Interactions between seasonal human coronaviruses and implications for the SARS-CoV-2 pandemic: A retrospective study in Stockholm, Sweden, 2009–2020

Robert Dyrdak,1,2 Emma B. Hodcroft,3,4 Martina Wahlund,1,5 Richard A. Neher,3,4 and Jan Albert1,2

1Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
2Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
3Biozentrum, University of Basel, Basel, Switzerland
4Swiss Institute of Bioinformatics, Basel, Switzerland
5Department of Medicine, Infectious Diseases Unit, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden

Objectives
The four seasonal coronaviruses 229E, NL63, OC43, and HKU1 are frequent causes of respiratory infections and show annual and seasonal variation. Increased understanding about these patterns could be informative about the epidemiology of SARS-CoV-2.

Methods
Results from PCR diagnostics for the seasonal coronaviruses, and other respiratory viruses, were obtained for 55,190 clinical samples analyzed at the Karolinska University Hospital, Stockholm, Sweden, between 14 September 2009 and 2 April 2020.

Results
Seasonal coronaviruses were detected in 2,130 samples (3.9%). OC43 was most commonly detected (28.4% of detections), followed by NL63 (24.0%), HKU1 (17.6%), and 229E (15.3%). The overall fraction of positive samples was relatively similar between seasons. In contrast, at species level there was distinct pattern of biennial alternating peak seasons for the Alphacoronaviruses, 229E and NL63, and the Betacoronaviruses, OC43 and HKU1, respectively. The Betacoronaviruses peaked earlier in the winter season (Dec-Jan) than the Alphacoronaviruses (Feb-Mar). Coronaviruses were detected across all ages, but diagnostics were more frequently requested for paediatric patients than adults and the elderly. The species showed different age distributions, with OC43 and 229E positivity being relatively constant across age strata, while the incidence of NL63 and HKU1 decreased with age.

Conclusions
Both the Alphacoronaviruses and Betacoronaviruses showed alternating biennial winter incidence peaks, which suggests some type of immune mediated interaction. Symptomatic reinfections in adults and the elderly appear relatively common. Both findings may be of relevance for the epidemiology of SARS-CoV-2.

INTRODUCTION
Viral infections are a common cause of community acquired respiratory infections. Etiological agents include the four “seasonal” coronaviruses (CoVs): 229E, NL63, OC43 and HKU1. These viruses are found globally and in immunocompetent hosts usually cause mild to moderate upper-respiratory tract illnesses [1][5]. In contrast, infections with two other coronaviruses, SARS-CoV and MERS-CoV, have severe clinical presentation and substantial mortality. [6].

The spread of the recently emerged SARS-CoV-2 has been declared a pandemic by WHO. The virus and the disease it causes, COVID-19, has unprecedented effects on societies globally, such as national lockdowns with dramatic consequences on social interactions and economy. Human coronavirus are found in two of the four genera the subfamily orthocoronavirinae. The genus Alphacoronavirus includes 229E and NL63, whereas the genus Betacoronavirus includes OC43 and HKU1 (subgenus Embecovirus), SARS-CoV and SARS-CoV-2 (subgenus Sarbecovirus), and MERS-CoV (subgenus Merbecovirus) [7].

Syndromic testing by polymerase chain reaction (PCR) using respiratory virus panels allow identification of the four seasonal CoVs as causative agents in patients with respiratory illness. Here we use the results from routine clinical diagnostic tests of approximately 55,000 patient samples to analyze the epidemiology of the four seasonal CoVs (229E, NL63, OC43, and HKU1) in Stockholm, Sweden 2009–2020. Better knowledge about the epidemiology of these viruses could potentially inform about the epidemiology of SARS-CoV-2 in a post-pandemic phase.

