Clinical Thrombosis Rate was not Increased in a Cohort of Cancer Patients with COVID-19

Phaedon D. Zavras¹, Rafi Kabarriti², Vikas Mehta³, Sanjay Goel³, Henny H. Billett⁵

1. Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
2. Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
3. Department of Otorhinolaryngology, Head & Neck Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
4. Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
5. Division of Hematology, Department of Medical Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA

Short Title: Thrombosis not increased in COVID-19+ cancer patients

Corresponding Author:
Phaedon Dimitrios Zavras
Department of Medicine
Jacobi Medical Center, Albert Einstein College of Medicine
1400 Pelham Parkway South
Bronx, NY, 10461, USA
Tel: +1-(202)-492-2568
E-mail: fzavras@montefiore.org / ph.zavras@gmail.com

Number of Tables: 0
Number of Figures: 0
Word count: 977
Keywords: COVID-19, Cancer, Thromboembolic events, Thrombosis
Introduction

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection leading to Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China in December 2019 (1). During a period of months, it escalated to a world pandemic, resulting in almost 4 million confirmed cases and 276,007 deaths, by May 9th, 2020, a 6.9% mortality (2).

Severe disease includes acute hypoxemic respiratory failure, thought to be at least partly a result of a hyperinflammatory state mediated by cytokine storm, that can be seen 7 to 14 days from the onset of initial symptoms (3). Increased rates of thrombosis have also been reported, many of these occurring in patients who do not appear to have a predisposition to thrombosis (4). A study from Netherlands reports a cumulative incidence of venous thromboembolism (VTE) up to 42%; this also positively correlated with mortality (5).

D-dimer values greater than 0.5 mcg/ml have been positively correlated with disease severity (6), and levels above 1.0 mcg/mL with increased mortality (4). Many centers have implemented new empiric anticoagulation protocols in COVID-19 positive patients based on high D-dimer titers, in the absence of confirmed thrombosis. This is also supported by recent studies (7).

Materials and Methods

We investigated whether our cancer patients, with an already increased predisposition to thromboembolic events (TE), had a further increase in TE rate if they contracted COVID-19. We reviewed cancer patients that tested positive for COVID-19 at Montefiore Healthcare System hospitals in New York City up to April 10th, 2020. Our cohort consisted of 218 patients, 58.3% male, with median age of 69 years (IQR 59 – 78 years). Ninety-two patients (42.2%) had active cancer within the last year, and 48 (22%) had received chemotherapy or immunotherapy within 30 days of COVID testing. Once admitted, 45 patients (20.6%) were intubated, while 23 patients (10.6%) required Intensive Care Unit level of care. All imaging studies done within 20 days of positive COVID test, ordered upon clinical or laboratory suspicion of thrombosis, were reviewed. The mortality data for this group has previously been reported (8).
Results

Twelve patients (5.5%) were found to have new arterial or venous thromboses. They were more likely to be male and older than the general cohort: 75% were male; median age was 70.5 years (IQR, 59.5 – 79.3). Five (41.7%) patients with new thromboembolic episodes had diagnosis of gastrointestinal malignancy (2 with Gastric and 3 with Colon carcinoma); 2 had hematologic malignancies (one with myeloproliferative neoplasm and one with Hodgkin’s lymphoma). The rest of the cancer diagnoses included Kaposi’s sarcoma, squamous cell carcinoma of the skin, hepatocellular carcinoma, neuroendocrine tumors and breast adenocarcinoma. 41.7% were intubated vs 19.4% of those that did not develop thrombosis (p=0.07) and 16.7% required ICU admission 10.2% of those without thrombosis, but this was not a significant difference. Five patients (41.7%) had history of prior thromboembolic events.

Six patients (2.7%) developed new arterial thrombi and 6 (2.7%) venous thrombi. Incidence of DVT and PE was 1.8% and 0.5%, respectively. Arterial thrombi occurred in the brain in 4 patients (66.7%), the aorta in one patient (16.7%) and coronary arteries in another patient (16.7%). Median time from COVID test was 8 days (IQR, 1.5 – 11.3). Five patients (41.7%) had received either prophylactic or therapeutic anticoagulation for a median 2 days (IQR, 1 – 5) before the onset of the thrombi. Only 4 patients had D-dimer levels checked within 36 hours of the thrombosis event; median peak D-dimer value of 9.8 mcg/mL (IQR, 1.7 – 18.3). One-month mortality rates did not differ significantly between the patients who developed new thrombosis in the setting of COVID-19 as compared to those who did not; mortality, 41.7% vs 37.4% respectively; p=0.77. We could not demonstrate an improvement in mortality with empiric anticoagulation.

Discussion/Conclusion

An increase in arterial TE has been reported in patients with COVID-19 and this appears to be true for our patients with cancer; 50% of the TE were arterial events(9). The overall thromboembolic rate of 5.5% in our COVID-19+ cancer patients is not higher than that of the general population, despite these patients having a higher overall mortality rate with COVID-19. Larger studies in the COVID-19+ cancer population are warranted.
Statement

Montefiore–Einstein Institutional Review Board (IRB) reviewed and approved the study and waived the need for informed consent.

Conflict of Interest Statement

The authors do not report any conflict of interest relevant to the information in this manuscript.

Funding Sources

These studies were supported by Albert Einstein Cancer Center Grant (P30CA013330).
Author Contributions

P.D. Zavras performed data collection, analysis and manuscript writing. R. Kabarriti, V. Mehta and S. Goel carried out data collection and patient management. H.H. Billett was the primary investigator, and was responsible for patient management and manuscript writing.
References [Numerical]


