Title: Prospective assessment of catheter-associated bacteriuria in nursing home residents:
clinical presentation, epidemiology, and colonization dynamics

Running title: Epidemiology of catheter-associated bacteriuria

Authors: Chelsie E. Armbruster¹#, Aimee L. Brauer¹, Monica S. Humby¹

Affiliations: ¹Department of Microbiology and Immunology, Jacobs School of Medicine and
Biomedical Sciences, State University of New York at Buffalo

#Corresponding author:
Chelsie E. Armbruster: chelsiea@buffalo.edu
Abstract (249/250 words)

Background: Long-term catheterization facilitates continuous bacteriuria, for which the clinical significance is unclear. The objectives of this study were to determine the clinical presentation, epidemiology, and dynamics of bacteriuria in a cohort of catheterized nursing home residents.

Methods: Prospective weekly urine collection, culture, urinalysis, chart review, and assessment of possible signs and symptoms of infection for 19 study participants over 260 weeks. All bacteria $\geq 10^3$ cfu/ml were isolated, identified, and subjected to select antimicrobial testing.

Results: From 234 urine samples, 1,092 bacteria were isolated and 286 (26%) were resistant to a tested antimicrobial. 226 urines were polymicrobial (97%), with an average of 4.7 isolates per weekly specimen. 233 urines (99%) exhibited $>10^3$ CFU/ml, 220 (94%) exhibited abnormal urinalysis, 77 (33%) were associated with at least one sign or symptom of infection, 51 (22%) met a standardized definition of CAUTI, and 3 (1%) had a corresponding caregiver diagnosis of CAUTI. Bacteriuria composition was remarkably stable, but catheter changes and antimicrobial treatment resulted in a net increase of 1.9 and 0.3 isolates per participant, respectively, and represented a source of new acquisition of antimicrobial resistant bacteria.

Conclusions: Catheterized individuals exhibit a high baseline prevalence of bacteriuria involving pathogenic bacteria and potential indicators of infection. Bacteriuria composition is largely polymicrobial and stable, and includes organisms previously considered to be urine culture contaminants. However, catheter changes and antimicrobial treatment may do more harm than good in this patient population.
Funding: This work was supported by the NIH (R00 DK105205, R01 DK123158, UL1 TR001412)
Introduction

Urinary catheter placement in healthcare settings is a common medical procedure utilized in the treatment of 60% of critically ill patients, 20% of those in medical and surgical intensive care units, and 5-22% of residents in long-term care facilities (1-6). This is particularly true in nursing homes, where 12-15% of newly-admitted individuals have an indwelling urinary catheter and 5-10% have a chronic urinary catheter for indications such as chronic pressure ulcers or wounds, traumatic pelvic injury, neurogenic bladder, and having low overall functional status (4, 7, 8). These individuals are also more likely to have a urinary catheter in place for prolonged periods of time, which doubles the risk of developing symptomatic catheter-associated urinary tract infection (CAUTI) and provides a reservoir for antimicrobial resistant bacteria (8-10).

Indwelling urinary catheters facilitate the presence of bacteria in urine (bacteriuria) within 5-7 days after placement (11), bypassing many of the natural defenses of the urinary tract by providing a route of entry for bacteria that would normally be prevented from colonizing the bladder. Bacteria that colonize the periurethral area are typically excluded from the urinary tract by a combination of micturition (the regular passing of urine), the physical barrier provided by intact urothelial cells along with the mucin they produce, and by innate immune defenses. However, insertion of a catheter damages the urothelial barrier, disrupts normal micturition, and results in retention of a low volume of urine within the bladder, all of which facilitate bacterial growth (12-14). The immune response elicited by the catheter also results in accumulation of host proteins such as fibrinogen, which prime the catheter surface and facilitate bacterial attachment (15-17). The combination of these factors creates a uniquely permissive environment for numerous bacterial species to colonize and potentially establish infection. Indeed, for each day that a urinary catheter is in place, there is a 3-8% incidence of bacteriuria, and long-term
catheterization (>28 days) typically results in continuous bacteriuria and symptomatic CAUTI (1, 18).

Catheterization and resulting bacteriuria are associated with numerous adverse outcomes, such as functional decline, increased hospital stays, inappropriate or inadequate antimicrobial treatment, and nearly double the mortality rate compared to non-catheterized individuals (1, 6, 18-23). However, catheter-associated bacteriuria is frequently asymptomatic and can be challenging to distinguish from CAUTI, especially in long-term care settings. Guidelines for diagnosis of CAUTI include the presence of clinical signs and symptoms in addition to a positive urine culture (24-26). For instance, the 2010 clinical care guidelines of the Infectious Diseases Society of America (IDSA) define CAUTI as a positive urine culture ($\geq 10^3$ CFU/ml of ≥ 1 bacterial species) combined with signs or symptoms compatible with UTI (fever, rigors, altered mental status, malaise or lethargy with no other identified cause, flank pain, costovertebral tenderness, acute hematuria, or pelvic discomfort) in the absence of an alternate source of infection (1, 27). In the absence of these symptoms, a culture with $\geq 10^5$ CFU/ml of ≥ 1 bacterial species is considered asymptomatic catheter-associated bacteriuria (1). In contrast, the National Health Safety Network (NHSN) surveillance criteria for long-term care facilities define symptomatic CAUTI as having a positive urine culture (no more than 2 species, of which at least one must be a bacterium at $\geq 10^5$ CFU/ml of urine) combined with at least one of the following: a) fever (single temperature $>100^\circ F$, repeated temperatures $>99^\circ F$, or an increase of $>2^\circ F$ over baseline), b) rigors, c) new onset hypotension (<90 systolic or <60 diastolic blood pressure) without an alternate non-infectious cause, d) new onset decline in mental or functional status combined with leukocytosis ($>14,000$ leukocytes/mm3) and without an alternate diagnosis, e) new or increased suprapubic tenderness, f) new or increased costovertebral pain or tenderness, h)
acute pain, swelling, or tenderness of the testes, epididymis, or prostate, or h) purulent discharge from the catheter insertion site (25, 28).

Diagnosis of CAUTI is particularly challenging in older adults, especially those with neurogenic bladder, cognitive impairments, or a high degree of functional dependence. In this population, CAUTI is often a “diagnosis of exclusion” as many signs and symptoms of infection (such as fever and leukocytosis) are infrequent or absent while other signs of infection may be subtle or non-specific (29-38). A further confounding issue is the high prevalence of acute metal status change and confusion in this population (31, 36, 39), coupled with issues regarding reliable assessment of mental status and other non-specific symptoms (40). To reduce inappropriate antimicrobial treatment, development of antimicrobial resistance, and risk of Clostridioides difficile infection, the 2019 guidelines of the IDSA strongly recommend against screening for or treating asymptomatic bacteriuria in older, functionally or cognitively impaired adults, especially those residing in long-term care facilities, as well as individuals with indwelling urinary catheters (27). The guidelines further indicate that mental status change and bacteriuria without local genitourinary symptoms or systemic symptoms should not be considered to indicate symptomatic UTI in older, functionally or cognitively impaired adults (27). However, non-specific symptoms, such as change in mental status and confusion, are the most common indications for suspected UTI in nursing home residents and antimicrobial prescription for asymptomatic bacteriuria remains common in this population (31, 41).