METHODS
Samples and metadata

Data from routine diagnostics of respiratory viruses were obtained from the laboratory information system at the Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden. The majority of samples analyzed were obtained from the Stockholm Region (2.2 million inhabitants), where the laboratory provides diagnostic services to six of seven major hospitals, and outpatient care to approximately half of the population. Pseudonymised data were extracted for 135,922 respiratory samples collected for virus diagnos-
Virus diagnostics

Diagnostics for a narrow respiratory virus panel including influenza A virus (IAV), influenza B virus (IBV), and respiratory syncytial virus (RSV) were performed using in-house realtime PCR assays [5] until 14 September 2014 when they were replaced by the Simplexa Flu A/B & RSV Kit (Focus Diagnostics Inc., Cypress (CA, USA)).

An extended respiratory virus panel, which included the four seasonal CoVs (229E, NL63, OC43, and HKU1) as well as adenovirus (AdV), enterovirus (EV), human bocavirus (BoV), human metapneumovirus (MPV), parainfluenza virus (PIV) 1, 2, and 3, and rhinovirus (RV), was performed using in-house realtime PCR assays [5] until 5 November 2017 when they were replaced by the Allplex Respiratory Panels 2 and 3 (Seegene Inc., Seoul (South Korea)). The Allplex assay does not discriminate between the Betacoronaviruses OC43 and HKU1 (but includes PIV4). Therefore, only data up to 5 November 2017 were analyzed separately for OC43 and HKU1. Due to possible cross-reactivity between RV and EV, samples reactive for both viruses were classified as RV/EV.

Statistical analyses

Statistical analyses was performed using Stata version 15.1 (StataCorp LLC, College Station (TX, USA)). Heatmaps were generated using the heatplot package [9]. Point estimates and 95% confidence intervals (CIs) of proportions and odds ratios were calculated using logistic regression with 200 bootstrap replications. To avoid selection bias, odds ratio for co-detections were calculated across the subset of samples with complete records and at least detection of one respiratory pathogen [10].

RESULTS

Basic characteristics of samples and results from CoVs diagnostics

During 14 September 2009 until 2 April 2020, a total of 135,922 samples were obtained for respiratory virus diagnostics at the Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden. Of these, 55,190 samples had been analyzed for the extended virus panel which included the four seasonal CoVs (229E, NL63, OC43, and HKU1). The most common specimen materials analyzed for the four CoVs were nasopharyngeal aspirates (n=23,163) and nasopharyngeal secretions (n=22,886). Data on symptomatology or hospitalization was not available, but the study subjects were ill enough to seek medical care and found in need of respiratory sampling.

Seasonal CoVs were detected in 2,130 of the 55,190 samples (3.9%; 95% CI: 3.7%–4.0%). The annual number of CoV-positive samples increased over the study period as a result of increased testing, but the fraction of positive samples decreased (Figure 1A and B, respectively). Among the 2,130 CoV-positive samples the most common species detected was OC43 (28.4%), followed by NL63 (24.0%), HKU1 (17.6%), and 229E (15.3%). In addition, 15.9% of the CoV-positive samples were positive for OC43/HKU1 in the Allplex assay. In 23 samples (1.1% of all positive samples), two different species of CoVs were detected.

Information about the sex of the patients was available for 55,102 samples (99.8%). CoV-positive results were more common in samples from men (55.1%; 95% CI: 54.7%–55.5%) than from females. Thus, the odds ratio of CoV-positivity was significantly lower in samples from females than from men (0.86; 95% CI 0.79–0.95). This was true for all CoV species, except 229E.

Alternating biennial incidence of seasonal CoV infections

The number of samples analyzed for CoVs (and other respiratory viruses) showed seasonal variation with peaks in the winters (Figure 1A). The number of CoV-positive samples showed even more pronounced winter peaks. The overall fraction of samples positive for any species did not show any marked season-to-season variation across the duration of the study (Figure 1B). This is stark contrast to the incidence of detection of the four CoV species, which all showed distinct biennial patterns (Figure 2). Interestingly, a pattern of alternating peak seasons was observed for the two Alphacoronaviruses, 229E and NL63. This pattern was even more striking for the two Betacoronaviruses, OC43 and HKU1. Due to the biennial alternating patterns, 229E and HKU1 had peak incidence in winter seasons starting in odd number years (2009/2010, 2011/2012, etc), whereas NL63 and OC43 peaked in seasons starting in even number years (2010/2011, 2012/2013, etc).
Peak month of the four seasonal CoVs

