Big data screening identifies 110 complex traits causally associated with obesity

Running Title: Causal architecture of obesity

Luis M. García-Marín¹, Adrián I. Campos¹,², Pik-Fang Kho¹,³, Nicholas G. Martin¹, Gabriel Cuéllar-Partida²,*† and Miguel E. Rentería¹,²,³,*

1. Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane QLD Australia
2. Faculty of Medicine, The University of Queensland, Brisbane QLD Australia
3. School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.

Correspondence: Miguel E. Rentería (miguel.renteria@qimrberghofer.edu.au) and Gabriel Cuellar-Partida (g.cuellarpartida@uq.edu.au)

† Current address: 23andMe, Inc., Sunnyvale, California, USA

DISCLOSURE STATEMENT

GC-P contributed to this study while employed at The University of Queensland. He is now an employee of 23andMe Inc. and he may hold stock or stock options. All other authors declare having no conflicts of interest.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background/Objectives: Obesity has become a serious public health concern worldwide due to the rapid increase in its prevalence and its multiple negative health consequences. Here we sought to identify causal relationships between obesity and other complex traits and conditions using a data-driven hypothesis-free approach that relies on genetic data to infer causal associations.

Subjects/Methods: We leveraged available summary-based genetic data from genome-wide association studies on 1,498 phenotypes and applied the latent causal variable method (LCV) between obesity and all traits.

Results: We identified 110 traits with significant causal associations with obesity. Results show obesity influencing 26 phenotypes associated with cardiovascular diseases, 22 anthropometric measurements, 9 with the musculoskeletal system, 9 with behavioural or lifestyle factors including loneliness or isolation, 6 with respiratory diseases, 5 with body bioelectric impedances, 4 with psychiatric phenotypes, 4 with the nervous system, 4 with disabilities or long-standing illness, 3 with the gastrointestinal system, 3 with use of analgesics, 2 with metabolic diseases such as diabetes, 1 with inflammatory response and 1 with the neurodevelopmental disorder ADHD, among others.

Conclusions: Our results indicate that obesity is primarily the cause, not the consequence of other underlying traits or comorbid diseases. The wide array of causally associated phenotypes provides an overview of the metabolic, physiological, and neuropsychiatric impact of obesity.
INTRODUCTION

Obesity is a complex, multifactorial and preventable disease in which an imbalance between daily caloric energy intake and expenditure leads to unwanted and atypical accumulation of fat or adipose tissue, which in turn results in the impairment of human health.[1–3] Obesity is the second most common cause of preventable death after smoking,[1,4–6] making it an essential target of public health interventions. Globally, its prevalence has increased by 27.5% for adults and 47.1% for children in the last three decades,[6,7] affecting over 500 million adults.[1]

Obesity is typically defined according to body mass index (BMI), which is estimated as the ratio between weight in kilograms and height in meters squared.[1,8] Typically, an individual with a BMI higher than 30 is considered obese.[1,8] The BMI-based classification includes underweight (BMI < 18.5), normal range (18.5 < BMI < 24.9), overweight (25 < BMI < 29.9), obese class I (30 < BMI < 34.9), obese class II (35 < BMI < 39.9) and obese class III individuals (BMI > 40). [1,8]

Genetic epidemiological studies have made considerable advances in the understanding of the genetic propensity to obesity. Genome-wide association studies (GWAS) have identified ~300 genomic loci associated with an obesity measure[9] and genetic overlap with other anthropometric measurements, coronary artery disease, blood pressure and type 2 diabetes, among others has been reported.[10] A genetic correlation between two traits could be explained by horizontal pleiotropy (i.e. genetic variants have a direct effect on both traits), or by vertical pleiotropy (i.e. the effect of a genetic variant on a trait is mediated by its effect on another trait). Horizontal pleiotropy represents a challenge for statistical methods seeking to
determine causality between two traits. The Latent Causal Variable (LCV) is a recently developed statistical approach that was developed to investigate whether a genetic correlation between traits is explained by genetic causation or by horizontal pleiotropic effects (see Methods).[11–13]

Understanding the extent to which obesity is causally associated with other conditions is a fundamental question in obesity research.[11–13] Here we apply a big data approach to identify causal associations between obesity and other phenotypes. Specifically, we apply the LCV method to perform a hypothesis-free phenome-wide screening to the extensive collection of phenotypes with GWAS summary data ($N = 1,498$) compiled in the Complex Trait Genetics Virtual Lab (CTG-VL).

