Environmental impact of Personal Protective Equipment supplied to health and social care services in England in the first six months of the COVID-19 pandemic

<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Affiliation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miss</td>
<td>Chantelle Rizan*</td>
<td>1) ENT Research Fellow; Brighton and Sussex University Hospitals NHS Trust, Brighton, UK 2) Honorary Clinical Teaching Fellow; Brighton and Sussex Medical School, Brighton, UK 3) Sustainable Surgery Fellow; Centre for Sustainable Healthcare, Oxford, UK 4) Surgical Research Fellow; Royal College of Surgeons of England, London, UK</td>
</tr>
<tr>
<td>Professor</td>
<td>Malcolm Reed</td>
<td>1) Dean and Professor of Surgical Oncology; Brighton and Sussex Medical School, Brighton, UK</td>
</tr>
<tr>
<td>Professor</td>
<td>Mahmood F Bhutta</td>
<td>1) Consultant and Academic Lead in ENT Surgery; Brighton and Sussex University Hospitals NHS Trust, Brighton, UK 2) Honorary Clinical Professor; Brighton and Sussex Medical School, Brighton, UK 3) Founder; BMA Medical Fair and Ethical Trade Group, British Medical Association, London, UK</td>
</tr>
</tbody>
</table>

*Corresponding author

Address: ENT Department, Royal Sussex County Hospital, Eastern Road, Brighton, BN2 5BE
Email: chantelle.rizan@nhs.net

Word count: 3,365
ABSTRACT

Objectives
Use of Personal Protective Equipment (PPE) has been central to controlling spread of SARS-CoV2. This study aims to quantify the environmental impact of this, and to model strategies for its reduction.

Methods
Life cycle assessment was used to determine environmental impacts of PPE supplied to health and social care in England during the first six months of the COVID-19 pandemic. The base scenario assumed all products were single-use, air freighted, and disposed via clinical waste. Scenario modelling was used to determine the effect of 1) switching mode of, or eliminating, international travel during supply, 2) reducing glove use 3) using reusable alternatives, 4) maximal recycling.

Results
The carbon footprint of PPE supplied during the study period totalled 158,838 tonnes CO₂e, with greatest contributions from gloves, aprons, face shields, and Type IIR surgical masks. The estimated damage to human health was 314 DALYs (disability adjusted life years), impact on ecosystems was 0.67 species/year (loss of local species per year), and impact on resource depletion costing US $ 20.4 million.

Scenario modelling indicated one-third of the carbon footprint could be avoided through switching to shipping, and by 41% through manufacturing PPE in the UK. The carbon footprint was reduced by 83% compared with the base scenario through a combination of UK manufacturing, reducing glove use, using reusable gowns and reuse of face shields, and maximal recycling, estimated to save 259 DALYS, 0.54 species/year, and US $ 15 million due to resource depletion.

Conclusions
The environmental impact of PPE could be reduced through shipping supplies or domestic manufacture, rationalising glove use, using reusables where possible, and optimising waste management.

Keywords:
COVID-19; Personal Protective Equipment; Life cycle assessment; Sustainability
SUMMARY BOX

What is already known on this topic

- The current COVID-19 pandemic has seen a massive global increase in the use and manufacture of PPE which has contributed, with other measures, to the reduction in transmission of the virus in many countries.

What this study adds

- The carbon footprint of PPE supplied to health and social care in England in the first six months of the COVID-19 pandemic was 158,848 tonnes CO$_2$e, equivalent to around 65,500 return flights from London to New York.
- The environmental impact of PPE could be reduced through shipping supplies or domestic manufacture, rationalising glove use, using reusables where possible, and optimising waste processing.
INTRODUCTION

Use of Personal Protective Equipment (PPE) has been a central behavioural and policy response to control spread of the SARS-CoV2 virus during the global COVID-19 pandemic. In particular masks, and sometimes gloves, aprons, gowns, and face/eye protection have been recommended or used in high-risk situations such as healthcare settings or enclosed public spaces. The resultant surge in demand for PPE has required an increase in PPE production, including an estimated 11% increase in global production of gloves this year.\(^{(1)}\)

Whereas there is evidence that PPE is effective in limiting transmission of the SARS-CoV2 virus, the necessity and extent of PPE for use in different circumstances is still subject to debate.\(^{(2)}\) Excessive use of PPE risks generating unnecessary financial cost: for example, by early July 2020 the UK government had allocated GBP £15bn of funds for purchasing PPE for public sector workers.\(^{(3)}\) In addition, use of PPE generates a cost to the environment (which in turn impacts on human health), but to date that risk has not been quantified.