While several studies have reported the epidemiology of bacteriuria in catheterized individuals (1, 2, 31, 42-54), few have conducted a longitudinal assessment of colonization dynamics or included prospective assessment of infection signs and symptoms to clearly differentiate between asymptomatic colonization and CAUTI. These collective studies have also
demonstrated that polymicrobial bacteriuria and CAUTI are common during long-term catheterization, yet few report the full etiology of polymicrobial urine cultures. To address these gaps in knowledge, we conducted a prospective longitudinal assessment of bacteriuria in catheterized nursing home residents from two facilities in New York. Our study had three primary goals: 1) determine the clinical presentation of catheter-associated bacteriuria and CAUTI in catheterized nursing home residents, 2) determine the epidemiology of catheter-associated bacteriuria and CAUTI, including carriage of antimicrobial resistant bacteria, and 3) determine the impact of disruptions, such as catheter changes and antimicrobial treatment, on colonization dynamics.
Results

Description of Study Population

A total of 19 nursing home residents with long-term indwelling urinary catheters (≥1 year) were enrolled at two facilities in Buffalo, New York to monitor the prevalence, epidemiology, and clinical presentation of bacteriuria on a weekly basis for up to 7 months. As summarized in Table 1, the majority of the study participants were white (79%), male (79%), and had suprapubic catheters (68%). Study participants exhibited a high level of functional dependence for activities of daily living, as indicated by an average physical self-maintenance score (PSMS) of 22 on a scale ranging from 6-30 (55). The most common comorbidities were neurogenic bladder (74%), hemiplegia (42%), diabetes (32%), renal disease (32%), multiple sclerosis (26%), and chronic heart failure (26%).

Study participants were followed for a total of 260 patient-weeks (13 average, range 1-30), with 9 of the 19 participants completing greater than 12 weeks of follow-up. Including baseline samples, 234 urine cultures were collected during the study, with an average of 12 per participant (range 1-28). Ten participants (53%) had catheter changes during the study, for a combined total of 50 catheter changes (5 average, range 1-12). Four participants (21%) experienced a combined total of 8 caregiver-diagnosed infections during follow-up, of which 3 were reported as CAUTI in the participant’s medical charts. Seven participants (37%) received antimicrobial treatment during the course of follow-up, for a total of 20 patient-weeks of antimicrobial use, including 2 participants who received antimicrobial treatment for 3 CAUTIs.

Clinical Presentation of Catheter-Associated Bacteriuria
Potential signs and symptoms of infection were prospectively assessed and collected from participant medical records at all study visits to determine point prevalence at baseline, weekly prevalence, and incidence (Table 2). This assessment included non-specific signs and symptoms, such as nausea, lack of appetite, and fatigue, to gauge malaise and lethargy as components of the IDSA CAUTI definition. The most common clinical presentations at baseline were altered mental status (5/19 participants, 26%), hypotension (4/19, 21%), suprapubic or costovertebral pain or tenderness (3/19, 16%), and lack of appetite (3/19, 16%). Hypotension, fatigue, altered mental status, and lack of appetite exhibited the highest weekly prevalence and incidence, while fever, chills, and leukocytosis were less common and typically only present at a single study visit. As noted above, only 3 caregiver-diagnosed CAUTIs occurred during the course of the study, yet 16/19 participants (84%) had a combined 51 study visits at which the IDSA CAUTI definition (1, 27) was met and no alternate source of signs or symptoms was identified, including the 3 diagnosed CAUTIs. The most common clinical presentations for visits meeting the IDSA CAUTI definition were new onset hypotension (21/51 cases, 41%), new onset acute mental status change (19/51, 37%), new onset malaise (12/51, 23%), new or worsening suprapubic or costovertebral pain or tenderness (10/51, 20%), and fever (9/51, 18%).

Notably, only 12 study visits met the more strict NHSN surveillance definition (25, 28).

The main contributors to this reduction are the stringent cutoff of ≤ 2 organisms in the urine culture, and the requirement that mental status change must be accompanied by leukocytosis (which was not prospectively assessed and only reported in the medical records of three study participants). Importantly, none of the 3 caregiver-diagnosed CAUTIs would meet the NHSN surveillance criteria as all 3 involved >2 organisms. However, 2 of the 3 diagnosed CAUTIs
involved bacteremia with one of the bacterial species present in urine, indicating that these cases likely represent true CAUTI. When urine cultures containing 3 or more organisms are permitted for the NHSN criteria, the number of visits that would meet the NHSN CAUTI surveillance definition increases to 40 and includes all 3 caregiver-diagnosed CAUTIs. Altogether, prospective weekly assessment of possible signs and symptoms revealed that numerous potential indicators of infection are common in catheterized nursing home residents and fluctuate in duration, which may further confound the utility of these indicators for distinguishing CAUTI from asymptomatic bacteriuria in this patient population.

All urine samples were also subjected to urinalysis via 10-parameter urine reagent test strip to determine the point prevalence of parameters that are often considered to be suggestive of urinary tract infection, along with weekly prevalence and incidence (Table 3). The most common urinalysis findings at baseline were the presence of leukocytes (17/19 participants, 89%), proteinuria (10/19, 53%), nitrites (10/19, 53%), and hematuria (8/19, 42%). The highest weekly prevalence was observed for leukocytes, proteinuria, and nitrites. Leukocytes and high pH were highly persistent and typically identified in multiple consecutive urine samples, while hematuria and ketones were more likely to be present at a single study visit. Overall, 220 of the 234 urine samples (94%) had a urinalysis result that would be suggestive of infection in a non-catheterized individual and could influence perception of urine culture results. Abnormal urinalysis results were also present in 49/51 (96%) study visits at which the IDSA CAUTI definition was met. Taken together, these data indicate that caution is required when interpreting urinalysis results and possible signs and symptoms of urinary tract infection in nursing home residents with long-term indwelling catheters, as there is a high baseline prevalence and weekly prevalence of several indicators.
Epidemiology of Catheter-Associated Bacteriuria

A total of 234 urine cultures were collected during 260 study visits. Twenty-six cultures could not be obtained due to absence of the participant on a particular visit or the participant not wanting to be disturbed that day. Of the 234 urine cultures, 233 (99%) exhibited bacterial growth >10^3 colony forming units (CFU) per milliliter of urine, with an average of 5.12x10^6 CFU/ml (range 5.5x10^4 – 6.2x10^6 CFU/ml). Notably, the only culture-negative urine was obtained while the study participant was receiving intravenous antimicrobials for CAUTI with bacteremia.

A total of 1,092 bacterial isolates were cultured from the 233 culture-positive urines, of which 623 (57%) were Gram-negative and 469 (43%) were Gram-positive (Tables 4 and 5). 286 isolates (26%) were resistant to at least one of the tested antimicrobial agents, confirming that catheter-associated bacteriuria is a significant reservoir of resistant bacteria in nursing homes.