MATERIALS / SUBJECTS AND METHODS

Data

The present study used summary statistics from GWAS for obesity and 1,498 other phenotypes. Summary statistics summarise relevant parameters such as allele frequency, effect size, standard error and the p-value of genetic variants tested on the trait of interest. Several published GWAS have made available their summary statistics to the scientific community to enable researchers to advance understanding of the genetic components of several phenotypes. The CTG-VL ([https://genoma.io/][14]) has compiled a set of over 1,610 GWAS summary statistics including those from the UK Biobank released by Neale’s Lab ([www.nealelab.is/uk-biobank/][15]) and from GWAS consortia. For this study, we only used GWAS derived
from European populations to avoid potential biases due to population differences in
linkage-disequilibrium and allele frequencies.

Obesity dataset

The obesity GWAS summary statistics used here correspond to a sample \(N=361,194\) of European ancestry from the second wave of GWAS results released by Neale’s Lab (ICD10 code E66)[14,15] available in the CTG-VL. Obesity GWAS summary statistics were adjusted for age, age^2, inferred_sex, age * inferred_sex, age^2 * inferred_sex, and 20 genetic ancestry principal components.[14,15]

LCV analysis

Genetic causal proportion (GCP) between the obesity GWAS and 1,498 GWAS was estimated using the phenome-wide LCV pipeline implemented in CTG-VL as described previously (see Haworth et al. 2019[13] and García-Marín et al. 2020[12] for details).[12,13] The LCV method estimates GCP by assuming a latent variable \(L\) that mediates the genetic correlation between two traits, which is assumed to be the causal component mediating the genetic correlation between the phenotypes (see O’Connor & Price[11] for details).[11–13] The GCP ranges from -1 (full genetic causality of Trait 2 on Trait 1) to 1 (full genetic causality of Trait 1 in Trait 2), in which a GCP equal to zero implies the detection of horizontal pleiotropy instead of genetic causality.[11–13] Benjamini-Hochberg’s False Discovery Rate (FDR < 5%) was used to account for multiple testing.

RESULTS
We conducted a phenome-wide LCV analysis between obesity and 1,498 other phenotypes to estimate the genetic correlation and GCP. We identified 267 genetic correlations with obesity at FDR < 5%. Of those, 105 were inferred to be causally associated (|GCP| > 0.6; FDR < 5%; Supplementary File 1) and five showed suggestive evidence of a causal association (|GCP| < 0.6; FDR < 5%; Supplementary File 1). Putative outcomes of obesity included cardiovascular diseases, anthropometric measurements, the health of the musculoskeletal system, behavioural or lifestyle factors, respiratory diseases, body bioelectric impedances, psychiatric disorders, diseases of the nervous system, disabilities or long-standing illness, health of the gastrointestinal system, use of analgesics, metabolic diseases, inflammatory response and neurodevelopmental disorders, among others (Table 1 and Figure 1).

Our results show 26 cardiovascular phenotypes as consequences of obesity. For instance, we identified obesity increased the risk of self-reports on hypertension and heart attack. Conditions diagnosed by a doctor such as high blood pressure, heart attack and angina problems were also found to be at an increased risk due to obesity. A similar pattern was observed for chronic ischaemic heart disease allocated in the International Classification of Diseases (ICD10) and diastolic blood pressure. In contrast, obesity was found to influence a decline in high-density lipoprotein (HDL) cholesterol (Figure 1 and Table 2).

Our results show 22 causal associations between obesity and anthropometric measurements. Of those, 18 were identified to be increases in anthropometric measurements such as fat percentages throughout the body and ankle spacing.
width. In contrast, a decline in height and handgrip strength were found to be
causally influenced by obesity. Similarly, we found evidence of obesity influencing a
decrease in five body bioelectrical impedance measures, including in both arms and
legs.

An increased risk for eight phenotypes involving diseases of the musculoskeletal and
connective tissue was observed (Table 2). Pain-related phenotypes such as knee
and hip pain in the last month along with self-reported osteoarthritis, arthrosis and
gonarthrosis (ICD10), were found to be causally influenced by obesity. In contrast, leg pain in calves was identified to increase the risk of obesity.

Six inferred causal relationships were observed between obesity and respiratory-
related phenotypes. For instance, obesity increased risk of shortness of breath and
whistling in the chest were observed. Consistently, obesity was found to causally
influence the decline of forced vital capacity (FVC) and forced expiratory volume in
one second (FEV1) (Figure 1 and Table 2).