Next we investigated the variation of CoV detections over the calendar year by averaging over the entire study period (Figure 3). When all four species were combined, the lowest activity was observed from July to October. There was a steep increase in CoV detections in November, and a peak in December. However, the peaks for the individual species occurred in different months, with OC43 having the earliest peak in December, followed by HKU1 in December to January, NL63 in February, and 229E in March to April (Figure 3). Notably, the order of the peaks for the four species correlated with the fraction of positive samples for each species. Thus, OC43, which was the most common species, peaked in December, whereas 229E, which had the lowest incidence, peaked in March.

In summary, the incidence of the four species of seasonal CoVs appeared to show two different types of interactions or interference. Firstly, both the two *Alphacoronaviruses* (229E and NL63) and the two *Betacoronaviruses* (OC43 and HKU1) peaked in alternating seasons. Secondly, the *Betacoronaviruses* peaked earlier in the winter season than the *Alphacoronaviruses*.

Co-detection of CoVs with other respiratory viruses

Of 2,130 samples positive for any CoV, matched results for analyses of the full panel of other respiratory viruses were obtained for 1,953 samples, with the narrow panel (IAV, IBV and RSV) missing for the remaining samples. Of the 2,130 samples positive for any CoV, at least one additional respiratory virus was identified in 737 samples (34.6%, 95% CI: 32.6–36.7%), and two or more other respiratory viruses were identified in 128 samples (6.0%, 95% CI: 5.0–7.1%). Co-detections were most common in the two youngest age strata (0–1 and 2–5 years), accounting for 76.1% of samples positive for CoV and a co-detected virus. The four viruses that were most commonly co-detected with CoVs were: RSV (9.2%), RV (7.2%), BoV (6.8%) and AdV (4.7%) (Figure S1).

However, co-detections appeared less common than expected by chance. Thus, the odds ratio was significantly reduced for co-detection of CoVs with RSV (0.56, 95% CI 0.47 to 0.66) and AdV (0.52, 95% CI 0.42 to 0.66), and non-significantly reduced for RV 0.83 (95% CI 0.62 to 1.12) and BoV 0.95 (95% CI 0.79 to 1.15).

DISCUSSION

In this study we comprehensively have investigated the epidemiology of the four seasonal coronaviruses (229E, NL63, OC43, and HKU1) using PCR results from more than 55,000 clinical samples analyzed 2009–2020 in Stockholm, Sweden. We found that CoV infections were detected in around 4% of samples, but due to considerable seasonal variation the proportion positive samples varied from <1% in Aug–Sept, to close to 8% in Dec–Jan. All four seasonal CoVs showed biennial winter incidence peaks, with alternating peak seasons for the two *Alphacoronaviruses*, 229E and NL63, and the two *Betacoronaviruses*, OC43 and HKU1, respectively. This novel finding suggests some type of immunological interaction or interference. The fraction of CoV-positive samples was highest among children aged 0–5 years, but infections occurred in all age strata, which suggests that symptomatic reinfections among adults and the elderly are not uncommon. Our results concerning the epidemiology of seasonal CoVs have implications for the likely future endemic presence of SARS-CoV-2 and extend the knowledge gained by earlier studies on this topic [10][12].