Here we use the approach of life cycle assessment (LCA) to estimate emissions and resulting environmental impact from the most common PPE items prescribed and used in the National Health Service (NHS) and public social care sector in England: masks, gloves, aprons, gowns, and face/eye protection.\(^{(4)}\) We equate this with data on the volumes of these products supplied to health and social care services in England in the first six months of the COVID-19 pandemic, to estimate the overall environmental impact of PPE over this time period. We evaluate the associated damage to human health (measured in disability adjusted life years), ecosystems (loss of local species), and resource scarcity (financial cost involved in future mineral and fossil resource extraction).\(^{(5)}\) We model a number of approaches which could reduce such impact, and which could inform future policy on use and supply of PPE.

METHODS

Selection of representative PPE items and determination of material composition

We based our analysis on products in use at our hospital (Royal Sussex County Hospital, Brighton UK) to represent commonly used PPE. Specifically, we evaluated nitrile gloves, polyethylene aprons, plastic face shields (to represent all eye/face protection), polypropylene fluid-repellent gowns, polypropylene filtering face piece (FFP) respirator masks (both cup fit and duckbill style), Type II polypropylene surgical masks, and Type IIR polypropylene fluid-resistant surgical masks. Type II surgical masks were not available in our hospital setting and so an example was sourced elsewhere, with packaging assumed to be the same as the Type IIR surgical masks.

For each item, we used manufacturer information to determine the raw material composition, or expert knowledge where such information was not available. Each component of the item was weighed using Fisherbrand FPRS4202 Precision balance scales (Fisher Scientific, Loughborough, UK). We included associated primary and secondary packaging up to the packing unit supplied to the hospital.

Parameters for Life Cycle Assessment

An LCA was conducted in accordance with ISO 14044 Guidelines,\(^{(6)}\) and modelled using SimaPro Version 9.10 (PRé Sustainability, Amersfort, Netherlands), with additional analysis using Microsoft Excel for Mac Version 16.25 (Microsoft Corp, Washington, US). We performed a ‘cradle to grave’ LCA, including raw material extraction, manufacture, transport, and disposal.
The previously determined composition and weight of materials in each item and packaging was matched with closest materials within the Ecoinvent database Version 3.6 (within SimaPro), to determine material specific global average impacts of raw material extraction, production, and transport to the ‘end user’ (in this case the manufacturer).

For manufacturing, the country of origin (COI) was modelled based on those reported by the NHS PPE Dedicated Supply Channel.(7) Where a type of product was procured from more than one country, a weighted average was applied to our calculations on the assumption that equal numbers of the product were supplied from each listed supplier.(7) Electricity consumption during the manufacturing process was modelled on best available secondary data for comparable products,(8-11) and electricity inventory processes were chosen and weighted based on the COI(s). We excluded water and fuel during manufacture because such data were not available, and are unlikely to materially affect results.

For transportation we assumed all items were air freighted from the COI to the UK, because this method of transport was, and is, commonly used in England to procure supplies quickly during the COVID-19 pandemic.(12) We included 160km of travel by road both within the COI and in the UK, with the first and last 8km of this assumed to be via courier, and the remaining distance via heavy goods vehicles. All transportation distances were estimated using the online Pier2Pier tool (Supplementary table 1).(13)

The processes selected for the LCA inventory are shown in Supplementary table 2. We modelled life cycles on the basis that all items were used only once, and (in accordance with UK guidance) disposed of as clinical waste(14) via high-temperature hazardous incineration.(15)

Impact assessment methodologies

We used the World ReCiPe Midpoint Hierarchist method Version 1.1 to characterise emissions from the lifecycle inventory assessment and combined these into midpoint impact categories. Eighteen midpoint impact categories were considered within the ‘scope’ of the LCA: global warming, stratospheric ozone depletion, ionising radiation, ozone formation (on human health, and terrestrial ecosystems), fine particulate matter formation, terrestrial acidification,eutrophication (freshwater, and marine), ecotoxicity (terrestrial, freshwater, marine), toxicity (human carcinogenic, human non-carcinogenic), land use, resource scarcity (mineral, and fossil), and water consumption. Global warming was the primary impact evaluated, with greenhouse gases summated and expressed as carbon dioxide equivalents (CO₂e), providing a ‘carbon footprint’. We also aggregated midpoint impact categories to calculate endpoint factors for damage to human health, the natural environment, and resource scarcity, using the ReCiPe Endpoint Hierarchist method, Version 1.1.