Obesity was identified as a risk factor for four psychiatric-related traits, including

gaining weight during the worst period of depression (Figure 1 and Table 2). Also,
obesity was observed to increase risk of irritability through traits such as ever having
a period of extreme irritability, experiencing manifestations of mania or irritability and
ever highly irritable for two days. Also, obesity increase in the behavioural trait
loneliness or isolation was found to be caused by obesity (Figure 1 and Table 2).
Obesity was causally associated with higher risk of four diseases of the nervous system (Table 2) including mononeuropathies of upper limb (ICD10), carpal tunnel syndrome and nerve, nerve root and plexus disorders (Figure 1).

Three phenotypes related to the gastrointestinal system, including diverticular disease of the intestine (ICD10) and self-reported gastro-oesophageal reflux were identified as causally associated with obesity (Table 2).

Diabetes, both self-reported and diagnosed by a doctor, showed evidence of being at an increased risk due to obesity. Also, obesity was also found to pose a causal effect on high leukocyte levels and to increase the risk for attention-deficit / hyperactivity disorder (ADHD) (Figure 1 and Table 2).

DISCUSSION

Although previous research has made extensive efforts to describe how obesity and metabolic syndrome influence several body systems, their relationship with inflammatory response, hypertension, cardiovascular disease, neurodevelopmental disorders and the musculoskeletal and nervous system has not been fully elucidated. Leukocytes are white blood cells involved in both local and general inflammatory response.[16,17] Further, it has been reported that obesity increases adipose tissue dysfunction, leading to a pro-inflammatory state, which in turn can result in vascular dysfunction impairing endothelium vasodilation with an impact on hypertension and affecting the responsiveness of the insulin-vasodilator mechanism.[18,19] Also, obesity is considered the main cause of metabolic syndrome components such as high blood pressure and triglycerides, while the increased risk of diabetes is
attributed to a decrease in insulin secretion as a consequence of obesity-related effects.[9] In this study, genetic obesity was causally associated with increased leukocyte count, self-reported hypertension, high blood pressure and diabetes diagnosed by a doctor.

Obesity and metabolic syndrome are major risk factors for cardiovascular disease.[1,9,19] In the present study, several cardiovascular diseases were found to be causally influenced by obesity. Specifically, our results indicate obesity increases risk of major coronary heart disease events, heart attacks, myocardial infarctions, chronic ischaemic heart disease (ICD10) and angina problems. It has been shown that inflammation is a significant risk factor for heart disease events.[20,21] Thus, our findings support the hypothesis in which the relationship between obesity and cardiovascular diseases is mediated by inflammation from high leukocyte levels due to obesity, leading to high blood pressure and hypertension, which are known risk factors for cardiovascular disease.

Obesity influences the increase in the mechanical load across weight-bearing joints, which has been associated with musculoskeletal deterioration and neuropathic pain.[22,23] Further, previous studies have suggested that an increase in fat mass may result in a decrease in bone mass.[23] Our findings uncovered inferred causal associations between obesity and musculoskeletal pain and diseases such as osteoarthritis. A similar pattern was observed for diseases of the nervous system, including mononeuropathies and nerve, nerve root and plexus disorders. Consistently, obesity was found to increase the use of analgesics such as Aspirin, Codamol and Paracetamol. Our results suggest that an increase in analgesics use
may be mediated by the development of musculoskeletal pain and damage to the nervous system. It is possible that the inflammatory state induced by obesity may also result in poorer musculoskeletal and nervous system health. However, more research is needed to disentangle the complex relationships between specific-tissue inflammation, pain and obesity.

Previous studies have described an increased incidence of disability among obese individuals.[23,24] Our results identified inferred causal associations between obesity and disability-related phenotypes such as *disability living allowance* and *long-standing illness or disability*. It is thus possible that the development of disabling conditions is mediated by increases in body fat, which result in poor musculoskeletal and nervous system health, which leads to a decrease in quality of life.

