mechanical ventilation, and ARDS. This study highlights the need for increased antibiotic stewardship practices in COVID-19 patients. Further studies should be conducted to determine the utility of different stewardship initiatives in COVID-19 patients.
Introduction

The novel coronavirus disease identified in 2019 (COVID-19) is caused by a betacoronavirus known as SARS-CoV-2. Despite the fact that COVID-19 is a viral infection, clinical manifestations may present similarly to a bacterial pneumonia.1 Patients often present with respiratory symptoms including fever, cough, dyspnea, and bilateral changes on chest imaging.1 It can be difficult to determine if patients have a bacterial respiratory coinfection along with COVID-19 infection. This may lead to over-prescribing of antibiotics in patients with COVID-19.

Despite bacterial coinfection being reported in 2-8% of patients, rates of antibiotic prescribing have ranged from 57-95% in hospitalized patients.1-7 Additionally, there are reports of increased consumption of antibiotics during the COVID-19 pandemic.6-9 Over-prescribing of antibiotics may increase the risk of adverse side effects, nosocomial infection, and antibiotic resistance. Several organizational guidelines recommend starting empiric antibiotic therapy if concern for bacterial pneumonia or sepsis, but to re-evaluate daily and de-escalate or discontinue if no evidence of bacterial infection.10-14 Furthermore, they emphasize the importance of antimicrobial stewardship programs which may help to avoid starting antibiotics reflexively or continuing unnecessary courses. The World Health Organization (WHO) has released guidance which discourages the use of antibiotic therapy for patients with COVID-19 infections unless signs and symptoms of a bacterial infection exist.11

Unfortunately, there are limited data to date describing the need or role for antibiotics in COVID-19 or outcomes for patients who receive them. Additionally, little is known regarding
risk factors associated with antibiotic use. There have only been two previous studies which
evaluated prescribing trends, and risk factors of antibiotic prescribing. Both studies focused on
prescribing rates, coinfections and risk factors associated with antibiotic prescribing within the
first 48 hours of admission.4,5

The purpose of this study was to evaluate the rate of antibiotic use in COVID-19 patients
and risk factors associated with antibiotic use throughout hospitalization. A better
understanding of prescribing practices can be used to evaluate opportunities for antibiotic
stewardship for future patients with COVID-19.

Methods

Study design

This was a multi-center, retrospective, observational study of antibiotic prescribing
trends in patients with confirmed COVID-19 at three hospitals within the University of
Rochester Medical Center.

Patients 18 years and older admitted from March 1, 2020 to May 31, 2020 and treated
for PCR-confirmed COVID-19 were eligible for inclusion. Patients did not meet inclusion criteria
if they were only treated in the emergency department without subsequent admission. Patients
could be included more than once if they had multiple admissions within the study period.
Patients were excluded if they were asymptomatic. Data were collected until June 30, 2020.
This study was reviewed and deemed exempt by the Institutional Review Board.

Data Collection
Patients were identified from the electronic health record based on a positive or presumptive positive SARS-CoV-2 PCR test. Baseline data including age, gender, race, weight, height, comorbidities, date of first positive SARS-CoV-2 PCR, and admission and discharge dates were collected. Labs on admission (or at time of positive test if nosocomial transmission), microbiologic data, clinical symptoms, imaging, antibiotic data, COVID-19 investigational or off-label treatment, death and re-admission within 30 days were also collected.

Outcomes

The primary endpoint of the study was the rate of antibiotic use in patients admitted for COVID-19. Secondary endpoints included risk factors associated with antibiotic use, risk factors associated with receiving more than one antibiotic course, and rate of microbiologically-confirmed infections.

Statistical Analysis

Data were analyzed using R statistical software version 4.0.2 (Boston, MA) with a p-value < 0.05 considered statistically significant. Continuous variables were described using a median with interquartile range (IQR). Categorical variables were analyzed using Fisher’s exact testing. Two-sample Wilcoxon test was used for continuous variables. To evaluate risk factors associated with antibiotic use, a univariate analysis was conducted and variables with a p-value ≤ 0.05 were included in a multivariate logistic regression. In addition, a univariate analysis and multivariate logistic regression were conducted for patients receiving more than one course of antibiotics with the following pre-specified variables included if P < 0.05 and clinically significant: length of stay, intensive care unit (ICU) admission, ICU length of stay, mechanical
ventilation, more than one COVID-19 related admission, microbiologically-confirmed infection, time from SARS-CoV-2 collection date to initial antibiotic start, and 28-day mortality.

Results:

