Cytokines in Systemic Lupus Erythematosus.

Angel Justiz-Vaillant¹*, Alisa Nobee²

¹Department of Para-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, Trinidad and Tobago, West Indies

²San Fernando General Hospital, San Fernando, Trinidad and Tobago, West Indies

*Corresponding author: angel.vaillant@sta.uwi.edu

Abstract:
The systemic lupus erythematosus (SLE) is the greatest manifestation of autoimmunity. It is characterized by the presence of cytokines, including type I and II interferons, interleukin-6 (IL-6), IL-1, and tumor necrosis factor-alpha (TNF-α), the immunomodulatory cytokines like IL-10 and TGF-β, be essential players in SLE. Additionally, T-cell-derived cytokines like IL-17A, IL-21, and IL-2 are dysregulated in SLE. In this paper, a prospective cross-sectional and observational study was done. It was measured the levels of 3 essential cytokines in SLE: IL-17A, IL-23, and IL-33 using three enzyme-linked immunosorbent assays (ELISA). Thirty (30) patients attending the rheumatoid clinic at one of the major regional hospitals in the Caribbean region were recruited. Mostly females above the childbearing age give their consent to be included in the study and other 30 healthy patients were used a control. Of all the SLE patients, 15 (50%) patients were of Afro-Caribbean descent, 12 (40%) of patients were of Indo-Caribbean descent, and 3 (10%) of patients were of mixed descent. Nineteen (63%) healthy controls were females, and 11 (37%) were males. The results showed that serum IL-17A and IL-23 were more significantly higher in SLE patients than controls (P<0.01); however, there was no statistically significant difference between IL-33 levels between SLE patients and healthy controls. The study showed no correlation between serum IL-17A and IL-23 in SLE patients as judged by the result of the Pearson correlation coefficient (r=0.308, p>0.05). It also showed that serum IL-17A and IL-23 levels positively correlate to the SLE disease activity index 2000 score (SLEDAI score). Nevertheless, IL-33 levels show no correlation with the SLEDAI score. In this study, higher cytokines were reported mostly in patients between the ages of 25 to 30-year-old and Afro-Caribbean descent.

Keywords: Cytokines, Systemic lupus erythematosus, ELISA, IL-17A, IL-23, IL-33, Antibodies.

Introduction
This study evaluated interleukin’s levels: IL-17A, IL-23, and IL-33 in patients with Systemic Lupus Erythematosus (SLE) and scrutinized if there is an association between the levels of these cytokines and the SLE disease activity index (SLEDAI) 2000 score (SLEDAI score). In their study, Wong et al., 2008 showed that the production of IL-17A is uncharacteristically high in SLE patients, and it showed a positive correlation between IL-17A and the SLEDAI score [1]. Fabien et al., in 2013, showed that IL-17A serum levels were higher in patients with lupus than controls. However, these interleukin levels did not correlate with the SLEDAI score [2].

The previously mentioned study also found that the association between IL-23 and IL-17A axis is vital for SLE’s inflammatory response [1]. Mok et al. (2010) showed no correlation between
serum IL-17A and IL-23 in SLE patients. This study also showed higher serum IL-17A and IL-23 levels, and the lack of correlation between these cytokines suggests independent regulatory mechanisms [3]. A study in 2011 by Yang et al. found that IL-33 does not play a part in the illness but is needed in the acute phase and affects red blood cells and platelets [4]. The rationale for our study was the measurements of IL-17A, IL-23, and IL-33 to determine their blood levels and their clinical implications.

Materials and Methods

Population, study design, and setting
A prospective cross-sectional and observational study was done. Thirty (30) patients attending the rheumatoid clinic at one of the major regional hospitals in the Caribbean region were recruited. There was no interventional measure; however, the study sought to observe and delineate the presence of IL-17A, 23, and 33 among patients attending a rheumatoid out-patient clinic [5]. By considering the Revised American College of Rheumatology criteria, the diagnosis of lupus was confirmed, and the disease was clinically assessed by SLEDAI score. A score of ≥3 or four was considered an active disease, and a score of <3 inactive disease. Thirty (30) patients who were non-SLE subjects were also chosen as healthy controls for the study.

The characteristics of the studied population included all females over the age of 18 with active SLE diagnosis. Female patients were enlisted for the study because their prevalence is more in females than in males. One male patient attending the Rheumatology Clinic for SLE was also recruited in the study. This study’s target population was 60, of which 30 patients with active SLE disease and 30 healthy patients were targeted.