Despite extensive efforts in the investigation of obesity and lung function, the effects of obesity on the respiratory system have not been fully elucidated. Previous findings suggest that obesity may be associated with complex respiratory diseases such as chronic obstructive pulmonary disease (COPD) and its severity.[25–27] Our results revealed a causal association of obesity with risk of presenting *shortness of breath* and *whistling in the chest*, and increases in *FVC* and *FEV1*. Although our results did not identify a direct inferred causal relationship between obesity and COPD, traits such as *COPD onset* and *other obstructive pulmonary disease (ICD10)* were identified as causally associated with obesity. Also, previous studies have reported leukocyte accumulation in lung tissue in individuals with a chronic obstructive pulmonary disease, which in turn increases the expression of adhesion molecules in bronchial blood vessels.[28,29] Our results would suggest that obesity poses a
deteriorative effect on the respiratory system, which could contribute to the
development of complex respiratory diseases. We speculate that this relationship
could be mediated by the accumulation of adipose tissue and inflammation arising
from an increase in trunk fat mass, which in turn could lead to physiological changes
decreasing lung capacity and weakening the respiratory muscles. However, more
research is needed to disentangle the intricate relationship between obesity,
inflammation, lung function and disease.

Observational studies have reported an association between obesity and
gastrointestinal diseases such as diverticular diseases and gastro-oesophageal
reflux.[30] Consistently, our findings show that inferred causal associations in which
obesity increases the risk for diverticular diseases of the intestine (ICD10) and self-
reported gastro-oesophageal reflux.

Previous studies have sought to describe the extent to which obesity could be
involved in the development of depression.[31–33] Some studies suggest a
bidirectional relationship between obesity and depression,[32,33] while others report
that anthropometric measurements such as BMI, fat mass and height are only risk
factors for depression.[31] Although our results do not provide evidence for a direct
inferred causal association between obesity and depression, phenotypes including
gaining weight during the worst period of depression and loneliness or isolation were
identified as causally associated with obesity. Also, previous research has suggested
that white blood cell inflammatory biomarkers are associated with depressive
symptoms.[34] Thus, our results are aligned with the hypothesis in which genetic
obesity increases the risk for depression, perhaps as a result of a chronic pro-
inflammatory state. However, more research is required to understand the complex relationship between obesity, inflammation and psychiatric disorders.

Previous research has pointed out an association between ADHD and obesity. However, cause-effect links and the underpinning molecular mechanisms of this association remain unclear.\cite{35,36} Recently, studies have suggested a bidirectional relationship between ADHD and obesity due to multiple confounding sources.\cite{36,37} whereas others show a one-way causal relationship in which high BMI increases the risk for ADHD regardless of possible confounding factors.\cite{38} In the present study, results show an inferred causal association in which obesity increases the risk of ADHD. However, to fully understand the effect of obesity on ADHD, additional research is required to unravel this puzzling relationship.

Our results are consistent with previous studies reporting that LCV is a meaningful tool to detect potential causal associations in underpowered phenotypes for which MR methods have not been able to determine genetic causation.\cite{11–13} We suggest that the inferred causal relationships pointed out through LCV, could be used as a testable hypothesis for future epidemiological observational and genetic studies.

The main strengths of the LCV method used here include: (i) it is less prone to be biased due to horizontal pleiotropy; (ii) it is robust to sample overlap, (iii) it uses aggregated information across the entire genome, increasing statistical power and enabling analyses between pairs of phenotypes that would be considered “underpowered” for other statistical methods such as traditional Mendelian
randomisation (see O’Connor & Price[11] for details).[11–13] However, the LCV method is unable to detect bidirectional causality or confounding by environmental correlates of genotypes.[11,13] Therefore, care is recommended if these assumptions cannot be met.

Some limitations of the present study must be acknowledged. First, given that previous studies have highlighted ethnic differences in obesity[39] and our data was retrieved primarily from the UK Biobank, which predominantly consists of participants of European ancestry. Thus, the generalizability of our results is limited until it can be tested in other populations. Further, although our analyses included more than 1 400 phenotypes, causal associations with other traits not tested here may exist. Related to this is the interpretability of some of the phenotypes used here such as taking medication: Aspirin which could be considered a proxy trait for pain. Unfortunately, other traits for which GWAS summary statistics are available lack such a straightforward proxy interpretation. Even though the LCV method uses genetic information aggregated across the entire genome, the GCP estimates are still tied to the statistical power of the samples and thus, the ability to infer causal associations for some phenotypes is limited, particularly for those with small sample sizes.