A total of 228 encounters met inclusion criteria, with twenty excluded due to asymptomatic disease, leaving 208 encounters included in the final analysis (n=198 patients). The median age was 69 years (IQR 60–80) and 50% (105/208) were male (Table 1). The most common comorbidities were hypertension (143/208, 69%), obesity (81/208, 39%), and diabetes (81/208, 39%). Of 208 encounters, 83% of patients received at least one course of antibiotics. Antibiotic prescribing did not differ based on gender, age, race, or comorbidities. Even though a small subset of patients (n=11), all immunocompromised patients received antibiotics (Table 1). While rates of antibiotic prescribing overall were high, we saw a temporal decrease in antibiotic prescribing. When consolidating encounters by month of admission, rates of antibiotic prescribing were highest in March, with 88% (42/49) of encounters receiving antibiotics, compared to 82% (127/155) in April and 75% (3/4) in May. Rates of antibiotic prescribing were significantly higher in patients admitted to the ICU, requiring O2 support (including ventimask, BiPAP and mechanical ventilation), and with a acute respiratory distress syndrome (ARDS) (p < 0.0001). Median length of stay was 6.5 days longer in those receiving antibiotics (p < 0.0001). Patients who received investigational or off-label therapy for COVID-19 were also more often prescribed antibiotics (p = 0.0328). Of patients who died within 28 days, 92% received antibiotics (47/51, p=0.017). Additionally, median aspartate
transaminase (AST), lactate dehydrogenase (LDH), and procalcitonin (PCT) at baseline were higher in those who were prescribed antibiotics (Table 1). PCT > 0.5 was associated with a higher rate of antibiotic prescribing [94% (44/47) prescribed antibiotics vs. 6% (3/47) did not receive antibiotics, OR 3.76, CI 1.09-20.1, p = 0.03]. Of patients with a PCT > 0.5, 43/47 had respiratory or blood cultures obtained. Microbiologically confirmed bacterial infection was present in 12% (5/43).

Respiratory cultures were obtained in 32% (67/208) of patients. In total, 19% (13/67) were positive (Table 2). *Staphylococcus aureus* was identified in 5 (38%) of 13 positive respiratory culture results (3% of total patients). Blood cultures were obtained in the majority of patients (149/208, 72%), but few were positive (12/149, 7%). All influenza PCR and *Legionella* urinary antigen (UAg) tests were negative. Two *Streptococcus pneumoniae* UAg tests were positive (2.4%, 2/84). In addition, 75 patients (36%) were screened for MRSA nares colonization. Overall, there were 24 microbiologically-confirmed infections treated with antibiotics [11% (24/208) overall]. In a subgroup analysis, patients with microbiologically confirmed infections were more likely to receive more than one course of antibiotics, be admitted to the ICU, and have a longer length of stay.

The most frequently prescribed initial antibiotics were ceftriaxone in 113 (66%) patients and azithromycin in 99 (57%) patients for community acquired pneumonia (CAP), followed by an anti-pseudomonal beta lactam (23%) and vancomycin (23%) for hospital acquired pneumonia (HAP) or ventilator associated (VAP) (Figures 1 and 2). The median time from SARS-CoV-2 collection to antibiotic initiation was one day (IQR 1-4.5 days). Median duration of therapy for the initial course of antibiotics was five days (IQR 2-6 days). In 41 (24%) patients,
the initial regimen was changed; 17 patients were escalated to broader therapy (42%) and 15 patients were de-escalated to narrower therapy (37%). Nine (22%) had another regimen change such as intravenous to oral conversion or changed to another agent with similar spectrum of activity.

Fifty-two patients (30%) received a second course of antibiotics and 19 patients (11%) received more than 2 antibiotic courses during hospitalization. The most frequently prescribed antibiotics included an anti-pseudomonal beta lactam (58%) and vancomycin (58%) for HAP/VAP (Figures 1 and 2). The median duration of second course antibiotics was 6 days (IQR 3-8.25). Duration of admission, ICU admission, ICU LOS, mechanical ventilation, microbiologically confirmed infection, and duration of initial course of antibiotics were all risk factors for receiving more than one course of antibiotics (Table 3). Based on the number of patients receiving more than one course of antibiotics, and of the variables that were both statistically significant and clinically relevant on univariate analysis, we chose to include ICU admission, mechanical ventilation, microbiologically confirmed infection, duration of admission and ICU LOS in our multivariate analysis. ICU length of stay was the only variable found to be a statistically significant in the multivariate analysis. (Table 4).

Discussion

In this multi-center study of patients hospitalized with COVID-19, we found an overall high rate of antibiotic prescribing, with 83% of patients receiving antibiotics. Of these patients, 30% received at least one additional course of antibiotics during hospitalization, increasing the overall antibiotic exposure. Despite the high rate of antibiotic prescribing, there were low rates
of bacterial coinfection, with only 12% of patients having microbiologically confirmed infection. These findings are similar to the results of previous studies, suggesting the need for strategies to help clinicians judiciously prescribe antibiotics in patients with COVID-19.15,15 Interestingly, while still low, our rate of bacterial coinfection was higher compared to other US studies. Compared to these previous studies, we had higher rates of ICU admission and mechanically ventilated patients.4,5 In our study, we reported microbiologic data throughout hospitalization, and even during multiple admissions whereas these two previous studies only reported the first 48 hours. This likely contributed to higher rates of microbiologically confirmed infections in our study. Patients with microbiologically confirmed infections were more likely to receive more than one course of antibiotics, be admitted to the ICU, and have a longer length of stay. While this may suggest patients with bacterial coinfection are more likely to have serious illness, the higher rate of microbiologically confirmed infections may also be explained by bacterial infections acquired during hospitalization. Additional courses of antibiotics were often prescribed for empiric or targeted treatment of nosocomial infection.

Early in the pandemic, little was known regarding COVID-19 presentation and disease progression. Additionally, there was a paucity of data suggesting bacterial co-infection was low in the beginning of the COVID-19 pandemic. Thus, guideline recommendations were evolving throughout the study period. Initial recommendations often encouraged antibiotic use. Within the University of Rochester Medical Center, our practices and institutional guidelines recommended initiating empiric antibiotics in the majority of COVID-19 patients. As information became more available, and recommendations changed, our antibiotic prescribing decreased.
This was reflected in the temporal decline in antibiotic prescribing we observed from March to May.