We calculated environmental impact values per item, and then multiplied by the total number of PPE items supplied to health and social care services in England between 25th February and 23rd August 2020, using publicly available volumes data.(5) For respirator masks we combined volumes of FFP2 and FFP3 masks, and assumed an equal split between cup fit and duckbill styles. Table 1 details extracted parameters on electricity in manufacture, and on COI, and volumes of PPE supplied to health and social care services in England.
Table 1: Model parameters for manufacture and supply of PPE items. Model parameters and source of data on electricity within manufacture (not including production of material), country of origin, and number supplied to the NHS in England (25st February-23rd Aug 2020). FFP=filtering facepiece.

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturing electricity (kWh/kg product)</th>
<th>Country of origin (ratio)</th>
<th>Number supplied Feb-Aug 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apron</td>
<td>0.490(10)</td>
<td>China, Thailand (9:1)</td>
<td>441,061,000</td>
</tr>
<tr>
<td>Face shield</td>
<td>0.367= mean(8, 10, 11)</td>
<td>China (1)</td>
<td>45,326,000</td>
</tr>
<tr>
<td>FFP respirator (any type)</td>
<td>0.296(11)</td>
<td>China, UK, France (1:1:1)</td>
<td>37,212,000</td>
</tr>
<tr>
<td>Gloves (single)</td>
<td>2.790(9)</td>
<td>Malaysia (1)</td>
<td>1,839,235,000</td>
</tr>
<tr>
<td>Single-use gown</td>
<td>0.316(8)</td>
<td>China, Egypt, Germany (9:4:3)</td>
<td>5,985,000</td>
</tr>
<tr>
<td>Surgical mask (Type II)</td>
<td>0.296(11)</td>
<td>China, UK, Mexico (11:2:1)</td>
<td>6,623,000</td>
</tr>
<tr>
<td>Surgical mask (Type IIR)</td>
<td></td>
<td></td>
<td>479,341,000</td>
</tr>
<tr>
<td>Disinfectant wipe</td>
<td>0.296(11)</td>
<td>China (1)</td>
<td>-</td>
</tr>
<tr>
<td>Reusable gown</td>
<td>0.316(8)</td>
<td>China, UK (3:1)</td>
<td>-</td>
</tr>
</tbody>
</table>

Scenario modelling
We modelled the effect of four approaches that could reduce the environmental impact of PPE manufacture, supply and disposal.

First, we modelled the impact of changing source or transport of PPE items. We modelled switching the mode of international transport supply from air freight to sea shipping containers. We also modelled domestic (UK) manufacture of products, eliminating international transport but using the same road travel assumptions, with UK electricity grid inventory process data for manufacture.

Second, we modelled reducing glove use by replacing use of gloves (with subsequent hand washing), with hand washing alone (which can effectively destroy the virus).(16) It was not necessary to calculate the environmental impact of hand washing itself, because hand washing is common to both scenarios, and so not relevant to comparative analysis.

Third, we modelled the impact of using reusable gowns and reusable face shields. Reusable gowns were assumed to be laundered and re-used 75 times before disposal (based upon direct correspondence with the manufacturer). We extracted energy, water, and detergent requirements, based upon previously published studies and reports.(8, 17) Detergent chemical composition was included where known, and where the chemical constituted ≥1% of the detergent composition (Supplementary table 3). The transportation of linen from the user site to a laundering facility was assumed to be 160 km (round trip) via heavy goods vehicles by road. Face shields were assumed to be reused five times, with cleaning by a disinfectant wipe between uses- an accepted practiced in the UK.(18) To inform this model we calculated the environmental impacts of reusable gowns and disinfectant wipes, using the same approach detailed earlier for other PPE (except that secondary packaging of reusable gowns was excluded, as this was likely to reach the insignificance threshold of contributing <1% to the
impact).(19) The COI of the reusable gown and disinfectant wipes in use at our hospital were assumed to be representative, and determined using either the packaging or direct contact with the manufacturer.

Finally, we modelled the environmental impact of maximal recycling of products, assuming it was possible to recycle all items and their components. We used the open-loop ‘recycled content method’, which allocates subsequent emissions and environmental impacts of the recycling process, and net reduction of virgin material acquisition, to the production of the recycled goods.(19)

RESULTS
The composition and weight of materials for each item of PPE and associated packaging are detailed in Table 2.
Table 2: Material composition of PPE. All items single-use aside from components of reusable gown. FFP=filtering facepiece, LDPE= low density polyethylene, no.= number, *= assumed proportion