Consistent with this observation, urine specimens from 12 of the 19 participants (63%) contained at least one resistant organism (Table 5). All isolates that were resistant to ceftazidime were also resistant to ceftazidime with clavulanic acid, indicating production of an extended spectrum β-lactamase (ESBL). The most common resistances were to ciprofloxacin (exhibited by 171 of the 623 Gram-negative isolates [27%]), methicillin (81 of the 168 Staphylococcus aureus isolates [48%]), and production of ESBLs (37 of the 623 Gram-negative isolates [6%]). Notably, none of the Gram-negative isolates were resistant to imipenem, and none of the Enterococcus isolates were resistant to vancomycin.

Antimicrobial resistance was most prevalent for Proteus mirabilis (69% of isolates resistant to ciprofloxacin), S. aureus (48% resistant to methicillin), Providencia stuartii (44% resistant, 24% ciprofloxacin resistant and 20% ESBL), Morganella morganii (37% resistant to...
ciprofloxacin), *Pseudomonas aeruginosa* (29% resistant, 18% ESBL and 15% ciprofloxacin resistant), and *Escherichia coli* (29% resistant to ciprofloxacin) (Table 5). For most organisms, all sequential isolates from a single participant exhibited the same colony morphology and resistance profile, with the exception of *S. aureus*. Methicillin-resistant *S. aureus* (MRSA) is therefore discussed separately from methicillin-sensitive *S. aureus* (MSSA).

The vast majority of culture-positive urines were polymicrobial (226/233, 97%), with an average of 4.7 isolates per weekly urine specimen (range 1-10); 30 (13%) harbored two distinct isolates, 24 (11%) had three isolates, 39 (17%) had four isolates, 52 (23%) had five isolates, 41 (18%) had six isolates, 18 (8%) had seven isolates, and 22 (9%) had eight or more distinct isolates. As displayed in Table 4, the most common organisms at baseline were *Enterococcus faecalis* (14/19 baseline urine specimens, 74%), *P. stuartii* (8/19, 42%), *E. coli* (7/19, 37%), coagulase-negative *Staphylococcus* (7/19, 37%), and *P. mirabilis* 6/19, 32%). However, the highest weekly prevalence was observed for *E. faecalis* (63%), *P. mirabilis* (45%), *P. stuartii* (43%), miscellaneous PYR-negative Catalase-negative Gram-positive isolates (37%), and *S. aureus* (33% for methicillin-sensitive isolates and 31% for methicillin-resistant isolates). The most stable and persistent colonizers were *E. faecalis, P. mirabilis, P. stuartii,* and *E. coli,* while organisms such as *P. aeruginosa, Providencia rettgeri, Klebsiella pneumoniae,* coagulase-negative *Staphylococcus,* and *Serratia marsescens* tended to exhibit transient colonization.

Microbe-microbe interactions during polymicrobial colonization can have profound implications for risk of developing severe disease (56-61). The most prevalent co-colonization partners were therefore identified from each urine specimen (Supplemental Table 1), along with the number of participants who exhibited each combination during at least one study visit (Supplemental Table 2). The most common combinations were *E. faecalis* with *P. mirabilis*
(93/233 culture-positive urines [40%]; 9/19 participants [47%]), *E. faecalis* with *P. stuartii*

(86/233 [37%]; 8/19 [42%]), *E. faecalis* with *E. coli* (82/233 [35%]; 8/19 [42%]), *P. mirabilis*

with *P. stuartii* (80/233 [34%]; 8/19 [42%]), *E. faecalis* with MSSA (68/233 [29%]; 8/19 [42%]),

E. faecalis with MRSA (66/233 [28%]; 8/19 [42%]), *M. morganii* with *P. stuartii* (63/233 [27%];

5/19 [26%]), and *E. faecalis* with *M. morganii* (61/233 [26%]; 5/19 [26%]). In contrast, some
combinations of organisms were rarely observed, such as MRSA with MSSA (12/233 [5%]; 3/19
[16%]), *E. coli* with coagulase-negative *Staphylococcus* (3/233 [1%]; 1/19 [5%]), *E. coli* with *P.
aeruginosa* (13/233 [6%]; 3/19 [16%]), *K. pneumoniae* with *P. stuartii* (13/233 [6%]; 2/19 [10%]),

and *P. mirabilis* with *P. rettgeri* (8/233 [3%]; 3/19 [16%]).

Colonization Dynamics

To further explore the prevalence and dynamics of bacteriuria with each organism,
colonization was plotted on a per-participant basis (Figure 1). Overall, 18/19 participants (95%)
were colonized by *E. faecalis* during at least one study visit, 11/19 (58%) *P. mirabilis*, 11/19
(58%) coagulase-negative *Staphylococcus*, 9/19 (47%) *P. stuartii*, 9/19 (47%) MRSA, 9/19
(47%) MSSA, 8/19/19 (42%) *E. coli*, 8/19 (42%) *P. aeruginosa*, 5/19 (26%) *M. morganii*, and
5/19 (26%) *K. pneumoniae* (Table 5). Consistent with the high percentage of polymicrobial
urines, the majority of the study participants exhibited polymicrobial bacteriuria during at least
one study visit (18/19, 95%): 15/19 (79%) exhibited polymicrobial bacteriuria at all weekly
visits, 3/19 (16%) mostly had polymicrobial specimens with one or two monomicrobial samples,
and one participant only exhibited monomicrobial urine samples (Figure 1).

For each study participant, the epidemiology of bacteriuria was remarkably consistent
across consecutive study visits. For the 9 study participants with at least 12 weeks of follow-up,
E. faecalis was isolated from an average of 20.4 consecutive urine specimens, P. mirabilis from 16.9, E. coli from 12.7, and P. stuartii from 10.1. In contrast, P. vulgaris and Pseudomonas species exhibited intermittent colonization, and were typically detected in <4 consecutive urines from each participant. Considering that all 9 study participants experienced at least one catheter change or course of antimicrobial treatment, the impact of these events on colonization dynamics were further investigated for all instances with at least three weeks of post-event follow-up (Table 6).