There were several indicators that serious illness increased the risk of antibiotic prescribing. Initial antibiotic prescribing was more likely in patients with certain elevated laboratory values (PCT, AST, and LDH), longer length of stay, ICU admission, longer ICU length of stay, and administration of off-label or investigational therapy for COVID-19. Additionally, all patients with ARDS or requiring more invasive O2 support received at least 1 course of antibiotics. These findings are consistent with previous studies which found patients were more likely to receive antibiotics if they had severe disease upon presentation.4,5 To our knowledge, this is the first study to report rates of additional antibiotic prescribing beyond initial empiric therapy. Patients with COVID-19 often have a prolonged hospitalization due to the underlying disease process. Our median LOS was significantly longer in patients which received at least one antibiotic course (\textit{p} < 0.001), and prolonged hospitalization may also increase the potential for additional antibiotic exposure. Thus, it is important to understand antibiotic prescribing trends and associated risk factors beyond the first course. Our study found that nearly one-third of all patients received two or more courses of antibiotics. Variables associated with receiving two or more antibiotic courses included: longer length of stay, ICU admission, longer ICU length of stay, and mechanical ventilation. This is likely explained as these are all risk factors for hospital-acquired illness and antibiotics were commonly prescribed for nosocomial infection (e.g. HAP/VAP).

Procalcitonin has been suggested as a potentially useful biomarker to differentiate bacterial and viral infections and assist with clinical decision-making. A Cochrane review of
acute respiratory infections concluded that use of procalcitonin to guide treatment decisions
results in lower antibiotic consumption, lower mortality, and fewer antibiotic-related side
effects. In contrast, a recent study in pneumonia comparing procalcitonin-guided treatment
and usual care found no difference in duration of antibiotic treatment or antibiotic-associated
outcomes. The ATS/IDSA CAP guidelines strongly advise initiating antibiotics based off clinical
judgement rather than procalcitonin alone. In COVID-19 patients specifically, a recent
retrospective cohort study found that patients with COVID-19 consistently had negative
procalcitonin levels (< 0.25 ng/mL). Conversely, elevated procalcitonin levels have been
associated with severity of illness or mortality. Elevated procalcitonin may represent bacterial
coinfection, but could also be due to immune dysregulation. At our sites, the patients
prescribed antibiotics had significantly higher baseline procalcitonin, however the median was
only 0.28. In a subgroup analysis focusing on patients who had a procalcitonin of > 0.5, 94% of
patients received antibiotics. It is unclear at this time the utility of using procalcitonin to
determine if there is bacterial co-infection with COVID-19.

Previous studies have shown high rates of broad-spectrum antibiotics for initial empiric
therapy in COVID-19 patients. However, in our patient population, most patients were
treated initially for CAP. The most common agents included ceftiraxone plus azithromycin,
which is consistent with the 2019 ATS/IDSA recommendations for CAP. During the initial
antibiotic course, 36.6% of patients were de-escalated to narrower therapy. Not surprisingly,
patients that received a second course of antibiotics were more likely to receive broad-
spectrum antimicrobials; over half of patients who received more than one course of antibiotics
were treated for HAP/VAP and prescribed an anti-pseudomonal beta lactam (i.e cefepime or
piperacillin/tazobactam. Respiratory cultures were obtained in only 30.2% of patients, with a large number of patients receiving empiric treatment for CAP, HAP or VAP. In part, the low number of respiratory cultures obtained may be due to the symptomatology of disease, with the majority of patients experiencing dry, non-productive cough. Additionally, early in the pandemic, there were concerns regarding transmission and aerosolization, which added additional challenges to obtaining respiratory cultures. In addition, the 2019 ATS/IDSA CAP guidelines do not recommend routine sputum gram stain and culture in patients with non-severe CAP or those without multi-drug resistant organism risk factors due to overall poor yield and detection of organisms. However, respiratory cultures are recommended in patients being treated empirically for MDR organisms, and in those being treated for HAP/VAP. Respiratory cultures were not obtained in all patients who met these criteria. Obtaining respiratory cultures and other microbiologic data, when possible, on patients treated with broad spectrum antibiotics can potentially help with de-escalation of therapy.

One limitation of this study is its retrospective design. Laboratory and microbiologic data collected were not consistent amongst all patients. We found duration of admission and ICU length of stay to be associated with higher antibiotic use, however it is difficult to say that these are true risk factors for antibiotic prescribing. Instead, this difference was likely due to antibiotic prescribing being higher in patients with more serious illness, and perhaps longer admission leading to increased risk of nosocomial infections and subsequent antibiotic courses. Additionally, we did not perform a time adjusted analysis. Another limitation is that the vast majority of patients within our study received antibiotics which could have affected our ability to detect differences between the two groups.
While there were limitations of this study, there were also several strengths. This study was multi-site, including three hospitals within the University of Rochester Medical Center: two community hospitals and a tertiary academic medical center. Therefore, the results of this study may be generalizable to similar sites. Finally, as previously mentioned, this is the first study to assess overall antibiotic use throughout hospitalization, and determine risk factors for additional antibiotic courses. Many patients with COVID-19 have prolonged hospitalization, increasing the risk for antibiotic exposure. Our study examined antibiotic use that is more representative of hospitalized COVID-19 patients.