In summary, we assessed potential causal relationships between obesity and 1 498 phenotypes and identified 110 traits with significant causal associations with obesity. Our findings uncovered the effect of obesity on leukocyte-related inflammation, which may incur in a chronic proinflammatory state, and on several components of metabolic syndrome. Further, we provide evidence for the impact of obesity on cardiovascular disease, poor health of the respiratory and musculoskeletal systems.
and its potential damage to the nervous system. We observe an influence of obesity on gastrointestinal disorders, psychiatric phenotypes and the neurodevelopmental disorder ADHD. Also, we identified causal associations of obesity on bioelectrical impedances and physical disability. Altogether, our results confirm some previously reported associations and flag out some new testable hypotheses that could contribute to advance our understanding of the effects of obesity on metabolic inflammation in specific tissues and organs, which in turn may provide novel perspectives in the metabolic implications of obesity and the development of anti-inflammatory therapeutics.

ACKNOWLEDGEMENTS

A.I.C. is supported by a UQ Research Training Scholarship from The University of Queensland (UQ). M.E.R. thanks support of the NHMRC and Australian Research Council (ARC) through a Research Fellowship (GNT1102821). P.F.K. is supported by an Australian Government Research Training Program Scholarship from Queensland University of Technology (QUT).

AUTHOR CONTRIBUTIONS

M.E.R. and G.C.-P. conceived and directed the study. L.M.G.-M. performed the statistical and bioinformatics analyses, with support and input from A.I.C., P-F.K., N.G.M., G.C.-P. and M.E.R. L.M.G.-M. wrote the first draft of paper and integrated input and feedback from all co-authors.

ETHICS STATEMENT
This study was approved by the Human Research Ethics Committee of the QIMR Berghofer Medical Research Institute.

DISCLOSURE STATEMENT

GC-P contributed to this study while employed at The University of Queensland. He is now an employee of 23andMe Inc. and he may hold stock or stock options. All other authors declare having no conflicts of interest.
REFERENCES

12. Garcia-Marin LM, Campos AI, Martin NG, Cuellar-Partida G, Renteria ME. Inference of causal relationships between sleep-related traits and 1,527 phenotypes using genetic data. medRxiv. 2020 May 10;2020.05.06.20092643.

35. Cortese S. The Association between ADHD and Obesity: Intriguing,

FIGURES

Figure 1. Causal associations for obesity

Causal architecture plots showing the latent causal variable exposome-wide analysis results. Each dot represents a trait with a significant genetic correlation with obesity. The x-axis shows the GCP estimate whilst the y-axis shows the genetic causality proportion (GCP) absolute Z-score (as a measure of statistical significance). The statistical significance threshold (FDR<5%) is represented by the red dashed lines while the division for traits causally influencing obesity (on the left) and traits causally influenced by obesity (on the right) is represented by the grey dashed lines. Results are shown separately for traits with a positive genetic correlation with obesity (a) and with a negative genetic correlation with obesity (b).
Table 1. LCV method summary results for obesity.

<table>
<thead>
<tr>
<th>Category</th>
<th>Number of potential causal relationships</th>
<th>Number of traits influenced by obesity</th>
<th>Number of traits that influence obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>26</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Anthropometric measurements</td>
<td>22</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Behavioural / Lifestyle</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Bioelectric impedances</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Nervous system</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Disabilities</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Use of analgesics</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Metabolic disease</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Inflammatory response</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Neurodevelopmental</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mouth problems</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Others</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

The number of potential causal relationships with obesity corresponds to those results with FDR < 5%. Obesity was tested against a panel of 1,498 potentially heritable traits in the CTG-VL catalogue.
Table 2. Obesity is causally associated with cardiovascular, anthropometric, musculoskeletal, behavioural or lifestyle, respiratory, psychiatric, nervous system, gastrointestinal, metabolic, inflammatory response and neurodevelopmental phenotypes.

