Metabolic syndrome increases COVID-19-related mortality in the UK Biobank sample

Short title
Metabolic syndrome and COVID-19

Authors
Filip Morys¹, Alain Dagher¹
¹ Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada

Correspondence
Alain Dagher
Montreal Neurological Institute
3801 University, H3A 2B4 Montreal, Canada
alain.dagher@mcgill.ca

Conflict of interest
The authors have declared that no competing interests exist

Keywords
Metabolic syndrome, obesity, COVID-19
Abstract

Previous studies link obesity and individual components of metabolic syndrome to increased hospitalisations and death rates of patients with COVID-19. Here, in two overlapping samples of over 1,000 individuals from the UK Biobank we investigate whether metabolic syndrome, and its constituent components, increased waist circumference, dyslipidaemia, hypertension, diabetes, and systemic inflammation, are related to increased COVID-19 infection and mortality rates. Using logistic regression and controlling for confounding variables such as socioeconomic status, age, sex or ethnicity, we find that individuals with pre-existing metabolic syndrome (measured on average eleven years prior to 2020) have an increased risk for COVID-19-related death (odds ratio 1.67). We also find that specific factors contributing to increased mortality are serum glucose levels, systolic blood pressure and waist circumference.
Introduction
Since the beginning of the COVID-19 pandemic, mounting evidence supports an association between obesity and poor outcomes (1–3). The association holds for both obesity and for obesity-associated metabolic syndrome, which entails hypertension, diabetes, dyslipidaemia, and systemic inflammation (4). Similarly, obesity and excess adipose tissue have also been associated with higher risk of SARS-CoV-2 infection (5).
Previous studies, however, have tended to use small sample sizes, focus predominantly on the effects of body mass index (BMI) as a measure of obesity, investigate components of metabolic syndrome separately, or not account for confounding factors, such as ethnicity or socioeconomic status (5–8). Since ethnicity and socioeconomic status are themselves associated with obesity and metabolic syndrome (9,10), they could confound interpretation of COVID-19 analyses.
Here, we aim to present a comprehensive evaluation of metabolic risk factors that might be related to poor health outcomes in COVID-19 patients while controlling for confounding variables and limiting potential collider bias, which has previously resulted in incorrect epidemiological conclusions (11,12). We investigate whether metabolic syndrome is related to higher chance for SARS-CoV-2 infection, but also COVID-19-related death.

Materials and Methods
Participants
In this study, we used the UK Biobank dataset – a large scale study with extensive phenotyping carried out in the United Kingdom (13). This study was performed under UK Biobank application ID 35605. COVID-19 test results in the UK Biobank dataset
are derived from the Public Health England microbiology database Second Generation Surveillance System that are dynamically linked to the UK Biobank database (14). Here we only included individuals who were recorded as tested for COVID-19. We distinguished between two samples for two aims of our project: Sample 1 – a larger sample (n=12,694) of all individuals who were tested for COVID-19 between 16th March 2020 and 24th August 2020, to investigate risk of COVID-19 infection and how it is related to metabolic syndrome; and Sample 2, a subset of Sample 1 consisting of individuals who tested positive for COVID-19 (n=1,152). We also obtained data on mortality from COVID-19 for all the individuals included in our study population. Among the individuals who tested positive, 180 people (15%) died from COVID-19 infection, allowing us to investigate how metabolic syndrome influences COVID-19-related mortality.

Sample characteristics can be found in Table 1. All participants signed informed consents prior to participating in the UK Biobank study, which was approved by the North-West Multi-centre Research Ethics Committee (11/NW/0382). All UK Biobank actions are overseen by the UK Biobank Ethics Advisory Committee.

Table 1 Participants characteristics.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Sample 1 Mean (SD) / Percentage</th>
<th>Sample 2 Mean (SD) / Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVID-19 positive patients</td>
<td>9.00%</td>
<td>100%</td>
</tr>
<tr>
<td>COVID-19 mortality rate</td>
<td>1.42%</td>
<td>15.63%</td>
</tr>
<tr>
<td>Age [years]</td>
<td>70 (8)</td>
<td>68 (9)</td>
</tr>
<tr>
<td>Sex distribution</td>
<td>51.84% women</td>
<td>47.14% women</td>
</tr>
<tr>
<td>Waist circumference [cm]</td>
<td>92.21 (13.73)</td>
<td>93.50 (13.92)</td>
</tr>
</tbody>
</table>
Serum HDL [mmol/l] 1.43 (0.38) 1.36 (0.34)
Serum TG [mmol/l] 1.77 (1.02) 1.79 (1.04)
HbA1c [mmol/mol] 35.77 (4.34) 35.93 (4.74)
Serum glucose [mmol/l] 5.00 (0.63) 4.99 (0.65)
Serum C-reactive protein [mg/l] 2.86 (4.58) 3.06 (5.53)
Systolic blood pressure [mmHg] 138.43 (18.55) 137.28 (18.54)
Diastolic blood pressure [mmHg] 82.26 (9.97) 82.49 (10.28)
Diabetes prevalence 8.02% 9.98 %
Hypertension prevalence 42.28% 41.93%