Conclusions

Our study found high rates of antibiotic prescribing, despite low rates of respiratory cultures and confirmed microbiologic infections. Antibiotic prescribing was higher in patients with elevated PCT, longer LOS, ICU admission, 28-day mortality, investigational or off-label treatment for COVID-19, ARDS, and invasive O2 support. Nearly one-third of patients were treated with more than one antibiotic course during hospitalization. Patients who received two or more antibiotic courses were more likely to have longer ICU LOS as demonstrated by the multivariate analysis. These data highlight a role for antimicrobial stewardship during the COVID-19 pandemic. Further studies are needed to examine the impact of antimicrobial stewardship initiatives in patients with COVID-19 and assess if antibiotic prescribing practices have changed with increasing information related to bacterial co-infection that wasn’t available at the beginning of the pandemic.
Acknowledgements

The authors thank Raquel Roberts, PharmD for her assistance with data collection. There was no funding for the study. The authors report no conflict of interest.

Tables and Figures

Table 1. Baseline Characteristics of COVID-19 patients and Risk factors for Antibiotic Prescribing

<table>
<thead>
<tr>
<th>Baseline Characteristic</th>
<th>Total</th>
<th>Antibiotics n=172</th>
<th>No Antibiotics n=36</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>105 (50.5)</td>
<td>84 (48.8)</td>
<td>21 (55.6)</td>
<td>0.43</td>
</tr>
<tr>
<td>Age, years (median, IQR)</td>
<td>69.0 (60-80)</td>
<td>70.0 (61-81)</td>
<td>65.5 (47-77)</td>
<td>0.12</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>116 (55.7)</td>
<td>98 (56.9)</td>
<td>18 (47.2)</td>
<td>0.56</td>
</tr>
<tr>
<td>Black/African American</td>
<td>69 (33.2)</td>
<td>53 (30.8)</td>
<td>16 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (1.0)</td>
<td>2 (1.2)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>6 (2.9)</td>
<td>6 (3.5)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>15 (7.2)</td>
<td>13 (7.6)</td>
<td>2 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>143 (68.8)</td>
<td>116 (67.4)</td>
<td>27 (72.2)</td>
<td>0.43</td>
</tr>
<tr>
<td>Diabetes</td>
<td>81 (38.9)</td>
<td>70 (23.2)</td>
<td>11 (27.8)</td>
<td>0.35</td>
</tr>
<tr>
<td>Obesity</td>
<td>80 (38.5)</td>
<td>66 (38.4)</td>
<td>14 (27.8)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Cardiac Disease</td>
<td>56 (26.9)</td>
<td>50 (29.1)</td>
<td>6 (16.7)</td>
<td>0.15</td>
</tr>
<tr>
<td>Chronic Lung Disease</td>
<td>43 (20.7)</td>
<td>37 (21.5)</td>
<td>6 (16.7)</td>
<td>0.65</td>
</tr>
<tr>
<td>CKD</td>
<td>45 (21.7)</td>
<td>40 (23.2)</td>
<td>5 (13.9)</td>
<td>0.20</td>
</tr>
<tr>
<td>None</td>
<td>21 (10.1)</td>
<td>17 (9.9)</td>
<td>4 (11.1)</td>
<td>0.77</td>
</tr>
<tr>
<td>Immunocompromiseda</td>
<td>11 (5.3)</td>
<td>11 (6.4)</td>
<td>0 (0)</td>
<td>0.22</td>
</tr>
<tr>
<td>Labs (median, IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST, U/L</td>
<td>43 (31-65)</td>
<td>46 (33.25-65)</td>
<td>35 (26.75-49)</td>
<td>0.02</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>30 (20-46)</td>
<td>29.5 (20-45)</td>
<td>32.5 (20-49.5)</td>
<td>0.83</td>
</tr>
<tr>
<td>Scr, mg/dL</td>
<td>1.130 (0.84-1.64)</td>
<td>1.14 (0.84-1.725)</td>
<td>1.06 (0.81-1.3)</td>
<td>0.14</td>
</tr>
<tr>
<td>WBC</td>
<td>7.30 (5.50-10.50)</td>
<td>7.4 (5.5-10.7)</td>
<td>6.8 (4.8-9.2)</td>
<td>0.11</td>
</tr>
<tr>
<td>ALC</td>
<td>1.0 (0.7-1.3)</td>
<td>1.0 (0.7-1.3)</td>
<td>1.1 (0.5-1.4)</td>
<td>0.10</td>
</tr>
<tr>
<td>CRP</td>
<td>93.0 (39.5-134.5)</td>
<td>93 (39.5-134.5)</td>
<td>73 (37.5-118.5)</td>
<td>0.37</td>
</tr>
<tr>
<td>LDH</td>
<td>344 (264.5-467)</td>
<td>348 (285-474)</td>
<td>294 (239-387)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ferritin</td>
<td>627 (304-1086)</td>
<td>627 (309-1133.5)</td>
<td>589 (235-980)</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>1.26 (0.63-2.08)</td>
<td>1.37 (0.71-2.1)</td>
<td>0.86 (0.6-1.6)</td>
<td>0.24</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>D-dimer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCT</td>
<td>0.215 (0.120-0.620)</td>
<td>0.28 (0.13-0.63)</td>
<td>0.13 (0.09-0.20)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Symptoms Prior to Admission

