SARS-CoV-2 Uses CD4 to Infect T Helper Lymphocytes

1Laboratory of Immunometabolism, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

2Autoimmune Research Laboratory, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

3Laboratory of Aging Biology, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

4Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Botucatu, Brazil;

5Institute of Chemistry and Center for Computing in Engineering and Sciences, University of Campinas (UNICAMP), Campinas, Brazil;

6Laboratory of Emerging Viruses, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

7Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

8Brazilian Laboratory on Silencing Technologies (BLaST), Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

9Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

10Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil;

12Department of Internal Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil;
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo; Ribeirão Preto, Brazil;

National Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil;

Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil;

Laboratory of Immunoinflammation, Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil;

Hematology and hemotherapy Center, University of Campinas (UNICAMP), Campinas, Brazil;

Neuroimmunology Unit, Department of Genetics, Microbiology and Immunology, University of Campinas (UNICAMP), Campinas, Brazil;

National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM) – Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil;

Laboratory of Vascular Biology and Arteriosclerosis, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil;

Laboratory of Electrophysiology, Neurobiology and Behavior, University of Campinas (UNICAMP), Campinas, Brazil;

Experimental Medicine Research Cluster (EMRC), University of Campinas (UNICAMP), Campinas, Brazil;

Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil;

D'Or Institute for Research and Education (IDOR), São Paulo, Brazil;

National Institute of Science and Technology in Biomarkers for Neuropsychiatry (INCT-INBION), São Paulo, Brazil.

These authors contributed equally to this work

These authors contributed equally to this work

*Corresponding Authors and Lead Contacts: asfarias@unicamp.br (A.S.F.) or morima@unicamp.br (M.A.M.).
Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as coronavirus disease-2019 (COVID-19). SARS-CoV-2 infects the lungs and may cause several immune-related complications such as lymphocytopenia and cytokine storm which are associated with the severity of the disease and predict mortality\(^1,2\). The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is not fully understood. Here we show that SARS-CoV-2 infects human CD4\(^+\) T helper cells, but not CD8\(^+\) T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells in a mechanism that also requires ACE2 and TMPRSS2. Once inside T helper cells, SARS-CoV-2 assembles viral factories, impairs cell function and may cause cell death. SARS-CoV-2 infected T helper cells express higher amounts of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may explain the poor adaptive immune response of many COVID-19 patients.

Main

Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerge in Wuhan in December of 2019. COVID-19 rapidly spread across the globe\(^3,4\), being declared a pandemic by the WHO in March 11\(^{th}\). COVID-19 has caused nearly one million deaths around the world as of September 20\(^{th}\), 2020. Most of the deaths are associated with acute pneumonia, cardiovascular complications, and organ failure due to hypoxia, exacerbated inflammatory responses and widespread cell death\(^1,5\). Individuals that progress to the severe stages of COVID-19 manifest marked alterations in the immune response characterized by reduced overall protein synthesis, cytokine storm, lymphocytopenia and T cell exhaustion\(^6,8\). In addition to these acute effects on the immune system, most convalescent individuals present low titres of neutralizing antibodies\(^9\). Moreover, the levels of antibodies against SARS-CoV-2 decay rapidly after recovery\(^10\), suggesting that SARS-CoV-2 infection may exert profound and long-lasting complications to adaptive immunity. In this context, one question that remains to be answered is how SARS-CoV-2 exert these effects on the immune system.

To infect cells, the spike glycoprotein of SARS-CoV-2 (sCoV-2) binds to the host angiotensin-converting enzyme 2 (ACE2), after which it is then cleaved by TMPRSS2 \(^11\). While TMPRSS2 is ubiquitously expressed in human tissues (fig. S1), ACE2 is mainly expressed in epithelial
and endothelial cells, as well as in the kidney, testis and small intestine (fig. S1). Still, a wide variety of cell types are infected by SARS-CoV-212-14, even though some of these cells express very low levels of ACE2. We showed that this is the case for lymphocytes (fig. S2). This finding suggests that SARS-CoV-2 has either an alternative mechanism to enter the cells or that auxiliary molecules at the plasma membrane may fix the virus until it interacts with an ACE2 molecule.

Since the structures of the spike of SARS-CoV-1 (sCoV-1) and the sCoV-2 proteins are similar15,16, we used the P-HIPSTer algorithm to uncover human proteins that putatively interact with the viruses17. Seventy-one human proteins were predicted to interact with sCoV-1 (fig. S3). We then cross-referenced the proteins with five databases of plasma membrane proteins to identify the ones located on the cell surface (see Methods for details). CD4 was the only protein predicted to interact with sCoV-1 that appeared in all five databases (fig. S3). CD4 is expressed mainly in T helper lymphocytes and has been shown to be the gateway for HIV18. Since CD4+ T lymphocytes orchestrate innate and adaptive immune responses19,20, infection of CD4+ T cells by SARS-CoV-2 might explain lymphocytopenia and dysregulated inflammatory response in severe COVID-19 patients. Moreover, from an evolutionary perspective, the infection of CD4+ T cells represents an effective mechanism for viruses to escape the immune response21.