Eight participants with at least 12 weeks of follow-up had an average of 5 catheter changes each (range 2-11). Catheter changes resulted in a combined loss of 28 isolates, with an average loss of 3.5 colonizing isolates per participant. However, 20 of the 28 isolates (71%) were regained within the subsequent 4 weeks, indicating that catheter changes were not effective in reducing bacteriuria. Strikingly, 23 new isolates were acquired after catheter changes, for an average of 2.9 new isolates per participant gained from catheter changes. Altogether, catheter changes resulted in a net increase of 1.9 isolates, indicating that changing the catheter was more likely to introduce new organisms than reduce colonization by existing organisms. It is also notable that 4 participants (50%) acquired at least one new isolate resistant to a tested antimicrobial after a catheter change: 5 of the 23 new acquisitions were resistant organisms (22%), resulting in an average incidence of new acquisition of resistant organisms of 28% following catheter changes. It is also notable that 11/51 (22%) study visits during which the IDSA CAUTI definition was met occurred within 7 days after a catheter change, including 2 of 3 the caregiver-diagnosed CAUTIs. Catheter changes therefore appear to introduce new organisms and may be associated with development of signs and symptoms of infection.
Three participants with at least 12 weeks of follow-up each received at least one patient-week of antimicrobial treatment with at least 3 weeks of subsequent follow-up. Treatment resulted in a combined loss of 8 isolates, with an average loss of 2.7 colonizing isolates per participant. Similar to catheter changes, 4 of the 8 isolates (50%) were regained within the subsequent 3 weeks, and 5 new isolates were acquired (average of 1.7 per participant) resulting in a net increase of 0.3 isolates after antimicrobial treatment. One of the 5 new isolates was resistant to a tested antimicrobial (20%), resulting in an average incidence of new acquisition of resistant organisms of 17% following treatment.
Discussion

CAUTIs are common in nursing home residents with long-term indwelling catheters and the leading cause of antimicrobial prescriptions in this population (62). However, it is estimated that approximately one-third of CAUTIs are misdiagnosed asymptomatic bacteriuria, for which antimicrobial therapy is not considered to be beneficial (63, 64). Part of the discrepancy is due to the challenges of diagnosing CAUTI, especially in a patient population that frequently presents with atypical symptoms. While our sample size was small, our study clearly demonstrates that nursing home residents with long-term catheters routinely have bacteriuria $>10^5$ CFU/ml combined with abnormal urinalysis results and numerous possible signs and symptoms of urinary tract infection. Interestingly, there were no clear differences in the composition of bacteriuria between weekly asymptomatic cultures and study visits that met the IDSA CAUTI definition. Further investigation of urine composition using metagenomics and proteomics will be necessary to determine if development of signs and symptoms of infection correlates with the presence of other organisms, such as fungi, anaerobic bacteria, and viruses, or to changes in the host immune response.

Over-testing of urine samples, both by culture and urinalysis, has been demonstrated to have a predominantly negative impact on patient outcomes including inappropriate antimicrobial prescription and increased duration of hospitalization (65-71). For instance, detection of pyuria in preoperative urinalysis was recently demonstrated be associated with prescription of antimicrobials, even in the absence of a positive urine culture or urinary symptoms (72). Importantly, pyuria itself was not associated with any negative postoperative outcomes, but the resulting antimicrobial use increased risk of subsequent Clostridioides difficile infection without improving any other outcomes (72). This issue is further complicated in catheterized individuals,
older adults, and those with neurogenic lower urinary tract dysfunction, for whom pyuria and positive urine cultures are common, and fever, dysuria, urgency, and pain demonstrate minimal sensitivity and specificity for differentiating UTI from asymptomatic bacteriuria (27, 67, 73-78). A recent study identified fever as the primary indication for obtaining a urine culture from catheterized individuals, even when other urinary symptoms are lacking and there are possible alternative explanations of fever (79). Abnormal urinalysis is another common indication for obtaining a urine culture in hospital settings (67), despite lack of other urinary symptoms and IDSA guidelines to the contrary. Considering the almost ubiquitous bacteriuria and abnormal urinalysis results observed in this study, coupled with a high prevalence of non-specific signs and symptoms of possible infection, our data underscore the critical need for discovery of additional indicators of true infection in this patient population.

Frequent exposure to antimicrobials has been demonstrated to result in a high carriage rate of antimicrobial resistant organisms in nursing home residents, particularly those with indwelling devices (8-10). While only 7 of the 19 participants received antimicrobials during the course of the study, 12 participants (63%) were colonized by at least one bacterium that was resistant to the tested antimicrobial, and 26% of all urine cultures contained a resistant bacterium, indicating that the urine of catheterized nursing home residents represents another reservoir of persistent colonization by resistant organisms. For instance, 9 participants exhibited MRSA bacteriuria, and colonization persisted for at least 8 weeks in 4 of these participants despite multiple catheter changes. The same was observed for resistant Gram-negative bacteria.

Regarding persistent colonization, our data indicate that bacteriuria remains remarkably stable even after numerous catheter changes and that antimicrobial treatment only transiently reduces colonization. Despite the observation of immediate loss of colonizing organisms in some
instances, the net change in colonization favored an increase following catheter changes and treatment, including new acquisition of a resistant bacterium. While changing of the catheter upon initiation of antimicrobial treatment for CAUTI may expand the duration of post-treatment culture-negative bacteriuria (80), there is no clear improvement of clinical outcomes (81).

Catheter insertions can also have a substantial negative impact due to the risk of creating a false passage, bladder perforation, external trauma, and hematuria, in addition to potentially inducing symptomatic CAUTI (70). Our data indicate that routine catheter changes predominantly had a negative impact in participants with asymptomatic bacteriuria, including new acquisition of bacteria and new onset signs and symptoms of possible infection. While further studies are necessary in a larger patient population, these preliminary findings provide support for catheter care practices of only changing the catheter when necessary and strictly adhering to stewardship guidelines.

The prevalence of polymicrobial bacteriuria during long-term catheterization has been widely reported for decades (1, 2, 50). However, polymicrobial clinical urine specimens are often suspected of harboring periurethral or vaginal microbiota, particularly when they include Gram-positive organisms (82, 83). This has complicated investigation of the clinical significance of polymicrobial bacteriuria and assessment of the contribution of these organisms to pathogenesis. It is therefore notable that prospective assessment of bacteriuria revealed that *Enterococcus faecalis*, *Staphylococcus aureus*, and coagulase-negative *Staphylococcus* are prevalent and persistent constituents of bacteriuria in nursing home residents with long-term indwelling catheters. The contribution of these species to risk of developing symptomatic infection and sequelae therefore warrant further investigation, particularly in the context of polymicrobial colonization. For instance, persistent bacteriuria with these organisms may
facilitate transient bacteremia and hematogenous seeding of other body sites, including endocarditis (84). In elderly catheterized individuals, ~4% of catheter changes were demonstrated to result in transient bacteremia, including by coagulase-negative *Staphylococcus* species (1, 85). Bacteremia due to *S. aureus* has also been observed in ~7% of patients with *S. aureus* bacteriuria, particularly those of advanced age or residing in nursing homes (86). Furthermore, identification of *S. aureus* bacteriuria ≥48 hours prior to bacteremia was associated with an increased risk of mortality (86). Further research is necessary to determine if persistent catheter-associated bacteriuria with Gram-positive organisms increases risk of bacteremia and hematogenous seeding of other body sites, and if polymicrobial bacteriuria further modifies risk.