<table>
<thead>
<tr>
<th></th>
<th>Fever</th>
<th>Respiratory Symptoms</th>
<th>Gastrointestinal symptoms</th>
<th>Anosmia/Hyperosmia/Hypogeusia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120 (57.7)</td>
<td>180 (86.5)</td>
<td>76 (36.5)</td>
<td>11 (5.3)</td>
</tr>
<tr>
<td></td>
<td>101 (58.7)</td>
<td>152 (88.4)</td>
<td>60 (34.9)</td>
<td>10 (5.8)</td>
</tr>
<tr>
<td></td>
<td>19 (52.8)</td>
<td>28 (75)</td>
<td>16 (41.7)</td>
<td>1 (2.8)</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.10</td>
<td>0.34</td>
<td>0.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>6.0 (3-9)</th>
<th>6.0 (3-9)</th>
<th>7.5 (4.75-9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptom duration prior to admission, days (median, IQR)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location prior to admit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Home</td>
<td>SNF</td>
<td>Transfer from OSH</td>
</tr>
<tr>
<td></td>
<td>140 (67.3)</td>
<td>60 (28.8)</td>
<td>8 (3.8)</td>
</tr>
<tr>
<td></td>
<td>110 (63.9)</td>
<td>54 (31.4)</td>
<td>8 (4.7)</td>
</tr>
<tr>
<td></td>
<td>30 (80.5)</td>
<td>6 (16.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>ICU admission</td>
<td>104</td>
<td>102 (58.9)</td>
</tr>
<tr>
<td></td>
<td>ICU LOS, days (median, IQR)</td>
<td>10 (3-18)</td>
<td>10 (3.25-18)</td>
</tr>
<tr>
<td></td>
<td>O2 support</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Room Air</td>
<td>Standard Nasal Cannula</td>
<td>HFNC/Venti Mask</td>
</tr>
<tr>
<td></td>
<td>40 (19.2)</td>
<td>67 (32.2)</td>
<td>19 (9.1)</td>
</tr>
<tr>
<td></td>
<td>24 (13.9)</td>
<td>49 (28.5)</td>
<td>17 (9.9)</td>
</tr>
<tr>
<td></td>
<td>16 (44.4)</td>
<td>18 (50.0)</td>
<td>2 (5.6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARDS</td>
<td>Mechanical ventilation</td>
<td>ARDS</td>
</tr>
<tr>
<td></td>
<td>70 (33.7)</td>
<td>70 (40.7)</td>
<td>78 (37.5)</td>
</tr>
<tr>
<td></td>
<td>70 (40.7)</td>
<td>16 (44.4)</td>
<td>18 (50.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>Received investigational or off-label transfer for COVID-19</td>
<td>37 (17.8)</td>
<td>35 (20.2)</td>
</tr>
<tr>
<td></td>
<td>28-day mortality</td>
<td>51 (24.5)</td>
<td>48 (27.9)</td>
</tr>
<tr>
<td></td>
<td>3 (8.3)</td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>30-day readmission</td>
<td>16 (7.7)</td>
<td>12 (6.9)</td>
</tr>
<tr>
<td></td>
<td>More than 1 admission for COVID-19</td>
<td>12 (5.8)</td>
<td>8 (4.7)</td>
</tr>
<tr>
<td></td>
<td>Time from discharge to COVID-19 readmission, days (median, IQR)</td>
<td>7 (4.5-12.25)</td>
<td>5 (2.75-11.5)</td>
</tr>
</tbody>
</table>

IQR = Interquartile Range

| | 0.01 | | |
|--------------------------| | | |

Significant differences are highlighted in yellow.

Notes:
- Primary analysis: Mann-Whitney U test
- Subgroup analysis: Fisher exact test

283 [1] Percentages unless otherwise specified
284 a = immunocompromised patients were defined as those with previous solid organ transplant,
285 active cancer receiving chemotherapy, patients on biologic therapy, and uncontrolled HIV
286 IQR = Interquartile Range
287 CKD = chronic kidney disease
288 ALT = Alanine aminotransferase
289 AST = Aspartate aminotransferase
290 WBC = White Blood cell count
291 ALC = Absolute lymphocyte count
292 CRP = C-reactive protein
293 LDH = Lactate dehydrogenase
294 PCT = procalcitonin
295 SNF = Skilled nursing facility
296 HFNC = high flow nasal cannula
GI symptoms were defined as nausea, vomiting, diarrhea.

Table 2: Microbiologic Data

<table>
<thead>
<tr>
<th>Micro Data</th>
<th>Antibiotics n=172</th>
<th>No antibiotics n=36</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologically-confirmed infection</td>
<td>24 (14.0)</td>
<td>0 (0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Respiratory cultures obtained</td>
<td>66 (38.3)</td>
<td>1 (2.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>No growth</td>
<td>53 [80.3]</td>
<td>1 [100]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Positive</td>
<td>13 [19.7]</td>
<td>0 [0]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Blood cx obtained</td>
<td>135 (78.5)</td>
<td>14 (38.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>No growth</td>
<td>123 [91.1]</td>
<td>14 [100]</td>
<td>0.61</td>
</tr>
<tr>
<td>Positive</td>
<td>12 [8.9]</td>
<td>0 [0]</td>
<td>0.61</td>
</tr>
<tr>
<td>Influenza PCR obtained</td>
<td>75 (43.6)</td>
<td>13 (36.1)</td>
<td>0.46</td>
</tr>
<tr>
<td>Strep pneumoniae urinary antigen obtained</td>
<td>82 (47.7)</td>
<td>6 (16.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>Positive</td>
<td>2 [2.4]</td>
<td>0 [0]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Negative</td>
<td>80 [97.6]</td>
<td>6 [100]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Legionella urinary antigen obtained</td>
<td>87 (50.5)</td>
<td>6 (16.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>MRSA nares obtained</td>
<td>73 (42.4)</td>
<td>2 (5.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Positive</td>
<td>4 [5.5]</td>
<td>0 [0]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Negative</td>
<td>69 [94.5]</td>
<td>2 [100]</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