<table>
<thead>
<tr>
<th>Product</th>
<th>Example manufacturer and model</th>
<th>Item Material</th>
<th>Weight (g) (no. uses when >1)</th>
<th>Packaging Material</th>
<th>Weight (g)</th>
<th>Number of items/package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apron</td>
<td>Trans-Continental Marketing TCMA PR200W</td>
<td>LDPE film</td>
<td>9.86</td>
<td>LDPE film</td>
<td>6.36</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>365.67</td>
<td>1000</td>
</tr>
<tr>
<td>Face shield</td>
<td>Miers Mio-shield</td>
<td>LDPE film, Polyurethane foam, Synthetic rubber</td>
<td>18.53, 5.44, 4.95</td>
<td>LDPE film</td>
<td>8.48</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>683.57</td>
<td>200</td>
</tr>
<tr>
<td>FFP respirator (cup fit)</td>
<td>3M FFP3 8833</td>
<td>Non-woven polypropylene, Melt-blown polypropylene, Polypropylene injection moulded, Polyurethane foam, Synthetic rubber, Aluminium, Steel</td>
<td>5.98, 2.99, 3.93, 2.54, 2.55, 1.13, 0.32</td>
<td>Boxboard</td>
<td>88.32</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>350.40</td>
<td>120</td>
</tr>
<tr>
<td>FFP respirator (duckbill)</td>
<td>3M FFP3 1863</td>
<td>Non-woven polypropylene, Melt-blown polypropylene, Polyurethane foam, Synthetic rubber, Steel</td>
<td>5.52, 2.76, 0.85, 0.77, 0.48</td>
<td>LDPE film</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Boxboard</td>
<td>88.32</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>350.40</td>
<td>120</td>
</tr>
<tr>
<td>Gloves (single)</td>
<td>Schottlander Soft touch flexible nitrile</td>
<td>Synthetic rubber</td>
<td>3.23</td>
<td>Boxboard</td>
<td>64</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>382.55</td>
<td>1000</td>
</tr>
<tr>
<td>Single-use gown</td>
<td>YADU Medical surgical gown reinforced</td>
<td>Non-woven polypropylene, Synthetic rubber</td>
<td>134.74, 7.72</td>
<td>LDPE film</td>
<td>4.43</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paper</td>
<td>6.46</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>911.22</td>
<td>50</td>
</tr>
<tr>
<td>Surgical mask (Type II)</td>
<td>Genmed Surgical face mask Type II</td>
<td>Non-woven polypropylene, Melt-blown polypropylene</td>
<td>1.00, 0.50</td>
<td>Boxboard</td>
<td>41.75</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Corrugated cardboard</td>
<td>843.30</td>
<td>50</td>
</tr>
<tr>
<td>II)</td>
<td>Elastic strap</td>
<td>Synthetic rubber</td>
<td>Aluminium</td>
<td>Surgical mask (Type IIR)</td>
<td>Non-woven polypropylene</td>
<td>Melt-blown polypropylene</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
</tbody>
</table>
The carbon footprint of individual items were estimated as follows: single-use gowns 1,240 g CO₂e, face shield 347 g CO₂e, cup fit FFP respirator 162 g CO₂e, duckbill FFP respirator 103 g CO₂e, apron 95 g CO₂e, single glove 40 g CO₂e, Type IIR surgical mask 31 g CO₂e, and Type II surgical mask 22 g CO₂e. The mean contribution of production of materials to the overall carbon footprint of items was 33% (range: 22 - 36%), 31% from transportation (range 26 - 41%), 28% from clinical waste (range: 21 - 31%), 4% from production of packaging materials (range: 0.4 – 9%), and 3% from electricity used within manufacturing (range 1.5 – 19%) (Figure 1). Supplementary tables 4-11 show contributions per item across all environmental impacts, with further breakdown of processes. Supplementary figures 1-8 provide network diagrams visualising the process drivers of global warming impact.

The carbon footprint of all PPE supplied to health and social care services in England between 25th February-23rd Aug totalled 158,838 tonnes CO₂e. The proportional contribution for each type of item was primarily determined by the volumes supplied of that item, and was greatest for gloves, followed by aprons, face shields, and Type IIR surgical masks. The relative impact of PPE usage during this period on the carbon footprint and other midpoint environmental measures are detailed in Table 3 and in Supplementary figure 9. Endpoint impact results estimate that the total damage to human health during this period was 314 DALYs (disability adjusted life years), the impact on ecosystems was 0.67 species.year (loss of local species per year), and the impact on resource depletion equated to US $ 20.4 million (GBP £ 15.6 million) involved in future mineral and fossil resource extraction.
Table 3: Environmental impact of PPE supplied to NHS in England Feb-Aug 2020