Overall, the most frequent and persistent cause of polymicrobial bacteriuria in this study was *E. faecalis* with *P. mirabilis*. The association of these organisms may have important clinical implications, as interactions between *P. mirabilis* and *E. faecalis* increase the likelihood of developing urinary stones and bacteremia in experimental models of CAUTI (17, 60). Ineffective antimicrobial treatment has also been reported to be more common for polymicrobial UTI and those involving *E. faecalis* (23). It may therefore be hypothesized that CAUTI sequelae and mortality may be more common in co-colonized study participants than those who were not co-colonized. While the present study was not sufficiently powered to address this hypothesis, it is worth noting that three study participants developed urinary stones, pyelonephritis, or urosepsis (rows D, G, and J of Figure 1); all three were colonized by *P. mirabilis*, and two exhibited co-colonization with *E. faecalis*. All three participants were also co-colonized by *Providencia stuartii*, which has similarly been shown to interact with *P. mirabilis* and enhance risk of urinary stones and bacteremia (17, 87). However, other co-colonized participants did not exhibit infection or sequelae (such as rows A, C, and E), underscoring that these polymicrobial
interactions are one of many factors that contribute to the risk of developing severe disease.

Further investigation of complex polymicrobial interactions in the catheterized urinary tract are likely to provide new insight into potential decolonization strategies or therapeutics to reduce the risk of progressing from asymptomatic bacteriuria to CAUTI and associated sequelae.

The results of this study should be considered in light of several strengths and weaknesses. Main strengths of the study include 1) prospective longitudinal urine culturing rather than collection of a single specimen per participant; 2) prospective assessment of infection signs and symptoms using standardized criteria; 3) weekly study visits conducted by the same study personnel; 4) weekly urine culturing and antimicrobial susceptibility testing to identify and characterize all isolates prior to any laboratory adaptation and to monitor dynamics of colonization; and 5) enrollment at two nursing facilities. Limitations of the study include the limited sample size, low diversity of study participants, limited duration of follow-up for some study participants, and inability to collect urine samples from all participants at all study visits.

While our study is exploratory in nature and these limitations preclude more sophisticated analysis of the relationship between specific organisms and clinical presentation, this study still represents a significant advance in our understanding of the dynamics and epidemiology of bacteriuria in catheterized nursing home residents. Further investigations of this nature may uncover combinations of organisms that predict likelihood of developing infection and sequelae, or patterns of clinical signs and symptoms associated with colonization by specific organisms. If so, this information could help in refining existing tools and determining which course of action should be taken for a given patient, therefore guiding appropriate antimicrobial treatment and possibly reducing acquisition of antimicrobial resistance.
Methods

Ethics statement. This study was approved by the University at Buffalo Institutional Review Board (STUDY00002526) and complied with the provisions of the Declaration of Helsinki, Good Clinical Practice guidelines, and local laws and regulations. All participants (or approved decision makers) provided written informed consent prior to initiation of investigation, and all participants also assented to being in the study.

Study design. A prospective observational cohort study of asymptomatic catheter-associated bacteriuria was conducted at two nursing homes located in Buffalo, New York between July 2019 and March 2020. Study visits occurred at enrollment and weekly thereafter for up to 7 months. Each study visit entailed chart review by trained research staff as well as a brief assessment of possible signs and symptoms of infection and collection of a urine specimen by one of three licensed practicing nurses (LPNs) from the Visiting Nurse Association of Western New York. Participants were withdrawn from the study upon indication that they no longer wanted to participate, removal of the indwelling catheter without replacement, transfer to a non-participating facility, or death. All study data and records were managed using REDCap (Research Electronic Data Capture) tools (88, 89), hosted through the University at Buffalo Clinical and Translational Science Institute.

Inclusion criteria. Nursing home residents at either of the two participating facilities were eligible for inclusion if they had an indwelling urinary catheter (Foley or suprapubic) for at least 12 months, were at least 21 years of age, were capable of assenting to participation, and
informed consent could be obtained from the resident or approved decision maker. Residents receiving end-of-life care were excluded from the study.

Data collection from chart review. Information pertaining to participant demographics, age, weight, gender, comorbidities, functional status, indication for catheterization, duration of indwelling catheter use, history of urinary tract infection, and history of antimicrobial use were obtained from participant medical records by trained research staff on the baseline visit. Chart reviews were also conducted at each weekly study visit to obtain information pertaining suspected infections, hospitalizations, urine culture results, urinalysis results, and antimicrobial prescriptions. Potential signs and symptoms of CAUTI that were recorded include fever (defined as having a single temperature >100°F or repeated temperatures >99°F or >2°F above baseline), new onset suprapubic or costovertebral pain or tenderness, new onset hypotension, chills or rigors, and acute mental status change (defined as a fluctuation in behavior, inattention, disorganized thinking, or an altered level of consciousness compared to baseline) (24, 25).

If a study participant was temporarily transferred to a hospital, medical records from the hospital stay were utilized to obtain information pertaining to suspected infections.

Assessment of possible signs and symptoms of infection. At each study visit, an LPN collected vital signs (tympanic temperature and blood pressure) and assessed costovertebral and suprapubic pain or tenderness. The LPN and a study team member also conducted a Delirium Triage Screen (DTS) (90) at the start of each visit, and a Brief Confusion Assessment Method (bCAM) (90) assessment at the end of each visit to identify altered mental status (defined as fluctuating altered mental status, including altered level of consciousness, inattention, and
445 disorganized thinking). The LPN and study team member also administered an oral questionnaire
446 at each study visit to determine if the participant had experienced rigors or chills, nausea, lack of
447 appetite, or fatigue since the previous visit.

448 **Urine collection.** Urine specimens were collected from the port of the indwelling catheter by an
449 LPN using aseptic technique. Briefly, the catheter tubing was clamped ~12 inches below the
450 latex rubber port and urine was allowed to collect for approximately 30 minutes. The catheter
451 port was then swabbed with an alcohol wipe and allowed to dry for ~30 seconds. The needle of a
452 sterile syringe was then inserted into the port, and urine was withdrawn and transferred into a
453 sterile specimen jar. Urine specimens were placed in an insulated cooler with ice packs and
454 stored therein for no more than 4 hours prior to culturing.

455 **Processing of urine specimens.** Each urine specimen was utilized for isolation and
456 identification of colonizing bacterial species, urinalysis via 10-parameter urine reagent test strip
457 (LW Scientific, Lawrenceville, Georgia), and generation of urine glycerol stock for long-term
458 storage and re-isolation if needed. Remaining urine was also frozen at -80°C for future analyses.

459 For detection of Gram-positive and Gram-negative bacteria, a 1 µl calibrated inoculating
460 loop (Laboratory Products Sales, Inc, Rochester, NY) was used for semi-quantitative streak-
461 plating on four types of agar from Hardy Diagnostics (Santa Maria, California): HardyCHROM
462 UTI, Columbia CNA, Bile Esculin (BEA), and MacConkey. All distinct colonies that could be
463 differentiated by morphology, hemolysis, or color were isolated for further analysis.

464 Gram-positive bacteria from CNA and BEA plates were tested for catalase using 30%
465 hydrogen peroxide and for PYR activity (Hardy Diagnostics). Isolates that were PYR-positive
and catalase-negative were suspected to be *Enterococcus* species, and identified to the species level using previously-described primer sets (91). Isolates that were PYR-negative and catalase-positive were suspected to be *Staphylococcus* species, and subjected to Sure-Vue™ SELECT (Fisher Healthcare) to distinguish *Staphylococcus aureus* from coagulase-negative *Staphylococcus* species. PYR-negative and catalase-negative were suspected to be *Streptococcus* species, and were subjected to a Streptex™ Latex Agglutination Test (Thermo Scientific). Suspected *Streptococcus* isolates that did not have a positive Streptex reaction were designated “miscellaneous PYR-negative catalase-negative Gram-positive isolates”.