()= percent unless otherwise specified
Figure 1: Antibiotic Prescribing Trends

Percent of Patients

Antibiotic Prescribed:
- Ceftriaxone
- Azithromycin
- Anti-pseudomonal beta-lactam
- Vancomycin
- Doxycycline
- Meropenem
- Ampicillin/sulbactam
- Moxifloxacin
- Other

Initial course
Second course
Table 3: Risk factors associated with receiving more than 1 course of antibiotics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate Analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 antibiotic course n= 120 (%)</td>
<td>> 1 antibiotic course n=52 (%)</td>
</tr>
<tr>
<td>Length of stay, days (median, IQR)</td>
<td>8 (4-15)</td>
<td>25 (18.75-37)</td>
</tr>
<tr>
<td>ICU admission</td>
<td>51 (42.5)</td>
<td>49 (94.2)</td>
</tr>
<tr>
<td>ICU length of stay, days (median, IQR)</td>
<td>5 (3-9)</td>
<td>18 (12-26)</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>25 (20.8)</td>
<td>45 (86.5)</td>
</tr>
<tr>
<td>More than 1 COVID-19 related admission</td>
<td>7 (5.8)</td>
<td>1 (1.9)</td>
</tr>
<tr>
<td>Microbiologically-confirmed infection</td>
<td>4 (3.3)</td>
<td>20 (38.5)</td>
</tr>
<tr>
<td>Duration of initial course of antibiotics, days (median, IQR)</td>
<td>4 (2-5.25)</td>
<td>5 (4-7)</td>
</tr>
<tr>
<td>Time from SARS-CoV-2 collect date</td>
<td>1 (0-5)</td>
<td>2 (0-2)</td>
</tr>
</tbody>
</table>

CAP= community acquired pneumonia
HAP= hospital acquired pneumonia
VAP= ventilator associated pneumonia
BSI= bloodstream infection
<table>
<thead>
<tr>
<th>to initial antibiotic start, days (median, IQR)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28-day mortality</td>
<td>33 (27.5)</td>
<td>14 (38.9)</td>
<td>>0.99</td>
<td></td>
</tr>
</tbody>
</table>

()= Percentages unless otherwise specified
References:

Table 1. Baseline Characteristics of COVID-19 patients and Risk factors for Antibiotic Prescribing