To test whether human primary T cells are infected by SARS-CoV-2, we purified CD3+CD4+ and CD3+CD8+ T cells from the peripheral blood of non-infected healthy controls/donors (HC), incubated these cells with SARS-CoV-2 for 1h, and then exhaustively washed them to remove any residual virus. The viral load was measured 24h post-infection. We were able to detect SARS-CoV-2 RNA in primary CD4+ T cells but not CD8+ T cells (fig. 1A). To confirm the presence of SARS-CoV-2 infection, we performed in situ hybridization using probes against the viral RNA-dependent RNA polymerase (RdRp) gene, immunofluorescence for sCoV-2 and transmission electron microscopy. All three approaches confirmed that SARS-CoV-2 infects CD4+ T cells (fig. 1B, 1C and fig. S4). Moreover, we detected different SARS-CoV-2 RNAs in infected CD4+ T cells (fig. S5A). Notably, the viral RNA level increases with time (fig. 1D) and we identified the presence of the negative strand (antisense) of SARS-CoV-2 in the infected cells (fig. 1E), demonstrating that the virus is able to assemble viral factories and replicate in T helper cells. Plaque assay also revealed that SARS-CoV-2-infected CD4+ T cells produce infectious viral particles (fig. 1F and S5B-C).

To confirm that SARS-CoV-2 infects CD4+ T cells in vivo, we purified CD4+ and CD8+ T cells from peripheral blood cells of COVID-19 patients (table S1). Similar to our ex vivo findings, SARS-CoV-2 RNA was detected in CD4+ T cells, but not in CD8+ T cells from COVID-19
patients (fig. 1G). Yet, the viral load was markedly higher in CD4+ T cells from severe COVID-19 patients in comparison to patients with the moderate form of the disease (fig. 1G). Using publicly available single-cell sequencing data22, we were also able to detect the presence of SARS-CoV-2 RNA in 2.1% of CD4+ T cells of the bronchoalveolar lavage (BAL) of patients with the severe but not the moderate form of COVID-19 (fig. 1H). Thus, our data demonstrate that SARS-CoV-2 infects CD4+ T cells and the infection associates with the severity of COVID-19.

We sought to explore the role of the CD4 molecule in SARS-CoV-2 infection. Based on the putative interaction found using P-HIPSTer, we performed molecular docking analyses and predicted that sCoV-2 receptor binding domain (RBD) directly interacts with the N-terminal domain (NTD) of CD4 Ig-like V type (fig. 2A and S6). Molecular dynamics simulations with stepwise temperature increase were applied to challenge the kinetic stability of the docking model representatives (fig. 2B). Two models remained stable after the third step of simulation at 353 Kelvin and represent likely candidates for the interaction between the CD4 NTD and sCoV-2 RBD (fig. 2B). Additionally, convergence towards the two surviving models was tested for closely related binding mode models present among the remaining cluster candidates and was verified in one case, which indicates plausible and rather stable interaction between CD4 NTD and sCoV-2 RBD (fig. S6). The interaction region of RBD is predicted to overlap with that of human ACE2 (fig. 2C and 2D). The interaction region of RBD is predicted to overlap with that of human ACE2 (fig. 2C and 2D). The interaction between CD4 and sCoV-2 was confirmed by co-immunoprecipitation of sCoV-2 and full length recombinant CD4 (fig. 3A). Consistent with a mechanism where CD4-sCoV-2 interaction is required for infection, we observed that increasing concentrations of soluble CD4 (sCD4) reduced CD4+ T cell infection by SARS-CoV-2 (fig. 3B).