Measures used in the study

To investigate how metabolic syndrome influences COVID-19 infection, hospitalisation, and mortality rates, we used the following measures: waist circumference, serum triglycerides (TG) levels, serum high density lipoprotein (HDL) levels, serum glycated haemoglobin (HbA1c) levels, serum glucose levels, serum C-reactive protein levels (15), previous diabetes diagnosis, resting systolic and diastolic blood pressure (mean values of two measurements), and hypertension diagnosis. In our analyses, we also controlled for age, sex, socioeconomic status (Townsend deprivation index (16), highest achieved educational qualifications, mean family income), smoking status, and ethnic background, physical location of a laboratory where COVID-19 test was performed, and the origin of sample used for COVID-19 test (e.g. nose, throat etc.). For Sample 2, we also used mortality data provided by the UK Biobank – COVID-19-related death was described using the ICD10 identifier U07.1. All COVID-19-unrelated variables were collected on average 11 years prior to COVID-19 tests.
Prior to the analyses, all numeric variables were standardized, all serum level values were log-transformed, and we excluded outliers from the sample (2.2 interquartile range below 1st or above 3rd quartile). If participants were tested for COVID-19 more than once, they were considered positive if at least one test result was positive.

Statistical analyses

The same analyses were performed for each of the two population samples. Data were analysed using R (v. 3.6.0). First, using confirmatory factor analysis in lavaan (v. 0.6-7), we estimated the fit of a latent variable 'metabolic syndrome', which consisted of waist circumference, serum C-reactive protein levels, a latent variable 'dyslipidaemia' (serum HDL and TG levels), and two other latent variables, diabetes and hypertension. The latent variable ‘diabetes’ consisted of serum glucose and HbA1c levels, as another latent variable, and diabetes diagnosis, while the latent variable ‘hypertension’ consisted of a blood pressure latent variable (systolic and diastolic blood pressure), and hypertension diagnosis (Figure 1). The model was estimated using robust maximum likelihood estimation and model's fit was evaluated using common indices: comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR). Acceptable fit was confirmed if CFI>0.9, RMSEA<0.1, and SRMR<0.08.

Next, we extracted components of the latent variable 'metabolic syndrome' for each participant and entered them in a logistic regression. The outcome variable in logistic regression for Sample 1 was COVID-19 test result, while for Sample 2, the outcome variable was COVID-19-related death.

In the analyses we used a set of confounding variables to calculate adjusted odds ratio for testing positive for COVID-19: age, sex socioeconomic status, smoking status, and ethnic background.
Finally, for Sample 2 we explored how individual factors contributed to the COVID-19-related mortality by using a logistic regression with individual components of metabolic syndrome, instead of the latent variable 'metabolic syndrome'.

A script for the analysis of the data as well as the output of statistical software can be found at https://github.com/FilipMorys/COVID_MetS.

![Confirmatory factor analysis model](image)

Results

Metabolic syndrome and the risk of COVID-19 infections

In Sample 1, the confirmatory factor analysis provided an acceptable model fit (CFI=0.934, RMSEA=0.067, SRMR=0.041). In the logistic regression the relation between metabolic syndrome and the chance of having a positive SARS-CoV-2 test...
did not reach our pre-set statistical significance threshold (p=0.057; odds ratio 1.10; 95% confidence intervals (CI): 0.997-1.214).

Metabolic syndrome is related to an increased COVID-19-related mortality

In Sample 2, the confirmatory factor analysis provided an acceptable model fit (CFI=0.923, RMSEA=0.072, SRMR=0.049). Logistic regression showed that metabolic syndrome is related to an increased mortality rate among COVID-19 positive individuals (p<0.0001) – adjusted odds ratio: 1.67 (95% CI: 1.25-2.23), pointing to a 67% increase for each unit increase on the metabolic syndrome latent variable (Figure 2).