The large sample size and the long study period allowed for detailed investigation of CoV epidemiology between and within years as well as of interactions between the four species of seasonal CoVs. We report that the four species of seasonal CoVs appeared to showed two different types of interactions. Firstly, both the *Alphacoronaviruses* (229E and NL63) and the *Betacoronaviruses* (OC43 and HKU1), respectively, peaked in alternating winter seasons. Secondly, the circulation of the *Betacoronaviruses* peaked earlier in the winter season than that of the *Alphacoronaviruses*. The biennial pattern of
the seasonal CoVs that we report is in line with earlier reports from the temperate zone of the Northern Hemisphere [1–5, 11–13, 14]. Importantly, these studies also found that Alphacoronaviruses and Betacoronaviruses, respectively, tended to peak in alternating seasons, matching our findings. However, only Kissler et al. [11] and Nickbakhsh et al. [10] make a point of this finding and draw inference about possible immunological interactions and their implications for the future of SARS-CoV-2, but the studies did not include Alphacoronaviruses or HKU1, respectively. Thus, we extend their findings by showing that the both genera show similar interactions, which indicates that this is a general property of CoVs. Furthermore, it is reassuring that the biennial alternating pattern is found in different continents and countries in the temperate zone of the Northern Hemisphere, as this indicates that the interactions are not a local phenomenon in our study setting in Stockholm, Sweden. It should be noted that the effect may be limited to the temperate zone as biennial seasonality is not noted in a study from southern China [2].

The alternating biennial cycles of the two Alphacoronaviruses and the two Betacoronaviruses might be caused by fluctuations in the number of susceptible individuals due to waning immunity or to immune escape of the pathogen. With regard to immunity, although IgG antibodies against CoVs are present in almost all adult individuals [15], early studies showed that CoV infections commonly occur despite a prior presence of neutralizing antibodies [4, 14, 10]. Moreover, a substantial number of re-infections of NL63 were detected in a recent study with repeated sampling over a season in a Kenyan community setting [17]. Indications of frequent reinfections with all four seasonal coronaviruses were also provided by a recent serological study from the Netherlands [18], as did our study, with infections occurring in all age groups. Immunologic interaction between the seasonal CoVs has been suggested as a cause of the dominance of NL63 and OC43 in infants [19].

The prevalence of seasonal CoV infection worldwide and possibility of immunological interference by seasonal CoVs with each other has raised hopes of potential protective effects against SARS-CoV-2. However, despite the presence of cross-reactive binding antibodies between SARS-CoV(-1) and SARS-CoV-2, cross-neutralization appears to be rare [20], even though they are comparatively closely related. All of these findings are interesting in the context of the SARS-CoV-2 pandemic, because T-cells reactive to SARS-CoV-2 have been detected in samples from donors sampled before the pandemic [21, 22], as well as in seronegative exposed persons [23]. This could possibly be due to cross-immunity between the seasonal CoVs and SARS-CoV-2 [10, 11]. As we find a higher prevalence of seasonal CoV infections in younger age groups, recent seasonal CoV infection and some level of cross-reactive immunity with SARS-CoV-2 might at least partially explain the apparently lower attack rate of SARS-CoV-2 in young children compared to older persons [24, 25]. At the same time, reinfection by seasonal CoVs clearly occurs throughout life and any potential cross-protection might be short lived [18], implying that the magnitude of the cross-protective effect might be small. Further studies are urgently needed to gain a better understanding about cross-immunity and other interactions between and within the seasonal CoVs and SARS-CoV-2.

We found that OC43 was the species that was most commonly detected, which is in line with earlier studies [1, 3, 5, 10, 13, 26, 27]. The odds ratio for positive samples in our study was significantly lower for females than males. This gender difference is interesting in relation to COVID-19, as male patients have a higher risk of severe disease and death than females [28, 29]. We noted CoV infections across all age strata, although the highest prevalence was observed among children. At species level, the fraction of positive samples was relatively even across age strata for 229E and OC43. In contrast, HKU1 and NL63 showed a declining prevalence with increasing age. Collectively, our results indicate that symptomatic CoV infections among adults and elderly are not uncommon even though we did not formally exclude the possibility that they had primary CoV infections through serological testing.

Our study has some limitations. In particular, it is a retrospective study that utilizes results from routine clinical diagnostics. It is difficult to exclude that there have been changes in the strategies and prioritization for diagnostics of respiratory infections over the study period. For example, there have been some changes in the platforms used for virus diagnostics during the study period. Also, information about clinical presentation and disease severity were not available. However, all samples were from clinical diagnostics, which means that the symptoms were severe enough to prompt sampling. Another limitation is that more than half of the adults were tested only for IAV, IBV, and RSV, and not the full virus panel. It is likely that CoV infections have been underdiagnosed among the adults and the elderly because they were not tested for. Furthermore, the generalisability of our findings beyond the Stockholm region are uncertain, although presence of similar patterns of alternating CoV incidence peaks in other parts of the temperate zone of the Northern Hemisphere provide support for this important observation. The main strengths of the study are the large sample size, the long study period, and the single center diagnostics.