<table>
<thead>
<tr>
<th>Category</th>
<th>Trait</th>
<th>rG</th>
<th>GCP</th>
<th>GCP pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Self-reported hypertension</td>
<td>0.42</td>
<td>0.94</td>
<td>7.71E-66</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Diastolic blood pressure</td>
<td>0.27</td>
<td>0.85</td>
<td>4.97E-14</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Chronic ischaemic heart disease (ICD10)</td>
<td>0.41</td>
<td>0.72</td>
<td>5.94E-04</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Major coronary heart disease event</td>
<td>0.49</td>
<td>0.74</td>
<td>1.58E-04</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>Myocardial infarction</td>
<td>0.49</td>
<td>0.70</td>
<td>1.56E-03</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>HDL cholesterol</td>
<td>-0.32</td>
<td>0.68</td>
<td>1.68E-02</td>
</tr>
<tr>
<td>Anthropometric measurement</td>
<td>Height</td>
<td>-0.22</td>
<td>0.72</td>
<td>1.22E-04</td>
</tr>
<tr>
<td>Anthropometric measurement</td>
<td>Waist circumference</td>
<td>0.71</td>
<td>0.66</td>
<td>5.02E-03</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>Self-reported osteoarthritis</td>
<td>0.71</td>
<td>0.91</td>
<td>1.20E-24</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>Gonarthrosis (ICD10)</td>
<td>0.57</td>
<td>0.88</td>
<td>7.16E-18</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>Knee pain in the last month</td>
<td>0.70</td>
<td>0.87</td>
<td>5.81E-14</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>Arthritis</td>
<td>0.47</td>
<td>0.83</td>
<td>1.29E-11</td>
</tr>
<tr>
<td>Musculoskeletal system</td>
<td>Hip pain in the last month</td>
<td>0.55</td>
<td>0.79</td>
<td>2.44E-07</td>
</tr>
<tr>
<td>Behavioural / Lifestyle</td>
<td>Loneliness / Isolation</td>
<td>0.48</td>
<td>0.93</td>
<td>6.11E-52</td>
</tr>
<tr>
<td>Behavioural / Lifestyle</td>
<td>Previous smoker</td>
<td>0.32</td>
<td>0.72</td>
<td>3.11E-05</td>
</tr>
<tr>
<td>Behavioural / Lifestyle</td>
<td>Previous alcohol drinker</td>
<td>0.44</td>
<td>0.73</td>
<td>1.87E-04</td>
</tr>
<tr>
<td>Behavioural / Lifestyle</td>
<td>Age first had sexual intercourse</td>
<td>-0.50</td>
<td>0.77</td>
<td>2.16E-06</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Forced vital capacity (FVC)</td>
<td>-0.37</td>
<td>0.89</td>
<td>1.48E-03</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Forced expiratory volume in 1 second (FEV1)</td>
<td>-0.27</td>
<td>0.83</td>
<td>3.69E-12</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Shortness of breath walking on level ground</td>
<td>0.76</td>
<td>0.85</td>
<td>2.16E-06</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Wheeze or whistling in the chest in the last year</td>
<td>0.46</td>
<td>0.69</td>
<td>8.09E-04</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>Ever had period of extreme irritability</td>
<td>0.36</td>
<td>0.85</td>
<td>5.67e-13</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>Manifestations of mania or irritability</td>
<td>0.43</td>
<td>0.68</td>
<td>1.77E-03</td>
</tr>
<tr>
<td>Psychiatric</td>
<td>Gained weight during worst episode of depression</td>
<td>0.70</td>
<td>0.63</td>
<td>1.82E-02</td>
</tr>
<tr>
<td>Nervous system</td>
<td>Diseases of the nervous system</td>
<td>0.48</td>
<td>0.76</td>
<td>8.77E-06</td>
</tr>
<tr>
<td>Nervous system</td>
<td>Mononeuropathies and upper limb (ICD10)</td>
<td>0.39</td>
<td>0.72</td>
<td>1.37E-04</td>
</tr>
<tr>
<td>Nervous system</td>
<td>Carpal tunnel syndrome</td>
<td>0.43</td>
<td>0.68</td>
<td>1.27E-03</td>
</tr>
<tr>
<td>Nervous system</td>
<td>Nerve, nerve root and plexus disorders</td>
<td>0.51</td>
<td>0.66</td>
<td>3.70E-03</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td>Diverticular disease of intestine (ICD10)</td>
<td>0.51</td>
<td>0.67</td>
<td>3.43E-03</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td>Self-reported gastro-oesophageal reflux / gastric</td>
<td>0.50</td>
<td>0.62</td>
<td>1.22E-02</td>
</tr>
<tr>
<td>Metabolic disease</td>
<td>Diabetes diagnosed by a doctor</td>
<td>0.60</td>
<td>0.75</td>
<td>3.49E-04</td>
</tr>
<tr>
<td>Inflammatory response</td>
<td>Leukocyte count</td>
<td>0.20</td>
<td>0.66</td>
<td>2.00E-03</td>
</tr>
</tbody>
</table>

This table shows some traits with a significant (FDR<5%) strong genetic causal proportion (GCP > 0.60) for obesity. The number of potential causal relationships corresponds to those results with FDR < 5%. Due to space restrictions, results for all nominally significant genetic correlations for obesity are reported in Supplementary File 1.
SUPPLEMENTARY FILES

Supplementary File 1. LCV output for obesity.