Environmental impacts (midpoint categories) measured using life cycle assessment and modelled on total volumes of core PPE supplied to health and social care services in England between 25th February and 23rd August 2020. FFP = filtering facepiece, 1,4-DCB = dichlorobenzene, CFC11 = Trichlorofluoromethane, CO\textsubscript{2}e = carbon dioxide equivalents, Cu = copper, eq = equivalents, FFP = filtering facepiece, kBq Co-60 eq = kilobecquerel Cobalt-60, FFP = filtering facepiece, m2a = square meter years, N = nitrogen, NO\textsubscript{x} = nitrous oxides, P = phosphate, PM2.5 = particulate matter <2.5 micrometers, SO\textsubscript{2} = sulphur dioxide

<table>
<thead>
<tr>
<th>Impact category</th>
<th>Unit</th>
<th>Apron</th>
<th>Face shield</th>
<th>FFP respirator</th>
<th>Gloves</th>
<th>Gown</th>
<th>Surgical mask (Type II)</th>
<th>Surgical mask (Type IIR)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td>kg CO\textsubscript{2}e</td>
<td>41,913,245</td>
<td>15,716,109</td>
<td>4,940,091</td>
<td>73,873,941</td>
<td>7,422,168</td>
<td>142,496</td>
<td>14,830,000</td>
<td>158,838,050</td>
</tr>
<tr>
<td>Stratospheric ozone depletion</td>
<td>kg CFC11 eq</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>53</td>
</tr>
<tr>
<td>Ionizing radiation</td>
<td>kBq Co-60 eq</td>
<td>1,236,713</td>
<td>423,755</td>
<td>177,939</td>
<td>1,881,951</td>
<td>226,040</td>
<td>4,119</td>
<td>443,263</td>
<td>4,393,781</td>
</tr>
<tr>
<td>Ozone formation, Human health</td>
<td>kg NO\textsubscript{x} eq</td>
<td>122,402</td>
<td>47,819</td>
<td>13,267</td>
<td>217,992</td>
<td>20,411</td>
<td>449</td>
<td>45,101</td>
<td>467,441</td>
</tr>
<tr>
<td>Fine particulate matter formation</td>
<td>kg PM2.5 eq</td>
<td>44,422</td>
<td>17,315</td>
<td>5,416</td>
<td>103,941</td>
<td>7,887</td>
<td>158</td>
<td>16,211</td>
<td>195,349</td>
</tr>
<tr>
<td>Ozone formation, Terrestrial ecosystems</td>
<td>kg NO\textsubscript{x} eq</td>
<td>126,014</td>
<td>49,180</td>
<td>13,586</td>
<td>223,385</td>
<td>20,877</td>
<td>458</td>
<td>45,988</td>
<td>479,487</td>
</tr>
<tr>
<td>Terrestrial acidification</td>
<td>kg SO\textsubscript{2} eq</td>
<td>112,055</td>
<td>44,114</td>
<td>13,568</td>
<td>221,932</td>
<td>19,728</td>
<td>401</td>
<td>41,134</td>
<td>452,932</td>
</tr>
<tr>
<td>Freshwater eutrophication</td>
<td>kg P eq</td>
<td>8,616</td>
<td>2,859</td>
<td>1,065</td>
<td>17,312</td>
<td>1,653</td>
<td>27</td>
<td>2,955</td>
<td>34,487</td>
</tr>
<tr>
<td>Marine eutrophication</td>
<td>kg N eq</td>
<td>782</td>
<td>514</td>
<td>165</td>
<td>1,205</td>
<td>137</td>
<td>3</td>
<td>265</td>
<td>3,072</td>
</tr>
<tr>
<td>Terrestrial ecotoxicity</td>
<td>kg 1,4-DCB</td>
<td>72,439,104</td>
<td>28,056,417</td>
<td>9,559,892</td>
<td>142,931,000</td>
<td>14,315,884</td>
<td>281,804</td>
<td>29,056,959</td>
<td>296,641,060</td>
</tr>
<tr>
<td>Freshwater ecotoxicity</td>
<td>kg 1,4-DCB</td>
<td>794,771</td>
<td>300,570</td>
<td>113,170</td>
<td>1,804,589</td>
<td>174,038</td>
<td>2,926</td>
<td>317,900</td>
<td>3,507,965</td>
</tr>
<tr>
<td>Marine ecotoxicity</td>
<td>kg 1,4-DCB</td>
<td>1,072,875</td>
<td>405,786</td>
<td>151,327</td>
<td>2,434,100</td>
<td>231,930</td>
<td>3,933</td>
<td>426,291</td>
<td>4,726,242</td>
</tr>
<tr>
<td></td>
<td>DCB</td>
<td>kg 1,4-DCB</td>
<td>1,763,964</td>
<td>593,934</td>
<td>231,192</td>
<td>2,927,716</td>
<td>340,374</td>
<td>5,546</td>
<td>607,368</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Human carcinogenic toxicity</td>
<td>kg 1,4-DCB</td>
<td>20,384,157</td>
<td>7,598,235</td>
<td>2,644,830</td>
<td>47,734,262</td>
<td>3,911,818</td>
<td>72,211</td>
<td>7,638,315</td>
<td>89,983,828</td>
</tr>
<tr>
<td>Human non-carcinogenic toxicity</td>
<td>kg 1,4-DCB</td>
<td>20,384,157</td>
<td>7,598,235</td>
<td>2,644,830</td>
<td>47,734,262</td>
<td>3,911,818</td>
<td>72,211</td>
<td>7,638,315</td>
<td>89,983,828</td>
</tr>
<tr>
<td>Land use</td>
<td>m² a crop eq</td>
<td>657,888</td>
<td>248,584</td>
<td>159,860</td>
<td>1,115,126</td>
<td>148,681</td>
<td>4,771</td>
<td>393,873</td>
<td>2,728,783</td>
</tr>
<tr>
<td>Mineral resource scarcity</td>
<td>kg Cu eq</td>
<td>46,897</td>
<td>34,518</td>
<td>11,750</td>
<td>535,725</td>
<td>14,166</td>
<td>326</td>
<td>36,103</td>
<td>679,486</td>
</tr>
<tr>
<td>Fossil resource scarcity</td>
<td>kg oil eq</td>
<td>14,419,850</td>
<td>5,500,407</td>
<td>1,675,363</td>
<td>24,311,388</td>
<td>2,661,637</td>
<td>47,685</td>
<td>5,065,671</td>
<td>53,682,001</td>
</tr>
<tr>
<td>Water consumption</td>
<td>m³</td>
<td>290,702</td>
<td>123,910</td>
<td>32,503</td>
<td>436,607</td>
<td>38,435</td>
<td>652</td>
<td>69,675</td>
<td>992,484</td>
</tr>
</tbody>
</table>

