Abstract
The COVID-19 pandemic has resulted in a rapidly growing quantity of scientific publications from journal articles, preprints, and other sources. The TREC-COVID Challenge was created to evaluate information retrieval methods and systems for this quickly expanding corpus. Based on the COVID-19 Open Research Dataset (CORD-19), several dozen research teams participated in over 5 rounds of the TREC-COVID Challenge. While previous work has compared IR techniques used on other test collections, there are no studies that have analyzed the methods used by participants in the TREC-COVID Challenge. We manually reviewed team run reports from Rounds 2 and 5, extracted features from the documented methodologies, and used a univariate and multivariate regression-based analysis to identify features associated with higher retrieval performance. We observed that fine-tuning datasets with relevance judgments, MS-MARCO, and CORD-19 document vectors was associated with improved performance in Round 2 but not in Round 5. Though the relatively decreased heterogeneity of runs in Round 5 may explain the lack of significance in that round, fine-tuning has been found to improve search performance in previous challenge evaluations by improving a system’s ability to map relevant queries and phrases to documents. Furthermore, term expansion was associated with improvement in system performance, and the use of the narrative field in the TREC-COVID topics was associated with decreased system performance in both rounds. These findings emphasize the need for clear queries in search. While our study has some limitations in its generalizability and scope of techniques analyzed, we identified some IR techniques that may be useful in building search systems for COVID-19 using the TREC-COVID test collections.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We have no funding sources to disclose.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
No IRB approval needed for this study of publicly available data from TREC-COVID.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Contact Information: Jimmy Chen, BA, School of Medicine - MD Program 3181 SW Sam Jackson Park Rd., Oregon Health & Science University, Portland, OR, 97239, Email: jimmyschen94{at}gmail.com
Financial Support: None.
Conflicts of Interest: Jimmy Chen and William Hersh have no conflicts of interest to disclose.
Data Availability
N/A