Inclusion and Exclusion Criteria.
Only adult patients with active SLE disease and all ethnic groups who give their permission to participate in the project were included. All patients with SLE disease who refused participation were not included. SLE occurs mostly in females above the childbearing age. Although there may be children who could suffer from the disease, they did not fall into this age category as adult females of childbearing age.

Methodology
Five (5) ml of the venous blood was drawn from their patient’s arm into red top bottle tubes, and after that, the sera were stored at -20°C until further analysis.

A protocol of enzyme-linked immunoassays (ELISAs) determines the serum concentration of IL-17A, IL-23, or IL-33.
Using commercially available sandwich ELISA kits, the sera were tested to determine the presence of IL-23, IL-17, and IL-33 according to the manufacturer’s instructions as followed:

Three tests were performed using human IL-17A, IL-23, and IL-33 ELISA kits, which were commercially produced by IBL International, Hamburg, Germany. Ninety-six-well ELISA plates lined with monoclonal anti-human antibodies to either IL-17A, IL-23, or IL-33 were used. Fifty (50) µl of patient serum samples were added to the microplates and incubated for 2 hours at
room temperature (RT), then the microplates were washed with the washing buffer reagent provided. After that, the microplates were incubated with 50 µl of the anti-human biotin conjugate for 1 hour at RT. The microplates were washed as previously. Then, 50 µl of streptavidin-coupled horseradish peroxidase (HRP) was added and incubated for 1.10 hours at RT. Unbound streptavidin-HRP was then removed by washing, and then 50 µl of 3,3',5,5' - tetramethylbenzidine substrate solution was added. The levels of IL-17A, IL-23, or IL-33 present were proportional to the amount of colored product produced. The addition of 50 µl of the stop solution into each well was performed. Then, the absorbance was measured at 450 nm in a microplate reader. Human IL-17A, IL-23, or IL-33 concentrations were determined by drawing a standard curve from 7 human IL-17A, IL-23, or IL-33 standard dilutions ranging from 1.6-100 pg/ml.

Statistical analysis

Data were analyzed using EXCEL and SPSS (version 17) computer software programs. The data were descriptive, and it was reported as a comparison of frequency distributions. A p < 0.05 was considered a statistically significant value. Linear regression curves were used to determine the concentrations of cytokines in the stated population.

Results and Discussion

A total of 60 blood samples were drawn from 30 SLE patients and 30 healthy individuals. The crucial observation from the analysis of the age groups of the patients enrolled in this study, most of the patients who had SLE were from 25 to 30 years of age group. While for the controls, the highest frequency was those over 40 years of age. The least number of participants recruited among the SLE group was under a 20-year age group. Of all the SLE patients, 15 (50%) patients were of Afro-Caribbean descent, 12 (40%) of patients were of Indo-Caribbean descent, and 3 patients (10%) were of mixed descent. Nineteen (63%) healthy controls were females, and 11 (37%) were males.

In this study SLEDAI scores ranged from 4 – 14. The mean SLEDAI score was 9.1, and the median score was 9.5. It was shown that many patients, 26 out of 30 (87%), experienced arthritis. Visual disturbances accounted for 10 out of 30 (34%) of patients, while headaches accounted for a significant number of patients, 20 out of 30 (67%). Vasculitis was seen in 9 out of 30 (32%). Renal symptoms such as proteinuria (15 out of 30) and hematuria (9 out of 30) accounted for 50% and 32%, respectively.

Many patients (23 out of 30) experienced symptoms such as myositis (77%), and 18 out of 30 presented alopecia representing 60%. Pleurisy was accounted for 43% of patients found in 13 out of 30. Low complement protein levels and leukopenia values were seen in 18 out of 30 (60%) and 10 out of 30 (34%), respectively. Butterfly rash was seen in 21 out of 30 SLE patients (70%). Other serological abnormalities, including anti-nuclear antibodies (ANA) and anti-ds DNA antibodies, were seen in 100% and 67% of SLE patients. None SLE patient experienced cardiovascular accidents. However, one out of 30 patients (3%) showed pulmonary infection. On the other hand, the control group showed none of the clinical and serological manifestations of this auto-immune disease.
Figure 1 shows that serum IL-17A and IL-23 were more significantly higher in SLE patients as compared to controls (P<0.01); however, there was not a statistically significant difference between IL-33 levels between SLE patients and healthy controls (P<0.05). The study showed no correlation between serum IL-17A and IL-23 in SLE patients, as judged by the Pearson correlation coefficient (r=0.305, p>0.05). It also showed that serum IL-17A and IL-23 levels showed a positive correlation to the SLEDAI score. Nevertheless, IL-33 levels show no correlation with the SLEDAI score. These results demonstrated an increased incidence of SLE among female reproductive age patients who were of Afro-Caribbean descent.