<table>
<thead>
<tr>
<th>Baseline Characteristic</th>
<th>Total</th>
<th>Antibiotics n=172</th>
<th>No Antibiotics n=36</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>105 (50.5)</td>
<td>84 (48.8)</td>
<td>21 (55.6)</td>
<td>0.43</td>
</tr>
<tr>
<td>Age, years (median, IQR)</td>
<td>69.0 (60-80)</td>
<td>70.0 (61-81)</td>
<td>65.5 (47-77)</td>
<td>0.12</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>Caucasian</td>
<td>116 (55.7)</td>
<td>98 (56.9)</td>
<td>18 (47.2)</td>
<td></td>
</tr>
<tr>
<td>Black/African American</td>
<td>69 (33.2)</td>
<td>53 (30.8)</td>
<td>16 (44.4)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (1.0)</td>
<td>2 (1.2)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>6 (2.9)</td>
<td>6 (3.5)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>15 (7.2)</td>
<td>13 (7.6)</td>
<td>2 (5.6)</td>
<td></td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>143 (68.8)</td>
<td>116 (67.4)</td>
<td>27 (72.2)</td>
<td>0.43</td>
</tr>
<tr>
<td>Diabetes</td>
<td>81 (38.9)</td>
<td>70 (23.2)</td>
<td>11 (27.8)</td>
<td>0.35</td>
</tr>
<tr>
<td>Obesity</td>
<td>80 (38.5)</td>
<td>66 (38.4)</td>
<td>14 (38.9)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Cardiac Disease</td>
<td>56 (26.9)</td>
<td>50 (29.1)</td>
<td>6 (16.7)</td>
<td>0.15</td>
</tr>
<tr>
<td>Chronic Lung Disease</td>
<td>43 (20.7)</td>
<td>37 (21.5)</td>
<td>6 (16.7)</td>
<td>0.65</td>
</tr>
<tr>
<td>CKD</td>
<td>45 (21.7)</td>
<td>40 (23.2)</td>
<td>5 (13.9)</td>
<td>0.20</td>
</tr>
<tr>
<td>None</td>
<td>21 (10.1)</td>
<td>17 (9.9)</td>
<td>4 (11.1)</td>
<td>0.77</td>
</tr>
<tr>
<td>Immunocompromised⁹</td>
<td>11 (5.3)</td>
<td>11 (6.4)</td>
<td>0 (0)</td>
<td>0.22</td>
</tr>
<tr>
<td>Labs (median, IQR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST, U/L</td>
<td>43 (31-65)</td>
<td>46 (33.25-65)</td>
<td>35 (26.75-49)</td>
<td>0.02</td>
</tr>
<tr>
<td>ALT, U/L</td>
<td>30 (20-46)</td>
<td>29.5 (20-45)</td>
<td>32.5 (20-49.5)</td>
<td>0.83</td>
</tr>
<tr>
<td>Scr, mg/dL</td>
<td>1.130 (0.84-1.64)</td>
<td>1.14 (0.84-1.725)</td>
<td>1.06 (0.81-1.3)</td>
<td>0.14</td>
</tr>
<tr>
<td>WBC</td>
<td>7.30 (5.5-10.5)</td>
<td>7.4 (5.5-10.7)</td>
<td>6.8 (4.8-9.2)</td>
<td>0.11</td>
</tr>
<tr>
<td>ALC</td>
<td>1.0 (0.7-1.3)</td>
<td>1.0 (0.7-1.3)</td>
<td>1.1 (0.5-1.4)</td>
<td>0.10</td>
</tr>
<tr>
<td>CRP</td>
<td>93.0 (39.5-134.5)</td>
<td>93 (39.5-134.5)</td>
<td>73 (37.5-118.5)</td>
<td>0.37</td>
</tr>
<tr>
<td>LDH</td>
<td>344 (264.5-467)</td>
<td>348 (285-474)</td>
<td>294 (239-387)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ferritin</td>
<td>627 (304-1086)</td>
<td>627 (309-1133.5)</td>
<td>589 (235-980)</td>
<td>0.45</td>
</tr>
<tr>
<td>D-dimer</td>
<td>1.26 (0.63-2.08)</td>
<td>1.37 (0.71-2.1)</td>
<td>0.86 (0.6-1.6)</td>
<td>0.24</td>
</tr>
<tr>
<td>PCT</td>
<td>0.215 (0.120-0.620)</td>
<td>0.28 (0.13-0.63)</td>
<td>0.13 (0.09-0.20)</td>
<td><0.01</td>
</tr>
<tr>
<td>Symptoms Prior to Admission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>120 (57.7)</td>
<td>101 (58.7)</td>
<td>19 (52.8)</td>
<td>0.59</td>
</tr>
<tr>
<td>Respiratory Symptoms</td>
<td>180 (86.5)</td>
<td>152 (88.4)</td>
<td>28 (75)</td>
<td>0.10</td>
</tr>
<tr>
<td>Gastrointestinal symptoms</td>
<td>76 (36.5)</td>
<td>60 (34.9)</td>
<td>16 (41.7)</td>
<td>0.34</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Anosmia/Hyperosmia/Hypogeusia</td>
<td>11 (5.3)</td>
<td>10 (5.8)</td>
<td>1 (2.8)</td>
<td>0.69</td>
</tr>
<tr>
<td>Symptom duration prior to admission, days (median, IQR)</td>
<td>6.0 (3-9)</td>
<td>6.0 (3-9)</td>
<td>7.5 (4.75-9)</td>
<td>0.16</td>
</tr>
<tr>
<td>Location prior to admit</td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Home</td>
<td>140 (67.3)</td>
<td>110 (63.9)</td>
<td>30 (80.5)</td>
<td></td>
</tr>
<tr>
<td>SNF</td>
<td>60 (28.8)</td>
<td>54 (31.4)</td>
<td>6 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Transfer from OSH</td>
<td>8 (3.8)</td>
<td>8 (4.7)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Duration of admission, days (median, IQR)</td>
<td>11 (5-22)</td>
<td>12 (5.75-25)</td>
<td>5.5 (4-11.3)</td>
<td><0.01</td>
</tr>
<tr>
<td>ICU admission</td>
<td>104</td>
<td>102 (58.9)</td>
<td>2 (5.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>ICU LOS, days (median, IQR)</td>
<td>10 (3-18)</td>
<td>10 (3.25-18)</td>
<td>6.5 (6.25-6.75)</td>
<td>0.59</td>
</tr>
<tr>
<td>O2 support</td>
<td>Room Air</td>
<td>40 (19.2)</td>
<td>24 (13.9)</td>
<td>16 (44.4)</td>
</tr>
<tr>
<td>Standard Nasal Cannula</td>
<td>67 (32.2)</td>
<td>49 (28.5)</td>
<td>18 (50.0)</td>
<td></td>
</tr>
<tr>
<td>HFNC/Venti Mask</td>
<td>19 (9.1)</td>
<td>17 (9.9)</td>
<td>2 (5.6)</td>
<td></td>
</tr>
<tr>
<td>BiPAP</td>
<td>5 (2.4)</td>
<td>5 (2.9)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Non-rebreather</td>
<td>7 (3.4)</td>
<td>7 (4.1)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>70 (33.7)</td>
<td>70 (40.7)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>ARDS</td>
<td>78 (37.5)</td>
<td>78 (45.3)</td>
<td>0 (0)</td>
<td><0.01</td>
</tr>
<tr>
<td>Received investigational or off-label transfer for COVID-19</td>
<td>37 (17.8)</td>
<td>35 (20.2)</td>
<td>2 (5.6)</td>
<td>0.03</td>
</tr>
<tr>
<td>28-day mortality</td>
<td>51 (24.5)</td>
<td>48 (27.9)</td>
<td>3 (8.3)</td>
<td>0.02</td>
</tr>
<tr>
<td>30-day readmission</td>
<td>16 (7.7)</td>
<td>12 (6.9)</td>
<td>4 (11.1)</td>
<td>0.75</td>
</tr>
<tr>
<td>More than 1 admission for COVID-19</td>
<td>12 (5.8)</td>
<td>8 (4.7)</td>
<td>4 (11.1)</td>
<td>0.23</td>
</tr>
<tr>
<td>Time from discharge to COVID-19 readmission, days (median, IQR)</td>
<td>7 (4.5-12.25)</td>
<td>5 (2.75-11.5)</td>
<td>10 (7.75-12.5)</td>
<td>0.22</td>
</tr>
</tbody>
</table>