Gram-negative bacteria from MacConkey plates were identified to the species level whenever possible using API-20E test strips (BioMérieux, Marcy-l'Étoile, France). Isolates identified as *Pseudomonas aeruginosa* via API-20E were confirmed using previously-described primer sets (92). *Proteus mirabilis* and *Proteus vulgaris* isolates were confirmed by swarming motility on blood agar plates (Hardy Diagnostics).

Isolates of a given organism from consecutive urines specimens from the same participant were assumed to be the same strain if they were the same genus and species, the API-20E biotype number varied by no more than two digits (for Gram-negative isolates), and if colony morphology and antimicrobial susceptibility profiles were consistent week-to-week (see below). If a strain was absent in one urine specimen but had been present in the preceding and following specimens from that participant, re-isolation was attempted from the urine glycerol stock. If the strain still could not be detected, it was assumed to be absent from that urine specimen.
Antimicrobial susceptibility testing. Antimicrobial susceptibility was assessed by zone of growth inhibition on Mueller-Hinton agar (Hardy Diagnostics). Zone diameters indicative of susceptibility were determined using the Clinical and Laboratory Standards Institute (CLSI) breakpoints listed in the M100 30th edition (93, 94). *Enterococcus* isolates were tested for vancomycin sensitivity using Etest strips (Hardy Diagnostics), and a minimum inhibitory concentration of ≤4 ug/ml was considered susceptible. *S. aureus* isolates were tested for methicillin susceptibility using cefoxitin (Hardy Diagnostics), and susceptibility was defined as a zone diameter of ≥18 mm. Gram-negative isolates were tested for susceptibility to ciprofloxacin (Hardy Diagnostics) (≥21 mm zone diameter), ceftazidime (Hardy Diagnostics) (≥18 mm zone diameter), ceftazidime with clavulanate (Hardy Diagnostics) (≥20 mm zone diameter), and imipenem (Hardy Diagnostics) (≥15 mm zone diameter).

Statistical Analysis. Data were analyzed by a combination of chi square tests and logistic regression, as indicated, using StataIC 15.1 (StatCorp, College Station, Texas). All logistic regressions were adjusted for participant-level clustering to account for multiple samples per participant.
Acknowledgments

We would like to thank members of the Department of Microbiology & Immunology, the Division of Infectious Diseases, and Witebsky Center for Microbial Pathogenesis and Immunology for helpful comments and critiques. We would also like to thank the nursing home administrators and staff and the Visiting Nurse Association of Western New York. This work was supported by the National Institutes of Health via the National Institute of Diabetes Digestive and Kidney Diseases [R00 DK105205 and R01 DK123158 to C.E.A.] and the National Center for Advancing Translational Sciences (UL1 TR001412 to the University at Buffalo). The sponsors were not involved in the study design, methods, subject recruitment, data collections, analysis, or preparation of the paper. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

Author Contributions

Competing Interests

The authors have no financial or non-financial competing interests to declare.
References

28. (NHSN) NHSN. Atlanta, GA: Division of Healthcare Quality Promotion, National Center for Emergine and Zoonotic Infectious Diseases; 2020.

<table>
<thead>
<tr>
<th></th>
<th>Total (n=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean (SD;range), years</td>
<td>65 (15;43-91)</td>
</tr>
<tr>
<td>Weight, mean (SD;range), pounds</td>
<td>182 (26;117-220)</td>
</tr>
<tr>
<td>PSMS, mean (SD;range)</td>
<td>22 (4;13-27)</td>
</tr>
<tr>
<td>Duration of catheter use (years), mean (SD;range)(^a)</td>
<td>6.5 (4.7; 1-17)</td>
</tr>
<tr>
<td>Duration of follow-up (weeks), mean (SD; range)</td>
<td>13.0 (11.0; 1-30)</td>
</tr>
<tr>
<td>Number of catheter changes, mean (SD;range)</td>
<td>2.6 (3.6; 0-12)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15 (79)</td>
</tr>
<tr>
<td>Female</td>
<td>4 (21)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>15 (79)</td>
</tr>
<tr>
<td>Black or African American</td>
<td>4 (21)</td>
</tr>
<tr>
<td>Catheter type</td>
<td></td>
</tr>
<tr>
<td>Foley</td>
<td>6 (32)</td>
</tr>
<tr>
<td>Suprapubic</td>
<td>13 (68)</td>
</tr>
<tr>
<td>Indication for catheter use</td>
<td></td>
</tr>
<tr>
<td>Urinary retention or outlet obstruction</td>
<td>19 (100)</td>
</tr>
<tr>
<td>Facility</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>8 (42)</td>
</tr>
<tr>
<td>B</td>
<td>11 (58)</td>
</tr>
<tr>
<td>Underlying conditions</td>
<td></td>
</tr>
<tr>
<td>Neurogenic bladder</td>
<td>14 (74)</td>
</tr>
<tr>
<td>Hemiplegia</td>
<td>8 (42)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>6 (32)</td>
</tr>
<tr>
<td>Renal disease</td>
<td>6 (32)</td>
</tr>
<tr>
<td>Multiple sclerosis</td>
<td>5 (26)</td>
</tr>
<tr>
<td>Chronic heart failure</td>
<td>5 (26)</td>
</tr>
<tr>
<td>Dementia</td>
<td>4 (21)</td>
</tr>
</tbody>
</table>

Data are No. (%) of residents, unless otherwise indicated. SD, standard deviation; PSMS, physical self-maintenance score.

\(^a\)If date of first catheter placement could not be determined, date of admission to facility with catheter in pace was utilized.
Table 2. Clinical Presentation of Catheter-Associated Bacteriuria