All rights reserved. No reuse allowed without permission.
Scenario analysis
For transportation, the carbon footprint of PPE was reduced by one-third by using shipping as the mode of overseas travel instead of air-freight, and by 41% by manufacturing PPE in the UK (saving 52,360, and 64,851 tonnes CO₂e respectively over the six month study period).

Reducing glove use to zero would have reduced the carbon footprint by 47%, saving 73,874 tonnes CO₂e over 6 months.

For reuse, the environmental impact of one use of a reusable gown was lower than that of a single-use gown across 16/18 environmental midpoint impact categories (with impact reductions of 24% to 86%) (Supplementary figure 10). The impact of reusable gowns on marine eutrophication was 45% greater than single-use gowns, with 63% of this impact from wastewater generated during the laundering process (Supplementary figure 11). The impact of reusable gowns on land use was more than double that of single-use gowns, with 86% of this effect due to single-use paper within the associated hand-towel and packaging (Supplementary figure 12). Reusing face shields five times with disinfectant wipe between use showed 57% to 73% lower impact across all midpoint categories, when compared with single use (Supplementary figure 13). Opting for reusable gowns and reusing face masks could have saved 31,620 tonnes of CO₂e over the study period (20% of the total for the PPE supplied).

Maximal recycling reduced the carbon footprint of PPE by 23% (saving 37,266 tonnes CO₂e).

A combination of UK manufacturing, reducing glove use to zero, reuse of gowns and face shields, and maximal recycling could have led to an 83% reduction (saving 132,190 tonnes CO₂e). Results of other midpoint impact categories are detailed in Supplementary table 12.

Endpoint category scenario modelling showed a similar pattern, with largest reductions seen through altering or eliminating overseas transport of PPE (Figure 2, Supplementary table 13). Switching to shipping during the period of study could have potentially saved an estimated 75 DALYS, 0.20 species.year, and US $ 7.7 million (GBP £ 5.9 million) due to resource depletion (compared with base scenario). Using UK based manufacturing could have saved an estimated 123 DALYS, 0.26 species.year, and US $ 8.1 million (GBP £ 6.2 million) due to resource depletion. Maximum reductions through a combination of UK manufacture, reducing glove use to zero, reusable gowns and face shields, and maximal recycling, saving an estimated 259 DALYS, 0.54 species.year, and US $ 15 million (GBP £ 11.5 million) due to resource depletion.