(%) = Percentages unless otherwise specified.
= immunocompromised patients were defined as those with previous solid organ transplant, active cancer receiving chemotherapy, patients on biologic therapy, and uncontrolled HIV.
IQR = Interquartile Range
CKD = chronic kidney disease
AST = Aspartate aminotransferase
ALT = Alanine aminotransferase
Scr = Serum Creatinine
WBC = White blood cell count
ANC = Absolute lymphocyte count
CRP = C-reactive protein
LDH = Lactate dehydrogenase
PCT = Procalcitonin
SNF = Skilled nursing facility
HFNC = high flow nasal cannula
Respiratory symptoms were defined as hypoxia, SOB, cough
GI symptoms were defined as nausea, vomiting, diarrhea
<table>
<thead>
<tr>
<th>Micro Data</th>
<th>Antibiotics n=172</th>
<th>No antibiotics n=36</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microbiologically-confirmed infection</td>
<td>24 (14.0)</td>
<td>0 (0)</td>
<td>0.02</td>
</tr>
<tr>
<td>Respiratory cultures obtained</td>
<td>66 (38.3)</td>
<td>1 (2.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>No growth</td>
<td>53 [80.3]</td>
<td>1 [100]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Positive</td>
<td>13 [19.7]</td>
<td>0 [0]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Blood cx obtained</td>
<td>135 (78.5)</td>
<td>14 (38.9)</td>
<td><0.01</td>
</tr>
<tr>
<td>No growth</td>
<td>123 [91.1]</td>
<td>14 [100]</td>
<td>0.61</td>
</tr>
<tr>
<td>Positive</td>
<td>12 [8.9]</td>
<td>0 [0]</td>
<td>0.61</td>
</tr>
<tr>
<td>Influenza PCR obtained</td>
<td>75 (43.6)</td>
<td>13 (36.1)</td>
<td>0.46</td>
</tr>
<tr>
<td>Strep pneumoniae urinary antigen obtained</td>
<td>82 (47.7)</td>
<td>6 (16.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>Positive</td>
<td>2 [2.4]</td>
<td>0 [0]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Negative</td>
<td>80 [97.6]</td>
<td>6 [100]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Legionella urinary antigen obtained</td>
<td>87 (50.5)</td>
<td>6 (16.7)</td>
<td><0.01</td>
</tr>
<tr>
<td>MRSA nares obtained</td>
<td>73 (42.4)</td>
<td>2 (5.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Positive</td>
<td>4 [5.5]</td>
<td>0 [0]</td>
<td>>0.99</td>
</tr>
<tr>
<td>Negative</td>
<td>69 [94.5]</td>
<td>2 [100]</td>
<td>>0.99</td>
</tr>
</tbody>
</table>

() = percent unless otherwise specified
[] = percent of subset

Table 2: Microbiologic Data
Figure 1: Antibiotic Prescribing Trends

Percent of Patients

Antibiotic Prescribed

Ceftriaxone
Ampicillin/sulbactam
Other

Doxycycline
Moxifloxacin
Vancomycin

Anti-pseudomonal beta lactam
Meropenem

Initial course
Second course

Antibiotic Prescribed
Figure 2: Indications for Antibiotic Prescribing

- **CAP** = community-acquired pneumonia
- **HAP/VAP** = hospital-acquired pneumonia
- **BSI** = blood stream infection

The figure shows the percentage of patients for different indications:

- **Initial Course**
- **Second Course**
Table 3: Risk factors associated with receiving more than 1 course of antibiotics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Univariate Analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 antibiotic course</td>
<td>> 1 antibiotic course</td>
</tr>
<tr>
<td>Length of stay, days (median, IQR)</td>
<td>8 (4-15)</td>
<td>25 (18.75-37)</td>
</tr>
<tr>
<td>ICU admission</td>
<td>51 (42.5)</td>
<td>49 (94.2)</td>
</tr>
<tr>
<td>ICU length of stay, days (median, IQR)</td>
<td>5 (3-9)</td>
<td>18 (12-26)</td>
</tr>
<tr>
<td>Mechanical ventilation</td>
<td>25 (20.8)</td>
<td>45 (86.5)</td>
</tr>
<tr>
<td>More than 1 COVID-19 related admission</td>
<td>7 (5.8)</td>
<td>1 (1.9)</td>
</tr>
<tr>
<td>Microbiologically-confirmed infection</td>
<td>4 (3.3)</td>
<td>20 (38.5)</td>
</tr>
<tr>
<td>Duration of initial course of antibiotics, days (median, IQR)</td>
<td>4 (2-5.25)</td>
<td>5 (4-7)</td>
</tr>
<tr>
<td>Time from SARS-CoV-2 collect date to initial antibiotic start, days (median, IQR)</td>
<td>1 (0-5)</td>
<td>2 (0-2)</td>
</tr>
<tr>
<td>28-day mortality</td>
<td>33 (27.5)</td>
<td>14 (38.9)</td>
</tr>
</tbody>
</table>

(%) = Percentages unless otherwise specified