Exploratory analysis with individual components of metabolic syndrome revealed that higher systolic blood pressure, higher serum glucose, and higher waist circumference increased the chance of COVID-19-related mortality – the adjusted odds ratio were 1.30 (95% CI: 1.01-1.68), 1.26 (95% CI: 1.04-1.54), and 1.36 (95% CI: 1.07-1.74), respectively (systolic blood pressure: p=0.044, serum glucose levels: p=0.02, waist circumference: p=0.017; Figure 2).
Discussion

We investigated whether metabolic syndrome, here defined by increased waist circumference, increased TG levels, decreased HDL levels, systemic inflammation, and the presence of diabetes and hypertension, is a risk factor for COVID-19 infection and mortality. We were able to show that a one unit increase of the latent variable 'metabolic syndrome' results in a 67% higher risk of death because of COVID-19. In contrast, the relation between metabolic syndrome and the likelihood of test positivity was weaker, with an odds ratio of only 1.1 and a confidence interval.
that included a null effect. In sum, metabolic syndrome contributes little to no risk of test positivity but substantially increases the odds of an adverse outcome.

The results of our study are in line with previous reports linking obesity and individual components of metabolic syndrome with poor COVID-19 outcomes and death (1,3,8,17). Bansal et al. review some of the physiological mechanisms that might mediate the relationship between obesity, related comorbidities and worse outcomes of COVID-19 (18). These include an enhanced expression of the angiotensin I converting enzyme 2 (ACE2), diabetes-related microvascular dysfunction, increased expression of pro-inflammatory cytokines, or activation of the renin-angiotensin-aldosterone system related to hypertension (18). Our results suggest that a number of those mechanisms might at the same time contribute to increased mortality rates related to COVID-19.

Previous studies investigating COVID-19 in the UK Biobank used positive test results obtained between March 16th and April 26th as a proxy of severe COVID-19 (8,19). The rationale for this is that during this time, only patients admitted to hospitals and with COVID-19-like symptoms were tested for COVID-19. Here, we decided to not use this approach for several reasons. First, it is possible that individuals with COVID-19-like symptoms for which they were admitted to a hospital but who did not have COVID-19 were only infected after being admitted. In those cases, positive tests would not reflect COVID-19 severity. Second, it is not possible to determine the exact reason for which inpatients were tested for COVID-19 – positive test results might therefore not only reflect severity of COVID-19 disease, but also testing in anticipation of isolating patients who test positive. For example, patients having to undergo unrelated medical procedures might have undergone precautionary testing.
We therefore recommend that studies that used this approach as a proxy for COVID-19 severity be interpreted with caution.

For the interpretation of our and similar results from the UK Biobank, it is important to note that the UK Biobank is not a sample representative of the entire UK population and therefore the findings might not be generalizable (20). Furthermore, observational studies such as ours are prone to collider bias, which has already been identified in UK Biobank COVID-19 investigations (21). Collider bias occurs when the sample population is conditioned on a variable that correlates with the variables of interest. For example, during the time period of the current study, it is thought that health workers were more likely to be tested for COVID-19, which may have contributed to incorrect conclusion that cigarette smoking is protective (21). Our study population includes individuals who were seen in a health care setting, who may therefore have a higher incidence of obesity and metabolic syndrome than the general population. However, it is difficult to see how this would account for the effect of obesity on death from COVID-19 among people who tested positive for the virus.

In addition, COVID-19 testing in the UK during the time period of this study was generally restricted to individuals with symptoms such as fever, cough, or loss of smell or taste – asymptomatic COVID-19 individuals were less likely to be tested. This might further increase the extent of collider bias in this and similar studies investigating the predictors of COVID-19 severity or mortality. Current strategies to account for such bias or measure the extent thereof rely on models and strong assumptions that might be incorrect. We therefore suggest that our findings be interpreted with caution. Nonetheless, our model did account for potential collider variables or confounds such as socioeconomic status, ethnicity and age.
In sum, we used the UK Biobank dataset to confirm that, in individuals who tested positive for COVID-19 in the early stages of the pandemic, metabolic syndrome, and especially visceral adiposity, hypertension, and hyperglycaemia, were associated with an increased risk of death.

Funding

This work was supported by a Foundation Scheme award to AD from the Canadian Institutes of Health Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
References

12. Miyara M, Tubach F, POURCHER V, Morelot-Panzini C, Pernet J, Haroche J,