DISCUSSION
We estimate the carbon footprint of PPE supplied to health and social care services in England during the first six months of the COVID-19 pandemic to be 158,838 tonnes CO₂e, which is a mean of 882 tonnes CO₂e per day. This is equivalent to around 360 return flights from London to New York per day,(20) and 1.2% of the entire carbon footprint of health and social care in England during six months of normal activity (estimated at 27 million tonnes CO₂e per annum in 2018).(21)

There are some caveats in interpretation of these data. Around 3 billion items of PPE were used in the six-month period analysed, but data from 2019 (prior to the pandemic) suggest
that around 1.2 billion items would normally be consumed in the NHS in a six-month period,(5) hence the excess in this period was in fact 1.8 billion items. However, 70-80% of elective care in the NHS stopped during the first few months of the pandemic, and emergency attendances decreased by 30-40%.(22) meaning PPE use related to normal (non-pandemic) NHS activity would have fallen by a comparable amount. The backlog of pending elective activity means that the PPE required to deliver elective care has been deferred rather than abolished, and as elective activity resumes, current requirements for enhanced protection mean that use of PPE will likely be even higher than before.

The large environmental impact of PPE, and the probability that we will continue to require and use high volumes of PPE for the foreseeable future, demands an urgent evaluation of means to reduce this impact.

Opportunities to reduce the environmental impact of PPE

Strategies to reduce environmental impact are often based on principles of reduce, reuse and recycle, and we believe this approach can also be applied to PPE, and without compromising safety.

In healthcare settings in England current policy mandates use of gloves for close patient contact,(4) although transmission of coronavirus is thought to occur mostly via airborne spread rather than direct transfer.(23) Hand washing can destroy the SARS-CoV2 virus,(16) so may negate the need to wear gloves. In our six-month analysis period, nearly 1.8 billion gloves were supplied to the NHS and the volumes supplied increased in July and August 2020(5) despite a reduction in the number of COVID-19 cases. Gloves accounted for 47% of the total carbon footprint of PPE in our study, so a policy to rationalise glove use could have a large impact on environmental harm. Furthermore, aprons accounted for 26% of the carbon footprint of PPE, and there may be parallel opportunities for policy change to reduce use of aprons, again without compromising safety.

Where PPE is required, our data suggest substituting air freight with shipping, or use of domestic manufacture, could reduce the associated carbon footprint by 33-40%. Stockpiling of PPE could be used in parallel, to mitigate the need to urgently air freight PPE from abroad if there are unexpected surges in demand. Domestic PPE manufacture has been used in many countries in response to PPE shortages, including Germany, where the government introduced a scheme to support German manufacture of facemasks.(24) The UK government has announced plans to support UK-based reusable gown manufacture enabling national stockpiling, but this has not yet been realised.(25)

Reuse of PPE is also feasible, and practised in some settings. Extended use of masks is supported by several guidelines(26) and should be encouraged to reduce environmental impact. Reprocessing by sterilisation through chemical or physical means has also been explored,(27) although not widely implemented. For users who wear a mask often, reusable passive or powered air purifiers may have a lower overall carbon footprint, although that was not formally evaluated here. Face shields are already reused in many settings, and our analysis suggests that cleaning with disinfectant wipes and reusing five times lowers their environmental impact by 57% to 73% compared to single use. Reusable gowns are already available and utilised in operating theatres, and we found a 24-86% reduction in environmental impact (across the majority of impact categories) compared to disposable gowns, (a finding consistent with calculations by other authors).(8) To provide reusable gowns to ward or outpatient settings would need an increase in stock, and upscaling of
laundering facilities, and ideally removal of the hand towels and inner wrap typically supplied with gowns used in operating theatres.

Recycling showed a relatively small impact in our analysis, with maximal recycling reducing carbon footprint by 23%. Maximal recycling is also unrealistic, because adequate infrastructure for waste segregation does not currently exist, particularly for multi-component products such as masks (which would require disassembly of potentially infected materials). However, if PPE in the NHS was disposed of via infectious waste streams rather than clinical waste streams (where it may be decontaminated prior to disposal through recycling, landfill, or low temperature incineration with energy from waste), then the carbon footprint of disposal could be at least halved.

Limitations to our dataset
Our calculations are based on a number of assumptions. We calculated the environmental impact on a single model of each type of PPE, but there will be other models and brands, with differences in environmental harm (albeit the differences are likely small). We assumed all waste was disposed of via clinical waste as recommended, but in reality some PPE incorrectly enters other hospital waste streams (which have a lower environmental impact). We assumed air freight for all PPE from outside the UK, but we only included a single direction of air transport and some PPE may have been shipped.