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Baseline Occurrence</th>
<th>(^a) Point prevalence</th>
<th>Patient weeks</th>
<th>(^b) Weekly prevalence</th>
<th>New episodes</th>
<th>(^c) Incidence</th>
<th>Number of one-week episodes</th>
<th>(^d) Proportion of one-week episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 10^5) CFU/ml</td>
<td>19</td>
<td>1.00</td>
<td>231</td>
<td>0.99</td>
<td>1</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Hypotension</td>
<td>4</td>
<td>0.21</td>
<td>55</td>
<td>0.21</td>
<td>21</td>
<td>0.08</td>
<td>15</td>
<td>0.71</td>
</tr>
<tr>
<td>Fatigue</td>
<td>4</td>
<td>0.21</td>
<td>48</td>
<td>0.18</td>
<td>13</td>
<td>0.05</td>
<td>8</td>
<td>0.62</td>
</tr>
<tr>
<td>eAltered mental status</td>
<td>5</td>
<td>0.26</td>
<td>46</td>
<td>0.18</td>
<td>19</td>
<td>0.07</td>
<td>13</td>
<td>0.68</td>
</tr>
<tr>
<td>Lack of appetite</td>
<td>3</td>
<td>0.16</td>
<td>43</td>
<td>0.17</td>
<td>17</td>
<td>0.07</td>
<td>12</td>
<td>0.71</td>
</tr>
<tr>
<td>fPain</td>
<td>3</td>
<td>0.16</td>
<td>38</td>
<td>0.15</td>
<td>9</td>
<td>0.03</td>
<td>5</td>
<td>0.56</td>
</tr>
<tr>
<td>Nausea</td>
<td>2</td>
<td>0.11</td>
<td>31</td>
<td>0.12</td>
<td>11</td>
<td>0.04</td>
<td>5</td>
<td>0.45</td>
</tr>
<tr>
<td>gFever</td>
<td>0</td>
<td>0.00</td>
<td>11</td>
<td>0.04</td>
<td>11</td>
<td>0.04</td>
<td>11</td>
<td>1.00</td>
</tr>
<tr>
<td>Chills</td>
<td>0</td>
<td>0.00</td>
<td>10</td>
<td>0.04</td>
<td>7</td>
<td>0.03</td>
<td>4</td>
<td>0.57</td>
</tr>
<tr>
<td>Leukocytosis</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\(^a\) Number of baseline visits with symptom divided by the total number of baseline visits

\(^b\) Number of patient-weeks symptom was detected divided by total number of patient-weeks

\(^c\) Number of new instances of symptom divided by total number of patient-weeks

\(^d\) Number of episodes lasting only one week divided by the number of new episodes (excluding the first and last study visits)

\(^e\) Altered mental status was assessed by bCAM and DTS (see methods)

\(^f\) Pain refers to costovertebral or suprapubic pain or tenderness

\(^g\) Fever was defined as having a temperature \(>99^\circ\)F
Table 3. Urinalysis of Catheter-Associated Bacteriuria

<table>
<thead>
<tr>
<th></th>
<th>Baseline Occurrence</th>
<th>(^a)Point prevalence</th>
<th>Patient weeks</th>
<th>(^b)Weekly prevalence</th>
<th>New episodes</th>
<th>(^c)Incidence</th>
<th>Number of one-week episodes</th>
<th>(^d)Proportion of one-week episodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leukocytes</td>
<td>17</td>
<td>0.89</td>
<td>213</td>
<td>0.91</td>
<td>8</td>
<td>0.03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Protein</td>
<td>10</td>
<td>0.53</td>
<td>131</td>
<td>0.56</td>
<td>30</td>
<td>0.13</td>
<td>13</td>
<td>0.43</td>
</tr>
<tr>
<td>Nitrite</td>
<td>10</td>
<td>0.53</td>
<td>124</td>
<td>0.53</td>
<td>36</td>
<td>0.15</td>
<td>16</td>
<td>0.44</td>
</tr>
<tr>
<td>Blood</td>
<td>8</td>
<td>0.42</td>
<td>75</td>
<td>0.32</td>
<td>14</td>
<td>0.06</td>
<td>12</td>
<td>0.86</td>
</tr>
<tr>
<td>pH ≥7.25</td>
<td>4</td>
<td>0.21</td>
<td>105</td>
<td>0.45</td>
<td>29</td>
<td>0.12</td>
<td>4</td>
<td>0.14</td>
</tr>
<tr>
<td>Ketone</td>
<td>0</td>
<td>0.00</td>
<td>14</td>
<td>0.06</td>
<td>9</td>
<td>0.04</td>
<td>6</td>
<td>0.67</td>
</tr>
<tr>
<td>Urobilinogen</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td>Bilirubin</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>1.00</td>
</tr>
<tr>
<td>Glucose</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
</tr>
</tbody>
</table>

\(^a\) Number of baseline urine urinalysis finding divided by the total number of baseline urines

\(^b\) Number of patient-weeks urinalysis finding was detected divided by total number of patient-weeks

\(^c\) Number of new instances of urinalysis finding divided by total number of patient-weeks

\(^d\) Number of episodes lasting only one week divided by the number of new episodes (excluding the first and last study visits)
Table 4. Epidemiology of Catheter-Associated Bacteriuria

<table>
<thead>
<tr>
<th>Organism</th>
<th>Baseline Occurrence</th>
<th>(^a)Point prevalence</th>
<th>Patient weeks</th>
<th>(^b)Weekly prevalence</th>
<th>New episodes</th>
<th>(^c)Incidence Number of one-week episodes</th>
<th>(^d)Proportion of one-week episodes</th>
<th>Number of resistant isolates</th>
<th>(^e)Resistance prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus faecalis</td>
<td>14</td>
<td>0.74</td>
<td>163</td>
<td>0.63</td>
<td>4</td>
<td>0.02</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Providencia stuartii</td>
<td>8</td>
<td>0.42</td>
<td>111</td>
<td>0.43</td>
<td>6</td>
<td>0.02</td>
<td>0</td>
<td>0.00</td>
<td>49</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>6</td>
<td>0.32</td>
<td>118</td>
<td>0.45</td>
<td>5</td>
<td>0.02</td>
<td>0</td>
<td>0.00</td>
<td>81</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>7</td>
<td>0.37</td>
<td>89</td>
<td>0.34</td>
<td>3</td>
<td>0.01</td>
<td>0</td>
<td>0.00</td>
<td>26</td>
</tr>
<tr>
<td>Misc</td>
<td>6</td>
<td>0.32</td>
<td>96</td>
<td>0.37</td>
<td>12</td>
<td>0.05</td>
<td>4</td>
<td>0.33</td>
<td>ND</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>10</td>
<td>0.53</td>
<td>160</td>
<td>0.62</td>
<td>10</td>
<td>0.04</td>
<td>5</td>
<td>0.50</td>
<td>81</td>
</tr>
<tr>
<td>MRSA</td>
<td>5</td>
<td>0.26</td>
<td>81</td>
<td>0.31</td>
<td>12</td>
<td>0.05</td>
<td>5</td>
<td>0.42</td>
<td>81</td>
</tr>
<tr>
<td>MSSA</td>
<td>5</td>
<td>0.26</td>
<td>87</td>
<td>0.33</td>
<td>8</td>
<td>0.03</td>
<td>2</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Morganella morganii</td>
<td>2</td>
<td>0.11</td>
<td>64</td>
<td>0.25</td>
<td>14</td>
<td>0.05</td>
<td>4</td>
<td>0.29</td>
<td>24</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>4</td>
<td>0.21</td>
<td>66</td>
<td>0.25</td>
<td>18</td>
<td>0.07</td>
<td>6</td>
<td>0.33</td>
<td>19</td>
</tr>
<tr>
<td>CNS</td>
<td>7</td>
<td>0.37</td>
<td>46</td>
<td>0.18</td>
<td>12</td>
<td>0.05</td>
<td>6</td>
<td>0.50</td>
<td>ND</td>
</tr>
<tr>
<td>Providencia rettgeri</td>
<td>1</td>
<td>0.05</td>
<td>43</td>
<td>0.17</td>
<td>9</td>
<td>0.03</td>
<td>6</td>
<td>0.67</td>
<td>0</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>0</td>
<td>0.00</td>
<td>37</td>
<td>0.14</td>
<td>3</td>
<td>0.01</td>
<td>1</td>
<td>0.33</td>
<td>3</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>2</td>
<td>0.11</td>
<td>28</td>
<td>0.11</td>
<td>7</td>
<td>0.03</td>
<td>3</td>
<td>0.43</td>
<td>0</td>
</tr>
<tr>
<td>Pseudomonas other</td>
<td>2</td>
<td>0.11</td>
<td>24</td>
<td>0.09</td>
<td>10</td>
<td>0.04</td>
<td>6</td>
<td>0.60</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.00</td>
<td>16</td>
<td>0.06</td>
<td>3</td>
<td>0.01</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>----</td>
</tr>
<tr>
<td>Klebsiella oxytoca</td>
<td>0</td>
<td>0.00</td>
<td>16</td>
<td>0.06</td>
<td>3</td>
<td>0.01</td>
<td>0</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>Serratia marsescens</td>
<td>1</td>
<td>0.05</td>
<td>14</td>
<td>0.05</td>
<td>2</td>
<td>0.01</td>
<td>2</td>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>2</td>
<td>0.11</td>
<td>8</td>
<td>0.03</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>1</td>
<td>0.05</td>
<td>3</td>
<td>0.01</td>
<td>1</td>
<td>0.00</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>GBS</td>
<td>2</td>
<td>0.11</td>
<td>2</td>
<td>0.01</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
<td>NA</td>
<td>ND</td>
</tr>
</tbody>
</table>