To conclude, the notable yearly alternation within genera, and the temporal spacing in peaks between genera, suggest a possible immunological interaction or interference. The seasonal CoVs showed biennial winter incidence peaks, with alternating peak seasons for the Alphacoronaviruses, 229E and NL63 and the Betacoronaviruses, OC43 and HKU1, respectively. We further identify a distinct difference in the timing of the seasonal peaks, with the Alphacoronaviruses peaking months after the Dec-Jan peak observed for the Beta-
coronaviruses. These findings have implications both for better understanding seasonality and interaction in coronaviruses generally and for the likely future endemic presence of SARS-CoV-2, and thus merit further immunological studies.

Transparency declaration

The authors declare no conflicts of interest.

19 disease and unexposed individuals, Cell (2020).

FIG. 1. **Samples positive for coronaviruses.** (A) The number of samples analyzed per quarter from 1 October 2009 to 31 March 2020 (red line, \(n = 55,017 \)), and samples being positive for any of the endemic coronaviruses (blue line, \(n = 2,128 \)). (B) The fraction of samples positive per season for any of the seasonal coronaviruses. *, from 14 Sept until 31 Dec 2009; **, from 1 Jan until 2 April 2020.

FIG. 2. **Fraction of samples per season being positive for each of the four CoV species.** The fraction of samples positive per season for (A) the *Alphacoronaviruses* (229E, NL63) and (B) the *Betacoronaviruses* (OC43, HKU1). The gray line shows the fraction of samples positive for any of the CoV. Dashed lines mark CI. *, from 14 Sept until 31 Dec 2009; **, from 1 Jan until 2 April 2020; ***, from 6 November 2017 until 2 April 2020 OC43 and HKU1 were not analyzed separately.
FIG. 3. **Seasonal peak.** The fraction of samples per calendar month being positive for (A) 229E, (B) NL63, (C) OC43, and (D) HKU1. The gray line shows the fraction of samples being positive for any of the CoV. Dashed lines mark CI.
FIG. 4. **Fraction of samples positive for each species of coronavirus per age stratum.** (A) Fraction of samples positive for any of the coronaviruses per age stratum (blue line, dash lines mark 95% CI). Bars show number of submitted samples in total (\(n = 135,922\)), and fraction analyzed for the extended respiratory panel which includes the analysis for coronaviruses (solid red, \(n = 55,190\)). Fraction of samples positive per age stratum for (B) 229E, (C) NL63, (D) OC43, and (E) HKU1.
FIG. S1. **Co-detections.** Left bar: stacked in bar bottom to top (n total = 2,130): mono-detection of CoV (n = 1,393) (complete records: yellow; missing results for narrow respiratory panel: orange); and CoV with a co-detected respiratory virus (n = 737) (missing records for narrow respiratory panel (IAV, IBV, and RSV): light blue; complete records: dark blue). Insert at right: Co-detected pathogens in samples positive for CoV. Bar RV/EV, bottom to top: mono-detection of RV (dark blue); dual detection RV and EV (purple); mono-detection EV (green).

* PIV4 analyzed only from 6 Nov 2017 until 2 April 2020.
FIG. S2. Positive fraction per age stratum. The heatmap shows the fraction of samples per age stratum being positive for any of the four seasonal coronaviruses.
*, from 14 Sept until 31 Dec 2009; **, from 1 Jan until 2 April 2020.
FIG. S3. **Positive fraction per age stratum, per species.** The heatmaps shows the fraction of samples per age stratum being positive for (A) 229E, (B) NL63, (C) OC43, and (D) HKU1.

* from 14 Sept until 31 Dec 2009; **, from 1 Jan until 2 April 2020; ***, from 1 Jan until 5 Nov 2017.