The actual quantity (and so carbon footprint) of PPE used in health organisations in England during the pandemic is larger than we have included here. Our estimates do not include PPE procured outside of the government dedicated supply channel, including gloves or gowns for use in the operating theatre (which are procured through different channels), or PPE procured by private organisations. We found no publicly available data on PPE procured in other countries, although one supplier in the USA (Project N95) records over 1.7 million items of PPE supplied between mid-May and late August 2020.

Looking beyond our dataset
Outside of the healthcare setting, other organisations and individuals will procure PPE, particularly following new policy in countries such as the UK for the use of masks when indoors. In our data the majority of PPE was manufactured partially or completely from plastics or petroleum-based synthetic rubbers, including for example nitrile for gloves, polypropylene for masks and gowns, and polyethylene for visors and aprons, which we estimated to have a mass of over 14,000 tonnes over the six-month period. Disposal of PPE outside of healthcare will mostly be in domestic waste streams which may enter landfill, risking plastic pollution. Discarded masks and gloves have been found polluting oceans.

We are also aware of social (alongside environmental) harms from PPE. There have been longstanding concerns about abuse of workers manufacturing masks and gloves, and such concerns have continued or been exacerbated in recent months, with reports of forced labour to make masks in China, and abuse of migrant workers in factories producing gloves in Malaysia.

Conclusion
The environmental impact of PPE is substantial and requires urgent review to mitigate effects on planetary health. The most opportune and impactful strategies may be through reduced use of gloves by using hand washing alone, domestic manufacture of PPE, and extended use or
reuse of PPE such as masks and gowns. These possibilities warrant further investigation and analysis of feasibility and safety, as well as engagement of policy makers around the globe.

Acknowledgements
None to declare

Funding
None to declare.

Conflicts of Interest
None to declare.

Copyright statement
The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.

Contribution statement
All authors fulfilled the authorship criteria as follows:

- Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
- Drafting the work or revising it critically for important intellectual content; AND
- Final approval of the version to be published; AND
- Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

MB initiated and developed the article structure, sourced sample PPE materials, and is the guarantor. CR led on the LCA methodology design, analysis, and write up. MR provided critical input to structure and content. The corresponding author attests that all listed authors meet authorship criteria and that no others meeting the criteria have been omitted.

Ethical approval
Not required- this study did not involve any patients or healthcare staff.

Transparency declaration
Mahmood Bhutta is the manuscript guarantor, and affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as originally planned (and, if relevant, registered) have been explained.

Patient and public involvement statement, and dissemination statement
It was not appropriate or possible to involve patients or the public in the design, or conduct, or reporting, or dissemination plans of our research.
References

Figure 1: Carbon footprint of individual PPE items
Carbon footprint of individual single-use PPE items, with breakdown of process contributions. Production of X materials includes the raw material extraction, production, and transport to the PPE manufacturer. CO$_2$e= carbon dioxide equivalents, FFP= filtering facepiece.

Figure 2: Environmental impacts of alternative scenarios
Environmental impacts (endpoint categories) of alternative scenarios, modelled on total volumes of core PPE supplied to health and social care services in England between 25th February and 23rd August 2020, normalised to highest scenario for each impact factor, modelling base scenario (air freight, single-use PPE, clinical waste), use of UK manufacture, shipping, reduce (zero glove use), reuse (reusable gown, reuse of face shield, all other items single-use), recycling, and combination of measures. Data labels above bars relate to absolute values, measured in disability adjusted life years (DALYs), loss of local species per year (species.year), and extra costs involved for future mineral and fossil resource extraction (US$).
Gown
Face shield
Cup fit FFP respirator
Duckbill FFP respirator
Apron
Glove
Surgical mask (type IIR)
Surgical mask (type II)

- Production of PPE materials
- Waste
- Production of packaging materials
- Electricity consumption (manufacturing)
- Transportation
Figure 1: Carbon footprint of individual PPE items
Carbon footprint of individual single-use PPE items, with breakdown of process contributions. Production of X materials includes the raw material extraction, production, and transport to the PPE manufacturer. CO₂e = carbon dioxide equivalents, FFP = filtering facepiece.

Figure 2: Environmental impacts of alternative scenarios
Environmental impacts (endpoint categories) of alternative scenarios, modelled on total volumes of core PPE supplied to health and social care services in England between 25th February and 23rd August 2020, normalised to highest scenario for each impact factor, modelling base scenario (air freight, single-use PPE, clinical waste), use of UK manufacture, shipping, reduce (zero glove use), reuse (reusable gown, reuse of face shield, all other items single-use), recycling, and combination of measures. Data labels above bars relate to absolute values, with disability adjusted life years (DALYs) in red, loss of local species per year (species.year) in green, and extra costs involved for future mineral and fossil resource extraction (US$) in blue.