Misc, Gram-positive bacteria that were PYR-negative, Catalase-negative, and Streptex-negative; MSSA, methicillin-sensitive *Staphylococcus aureus*; MRSA, methicillin-resistant *Staphylococcus aureus*; CNS, coagulase-negative *Staphylococcus*; *Pseudomonas* other, Gram-negative bacteria with good identification to genus via API-20E but were not *P. aeruginosa*; GBS, Group B *Streptococcus*; Other, any Gram-negative organism that could not be identified by API-20E.

- Number of baseline urine specimens with organism divided by the total number of baseline urines
- Number of patient-weeks the organism was detected divided by total number of patient-weeks
- Number of new acquisitions of the organism divided by total number of patient-weeks
- Number of episodes lasting only one week divided by the number of new episodes (excluding the first and last study visits)
- Number of isolates of the organism that were resistant to at least one antimicrobial divided by the total number of isolates of that organism
Table 5. Prevalence of antimicrobial resistant isolates

<table>
<thead>
<tr>
<th>Organism</th>
<th>Resistance</th>
<th>^aParticipant Prevalence</th>
<th>^bOrganism Prevalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus aureus (13 participants, 168 isolates)</td>
<td>Methicillin</td>
<td>9 (69)</td>
<td>81 (48)</td>
</tr>
<tr>
<td>Proteus mirabilis (11 participants, 118 isolates)</td>
<td>Ciprofloxacin</td>
<td>7 (64)</td>
<td>81 (69)</td>
</tr>
<tr>
<td>Providencia stuartii (9 participants, 111 isolates)</td>
<td>Ciprofloxacin</td>
<td>4 (44)</td>
<td>27 (24)</td>
</tr>
<tr>
<td>Morganella morganii (5 participants, 64 isolates)</td>
<td>Ciprofloxacin</td>
<td>2 (40)</td>
<td>24 (37)</td>
</tr>
<tr>
<td>Escherichia coli (8 participants, 89 isolates)</td>
<td>Ciprofloxacin</td>
<td>1 (12)</td>
<td>26 (29)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa (8 participants, 66 isolates)</td>
<td>Ciprofloxacin</td>
<td>3 (37)</td>
<td>10 (15)</td>
</tr>
<tr>
<td>Morganella morganii (5 participants, 64 isolates)</td>
<td>ESBL</td>
<td>1 (11)</td>
<td>22 (20)</td>
</tr>
<tr>
<td>Enterobacter aerogenes (2 participants, 8 isolates)</td>
<td>ESBL</td>
<td>1 (50)</td>
<td>1 (12)</td>
</tr>
</tbody>
</table>

^aNumber (percent) of study participants colonized by the organism with isolates resistance to the listed antimicrobial

^bNumber (percent) of isolates of the organism that were resistant to the listed antimicrobial
Table 6. Colonization Dynamics

<table>
<thead>
<tr>
<th>Participant</th>
<th>Number of events</th>
<th>Isolates lost<sup>a</sup></th>
<th>Isolates regained<sup>b</sup></th>
<th>New isolates<sup>c</sup></th>
<th>New ARO<sup>d</sup></th>
<th>Incidence of new ARO<sup>e</sup></th>
<th>Net change<sup>f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheter Changes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>NA</td>
<td>+3</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.17</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>1</td>
<td>0.11</td>
<td>+8</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>NA</td>
<td>+1</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>1.00</td>
<td>+3</td>
</tr>
<tr>
<td>G</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>0.40</td>
<td>+1</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00</td>
<td>-1</td>
</tr>
<tr>
<td>I</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>NA</td>
<td>+1</td>
</tr>
<tr>
<td>Average</td>
<td>5.0</td>
<td>3.5</td>
<td>2.5</td>
<td>2.9</td>
<td>0.6</td>
<td>0.28</td>
<td>+1.9</td>
</tr>
<tr>
<td>Antimicrobial Treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>+1</td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.50</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>1.0</td>
<td>2.7</td>
<td>1.3</td>
<td>1.7</td>
<td>0.3</td>
<td>0.17</td>
<td>+0.3</td>
</tr>
</tbody>
</table>

^a Number of isolates present the week prior to the event and absent the week following the event

^b Number of isolates that were lost due to the event but reemerged in the subsequent three weeks

^c Number of isolates that were not present the week prior to the event but emerged in the subsequent three weeks

^d Number of new isolates that were antimicrobial resistant organisms (AROs)

^e Number of new ARO acquisitions divided by total number of new acquisitions

^f Net impact of the event on the number of isolates detected in the participants weekly urine samples

NA, Not applicable
Figure 1. Epidemiology and dynamics of catheter-associated bacteriuria. Culture results for each study participant (letters) at each study visit (numbers, starting with 0 for baseline) are presented. White circles with light gray outlines indicate study visits at which a urine specimen could not be obtained. The white circle with a black outline indicates the only culture-negative urine sample (participant G, week 19). #IDSA CAUTI definition criteria met; [] caregiver-diagnosed CAUTI; *antimicrobial use; ^catheter change; Misc, Gram-positive bacteria that were PYR-negative, Catalase-negative, and Streptex-negative; MSSA, methicillin-sensitive Staphylococcus aureus; MRSA, methicillin-resistant Staphylococcus aureus; CNS, coagulase-negative Staphylococcus; Pseudomonas other, Gram-negative bacteria with good identification to genus via API-20E but were not P. aeruginosa by PCR; GBS, Group B Streptococcus; Other, any Gram-negative organism that could not be identified by API-20E.