Abstract
To better control the SARS-CoV-2 pandemic, it is essential to quantify the impact of control measures and the fraction of infected individuals that are detected. To this end we developed a deterministic transmission model based on the renewal equation and fitted the model to daily case and death data in the first few months of 2020 in 79 countries and states, representing 4.2 billions individuals. Based on a region-specific infection fatality ratio, we inferred the time-varying probability of case detection and the time-varying decline in transmissiblity. As a validation, the predicted total number of infected was close to that found in serosurveys; more importantly, the inferred probability of detection strongly correlated with the number of daily tests per inhabitant, with 50% detection achieved with 0.003 daily tests per inhabitants. Most of the decline in transmission was explained by the reductions in transmissibility (social distancing), which avoided 10 millions deaths in the regions studied over the first four months of 2020. In contrast, symptom-based testing and isolation of positive cases was not an efficient way to control the spread of the disease, as a large part of transmission happens before symptoms and only a small fraction of infected individuals was typically detected. The latter is explained by the limited number of tests available, and the fact that increasing test capacity increases the probability of detection less than proportionally. Together these results suggest that little control can be achieved by symptom-based testing and isolation alone.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
F.B. was supported by a Momentum grant from the CNRS. A.B was supported by a scholarship from Ecole Polytechnique.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
None.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.