To gain further insights into the importance of CD4-sCoV-2 binding to SARS-CoV-2 infection, we purified CD4+ T cells and pre-treated them with anti-CD4 polyclonal antibody. We observed a dose-dependent reduction in viral load in CD4+ T cells pre-treated with anti-CD4 antibody, showing that CD4 is necessary for SARS-CoV-2 infection (fig. 3C). Remarkably, the same monoclonal antibody that has been used to block HIV entry in CD4+ T cells18,23 also blocked SARS-CoV-2 entry in a dose dependent manner (fig. 3D). This observation is consistent with our in silico model (fig. 2 and S6E) that predicts that sCoV-2 binds to a region of CD4 which is neighbor to where envelope-displayed glycoprotein spike complex (Env) is shown to bind24. These data demonstrate that the CD4 molecule is necessary for infection of CD4+ T cells by SARS-CoV-2 and suggest that SARS-CoV-2 may use a mechanism that somehow resembles HIV infection.
In HIV infection, CD4 alone is not sufficient to allow the virus to enter CD4+ T cells25. Instead, the Env must also interact with co-receptors (CCR5 or CXCR4)25,26. In this context, we tested whether CD4 alone was sufficient to allow SARS-CoV-2 entry. Inhibition of ACE2 using polyclonal antibody abrogated SARS-CoV-2 entry in CD4+ T cells (fig. 3E), suggesting that the canonical entry mechanism involving ACE2 and TMPRSS211 is also required. To exclude the possibility that the polyclonal anti-ACE2 antibody cross-reacts with CD4, we designed a peptide to specifically block ACE2-sCoV-2 interaction (fig. S7). The peptide recapitulated the effect of anti-ACE2 antibody and also reduced the viral load in a dose dependent manner (fig. 3F). Similarly, inhibition of TMPRSS2 with camostat mesylate also reduced SARS-CoV-2 infection (fig. 3G). Hence, ACE2, TMPRSS2 and CD4 act in concert to allow the infection of CD4+ T cells by SARS-CoV-2.

To assess the consequences of SARS-CoV-2 infecting CD4+ T cells, we performed mass spectrometry-based shotgun proteomics in ex vivo infected CD4+ T cells. We found that SARS-CoV-2 infection affects multiple housekeeping pathways associated with the immune system, infectious diseases, cell cycle and cellular metabolism (fig. 4A, 4B, S8, and S9), similarly to what was observed in HIV-infected CD4+ T cells 27. SARS-CoV-2 infection elicits alterations associated with “cellular responses to stress”, which include changes in proteins involved in translation, mitochondrial metabolism, cytoskeleton remodeling, cellular senescence and apoptosis (fig. 4B and table S2). Consistent with these changes, ex vivo infection of CD4+ T cells resulted in a decrease of 10% in cell viability 24h after infection even with a low MOI (0.1) (fig. S10C).

The infection of CD4+ T cells by HIV also causes an increase in IL-10 production28,29. The expression and release of IL-10 has been widely associated with chronic viral infections and determines viral persistence 30. Noteworthy, increased serum levels of IL-10 are associated with COVID-19 severity31,32. We found that IL10 expression by CD4+ T cells was higher in BAL (fig. S10B) and blood (fig. 4C) of severe COVID-19 patients. These changes were at least in part cell autonomous, since purified CD4+ T cells infected ex vivo with SARS-CoV-2 also expressed higher levels of IL10 (fig. S10D). Due to the immunomodulatory role of IL-10, we measured the expression of key pro- and anti-inflammatory cytokines involved in the immune response elicited by CD4+ T cells. CD4+ T cells from severe COVID-19 patients presented decreased expression of IFNG and IL17A in relation to cells from patients with the moderate form of the disease or healthy donors (fig. 4C). These results show that SARS-CoV-2 infection induces IL10 expression in CD4+ T cells. This phenomenon is associated with a suppression of genes that encode key pro-inflammatory cytokines produced by CD4+ T cells, such as IFNγ and IL-17A, and correlates with disease severity.
Upregulation of IL10 in HIV-infected cells requires STAT3-independent activation of the transcription factor CREB-1 via Ser133 phosphorylation. Consistent with the similarities between SARS-CoV-2 and HIV infections, CREB-1 phosphorylation at Ser133 was increased in SARS-CoV-2-infected CD4+ T cells (fig. 4D and S10E). Thus, SARS-CoV-2 infection appears to directly trigger a signaling cascade that culminates in upregulation of IL10 in CD4+ T cells. Indeed, expression of IL10 is positively correlated with viral load in circulating CD4+ T cells from COVID-19 patients (fig. 4E). Altogether, our data demonstrate that SARS-CoV-2 infects CD4+ T cells, impairs cell function, leads to increased IL10 expression and compromises cell viability, which in turn dampens immunity against the virus and contributes to disease severity.

Impaired innate and adaptive immunity is a hallmark of COVID-19, particularly in patients who progress to the critical stages of the disease. Here we show that the alterations in immune response associated with the severe illness from COVID-19 are triggered by infection of CD4+ T helper cells by SARS-CoV-2 and consequent dysregulation of immune function.