This study aimed to investigate patients for the association of IL-17A, IL-23, and IL-33 cytokines with SLE. It determines whether there was any correlation between these cytokines and SLEDAI score. In a study conducted by Hegab et al., 2014 they looked at IL-23 serum level in patients with Systemic lupus erythematosus compared to healthy individuals for correlating the serum level of the cytokines with the disease activity and its possible role in the pathogenesis of SLE. Serum levels of IL-23 were determined for all patients and controls using a quantitative enzyme-linked immunosorbent assay. They found that serum IL-23 concentration was significantly elevated in SLE patients than in the healthy controls, and it correlated significantly with disease activity index [6]. Their findings support us as serum IL-23 levels were higher in SLE patients than healthy individuals and correlate positively with the SLEDAI score.

A study executed by Mok et al., 2010 showed that higher serum IL-17A and IL-23 levels were found in SLE patients than healthy [3]. Another research conducted by Iwakura et al. showed that IL-23 induced the differentiation of naive CD4 (+) T cells into pathogenic helper T cells that produce IL-17A and other cytokines vital in the inflammatory response. In his paper, it was also reported that there was a correlation between IL-17A and IL-23 levels [7].

Yang et al., 2011 looked at whether the IL-33 serum levels were associated with lupus. A total of 70 diseased patients were recruited. Sera from them were obtained at their clinical visit and were compared to sera from 40 healthy controls. Serum IL-33 levels were significantly increased in patients with SLE than healthy controls but were lower than those found in patients with rheumatoid arthritis [4]. These results are different from the results obtained in our study that found no statistically significant difference between serum IL-33 levels among SLE patients and healthy controls (p>0.05).

Mok et al., 2010 examined the association of the serum levels of IL-33 in SLE patients with the disease activity index. The SLEDAI was used to assess disease activity. Sandwich ELISA measured IL-33. Elevated serum IL-33 showed similar values among SLE patients and controls and showed no correlation with the SLEDAI score [8], which was unlike our results, that show low levels of IL-33 among cases and controls. We agreed with Mok and collaborators in the presence of no correlation with the disease activity index in both studies.

Pons-Estel et al., 2010 showed an increased risk among reproductive-age women who were African Americans. Besides, SLE was 2 to 4 times more frequent and more severe among non-white populations worldwide and tended to be more severe in men, the pediatric populations, and patients with late-onset lupus [9]. These results showed an increased incidence of SLE among female reproductive age patients who were of Afro-Caribbean origin.
Some future recommendations for the continuation of this work include carrying out a more extensive serological study in SLE patients that include the assessment of sera for anti-SS(A) and anti-SS(B) antibodies, anti-Smith antibodies, anti-histone antibodies (a marker of drug-induced lupus), and cytokines as type I and II interferons, interleukin-6 (IL-6), IL-1, and tumor necrosis factor-alpha (TNF-α), the immunomodulatory cytokines like IL-10 and TGF-β, and additionally, T-cell-derived cytokines like IL-21, and IL-2.

We hypothesized that IL-23 and IL-17A are involved in the immunopathogenesis of SLE and they are accountable for much of the clinical manifestations seen in this inflammatory autoimmune disorder, especially vasculitis and the renal disease. So, the use of monoclonal antibodies against IL-17A and IL-23 could be an avenue for further treatment of SLE, targeting the formation of immunocomplexes, participation of the complement system and recruitment of inflammatory cells as neutrophils, which in this disease cause endothelial inflammation and tissue damage [10].

Conclusion
It was found that serum IL-17A, IL-23 levels were more significant increase in SLE patients compared to controls, but IL-33 levels showed no statistically significant difference between SLE patients and non-SLE patients or control, which is contrary to what has been reported by some studies. Serum IL-17A and IL-23 levels showed a positive correlation to the SLEDAI score; however, IL-33 levels show no correlation with the mentioned score. In this study, higher cytokines were reported mostly in patients between the ages of 25 to 30-year-old and Afro-Caribbean descent

Funding:
The Campus publication fund at The University of the West Indies. St. Agustine. Trinidad, West Indies, provides funding to conduct this research.

Conflict of interest:
The authors declare no conflicts of interest.

References

9. Pons-Estel G; Alarcon, Graciela S; Scofield, Lacie; Cooper, Glinda S. "Understanding the Epidemiology and Progression of Systemic Lupus Erythematosus". Seminars in Arthritis and Rheumatism 2010; 39: 257–68.

Figure 1 shows the levels of IL-17, IL-23, and IL-33 in cases of SLE and non-SLE individuals. The levels of cytokine IL-23 was significantly higher than the others.