T helper cells are infected by SARS-CoV-2 using a mechanism that involves binding of sCoV-2 to CD4 and entry via the canonical ACE2/TMPRSS2 pathway. Our model suggests the hypothesis that CD4 stabilizes SARS-CoV-2 on the cell membrane until the virus encounters an ACE2 molecule to enter the cell (fig. S11). This mechanism is similar to what has been described for HIV infection. Once in CD4+ T cells, SARS-CoV-2 leads to protein expression changes consistent with alterations in pathways related to stress response, apoptosis and cell cycle regulation which, if sustained, culminate in cell dysfunction and may lead to cell death. SARS-CoV-2 infection also results in phosphorylation of CREB-1 transcription factor and induction of its target gene IL10 in a cell autonomous manner. Yet again, this mechanism resembles HIV infection.

IL-10 is a powerful anti-inflammatory cytokine and has been previously associated with viral persistence. Serum levels of IL-10 increase during the early stages of the disease – when viral load reaches its peak – and may predict COVID-19 outcome. This increase occurs only in patients with the severe form of COVID-19. Consistent with these findings, we found that expression of IL10 positively correlates with viral load in CD4+ T cells. This is an unique feature of patients with the severe form of COVID-19, since we could not detect the virus in CD4+ T cells from patients with the moderate form of the disease and IL10 expression in CD4+ T cells is much lower in these patients. In contrast, we found IFNG and IL17A to be upregulated in CD4+ T cells of patients with the moderate illness, indicating a protective role for these cytokines. However, in patients with the severe symptoms, the expression of IFNG and IL17A in CD4+ T cells is dampened. IL-10 is a known suppressor of Th1 and Th17
responses36 and it is likely to contribute to the changes in \textit{IFNG} and \textit{IL17A}. These features will ultimately reflect in the quality of the immune response, which in combination with T cell death and consequent lymphopenia, may result in transient/acute immunodeficiency and impair adaptive immunity in severe COVID-19 patients6-8.

How long these alterations in T cell function persist \textit{in vivo} and whether they have long-lasting impacts on adaptive immunity remains to be determined. Hence, avoiding T cell infection by blocking sCoV-2-CD4 interaction and boosting T cell resistance against SARS-CoV-2 might represent complementary therapeutic approaches to preserve immune response integrity and prevent patients from progressing to the severe stages of COVID-19.
Author Contributions

Financial Support

This work was supported by grants from FAEPEX-UNICAMP (#2295/20, #2458/20, #2266/20 and #2274/20), São Paulo Research Foundation (FAPESP) (#2019/16116-4, #2019/06372-3, #2020/04583-4, #2013/08293-7, #2020/04579-7, #2015/15626-8, #2018/14933-2, #2020/04746-0, #2019/00098-7, #2020/04919-2, #2017/01184-9), the National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM) (#465489/2014-1) and FINEP (#01.20.0003.00). A.S.F. and M.A.M. were supported by CNPq productivity awards (#306248/2017-4 and #310287/2018-9). A.J.R.F, G.G.D., A.C.C., N.S.B., L.B.M., F.C., V.C.C., A.B., T.L.K, G.S.P., R.G.L. were supported by FAPESP fellowships (#2019/17007-4, #2019/22398-2, #2019/05155-9, #2019/06459-1, #2019/04726-2, #2017/23920-9, #2016/24163-4, #2016/23328-0). V.O.B. and L.N.S. were supported by FAEPEX fellowship (#2295/20 and #2319/20). D.M. was supported by CAPES fellowship.

Acknowledgment

The authors acknowledge the technical support of Elzira E. Saviani, Paulo A. Baldasso and Mariana Ozello Baratti. The authors would like to thank Dr. Leda Castilho (UFRJ), for providing
sCoV-2 recombinant protein and Dr. Hernandes F. de Carvalho (UNICAMP), for providing valuable reagents for ICC. We thank the National Institute of Science and Technology of Photonics Applied to Cell Biology (INFABIC) for aid with confocal microscopy.
References

Figure 1
Figure 2
Figure 3
Figure 4
Legends

Figure 1. SARS-CoV-2 infects CD4+ T cells in vitro and in vivo

Peripheral blood CD3+CD4+ and CD3+CD8+ were infected with mock control or SARS-CoV-2 (CoV-2) (MOI 0.1) for 1 h under continuous agitation. (A) Viral load was assessed by RT-qPCR 24 h after infection. (B) Cells were washed, cultured for 24 h, fixed with PFA 4% and stained with RdRp probe for in situ hybridization or anti-sCoV-2 for immunofluorescence. Cells were analyzed by confocal microscopy. (C) C1-C5 - Representative transmission electron microscopy (EM) micrographs showing viral particles (asterisks) inside lymphocytes 2 h after infection. (D) Viral load was determined by qPCR 2 h and 24 h after infection. (E) PCR for antisense CoV-2 strand was performed in CD4+ T and Vero (positive control) cells infected with mock or CoV-2. (F) Vero cells were incubated with the supernatant of mock control or CoV-2 infected CD4+ T cells under continuous agitation for 1 h. The viral load in Vero cells was measured after 72 h using plaque assay. PFU – plaque-forming unit. (G) Viral load was measured by RT-qPCR in peripheral blood CD4+ and CD8+ T cells from healthy controls (HC), moderate and severe COVID-19 patients. (H) CoV-2 RNA detection in CD4+ T cells from bronchoalveolar lavage (BAL) single-cell sequencing data reveal the presence of CoV-2 RNA. Data represent mean ± SEM of at least two independent experiments performed in triplicate or duplicate (f). ***p < 0.001 compared to all. ND=not detected.

Figure 2. A model for sCoV-2 RBD and CD4 NTD interaction.

(A) Interaction energy (dG separated) versus RMSD plot shows a high diversity of binding modes with similar energies. Among the 500 best models, 50 cluster best ranked representatives (shown as blue crosses) were selected for further evaluation with molecular dynamics simulations. (B) RMSD to the initial docked complex as a function of molecular dynamics simulation time over 200 ns and four steps of temperature. At each temperature step, well behaved models are depicted as colored curves, while divergent candidates are shown as grey curves. Kinetically stable models making reasonable interactions remain close to their initial docked conformation. Only two models remain stable after the third step of 50 ns at 353K. For both models, resilient contacts throughout simulation are shown in Fig. S5. (C) Interaction models of ACE2 and sCoV-2 RBD. The two best candidates according to molecular dynamics simulation, model95 and model148, present distinct binding modes. For the first case, interaction occurs mainly in the N-terminal portion of CD4 NTD, while the latter have important contributions of the central part of this domain. (D) Full-length model of sCoV-
2 and CD4 NTD interaction obtained by alignment of sCoV-2 RBD from model 148 to the sCoV-2 RBD opened state from PDB 6vyb EM structure.

Figure 3. Infection of CD4+ T cell by SARS-CoV-2 is dependent on CD4 and ACE2 molecules.

(A) Recombinant sCoV-2 (with twin-strep-tag) and CD4 were co-incubated and immunoprecipitated with anti-CD4. Complex formation was determined by affinity blotting using streptavidin-HRP. (B) Cells were infected with mock control or SARS-CoV-2 (CoV-2) in the presence of vehicle or soluble CD4 (sCD4) in different concentrations (200, 100 or 50 µg/ml) for 1h under continuous agitation. Viral load was assessed by RT-qPCR 24 h after infection. (C-D). Primary human CD4+ T cells were stimulated with IgG control, or anti-CD4: (C) polyclonal (αCD4) or (D) monoclonal (RPA-T4) antibody 18 h prior to infection with mock control or CoV-2. Viral load was determined by RT-qPCR 24 h after infection. (E) Peripheral blood CD4+ T cells were stimulated with IgG control or anti-ACE2 (αACE2) polyclonal antibody 18 h prior to infection with mock control or CoV-2 for 1 h. Viral load was determined 24 h after infection. (F) Human CD4+ T cells were incubated for 1 h prior to infection with control peptide or a peptide that binds to the domain of ACE2 that interacts with sCoV-2 (βACE2). The cells were infected with mock control or CoV-2 for 1 h and viral load analyzed 24 h later by RT-qPCR. (G) CD4+ T cells were incubated with vehicle or camostat mesylate for 18 h before the infection with mock control or CoV-2 for 1h. Viral load was analyzed by RT-qPCR. Data represent mean ± SEM of at least two independent experiments performed in triplicate. ***p < 0.0001 compared to all, ###p < 0.001, *p < 0.05 compared to CoV-2

Figure 4. Infection of CD4+ T cells by SARS-CoV-2 alters cell function and triggers IL-10 production

(A) Heatmap of differentially expressed proteins and their associated biological processes. (B) Network of differentially expressed proteins and their associated biochemical pathways. (C) Relative expression of IFNG, IL17, TGFB1, and IL10 in peripheral blood CD3+CD4+ cells from COVID-19 patients (moderate or severe) and healthy control (HC). Data represent mean ± SEM. Each dot represents a patient sample. (D) Representative immunoblotting of CREB1Ser133 and STAT3 in Peripheral blood CD3+CD4+ infected with mock control or SARS-CoV-2. ***p < 0.001, **p < 0.01, *p < 0.05 compared to all.