A Co-infection model for HPV and Syphilis with Optimal Control and Cost-Effectiveness Analysis

A. Omamea,†, D. Okuonghaeb, U. E. Nwaforc, B. U. Odionyenmad

\section*{Abstract}

In this work, we develop and present a co-infection model for human papillomavirus (HPV) and syphilis with cost-effectiveness optimal control analysis. The full co-infection model is shown to undergo the phenomenon of backward bifurcation when a certain condition is satisfied. The global asymptotic stability of the disease-free equilibrium of the full model is shown not to exist, when the associated reproduction number is less than unity. The existence of endemic equilibrium of the syphilis-only sub-model is shown to exist and the global asymptotic stability of the disease-free and endemic equilibria of both the syphilis-only sub-model and HPV-only sub-model were established. The global asymptotic stability of disease-free equilibrium of the HPV-only sub-model is also proven. Numerical simulations of the optimal control model showed that the optimal control strategy which implements syphilis treatment controls for singly infected individuals is the most cost-effective of all the control strategies in reducing the burden of HPV and syphilis co-infections.

\textbf{Keywords:} Human Papillomavirus, syphilis, co-infection, optimal control, cost-effectiveness analysis.

a,c,d Department of Mathematics, Federal University of Technology, Owerri, Nigeria

b Department of Mathematics, University of Benin, Benin City, Nigeria

†Corresponding author: omame2020@gmail.com, andrew.omame@futo.edu.ng

\textcopyright\ 2020 A. Omame et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
1 Introduction

Syphilis, caused by *Treponema Pallidum*, continues to remain a global threat to life [1]. Though treatment and condom use have proven to be effective in preventing the disease, estimates indicate that every year, about 12,000, 000 people are infected with the disease [43]. The world Health Organization (WHO) reported that about 2 million pregnant women are infected with syphilis annually [44]. Vertical transmission of syphilis can occur from a pregnant mother to her unborn child, resulting in a very negative outcomes for the pregnancy [8] [44]. The Human papillomavirus (HPV) is one of the most prevalent sexually transmitted infections (STIs) worldwide [3]. Globally, the Human papillomavirus is responsible for roughly 270,000 cervical cancers and 97,000 other cancer deaths yearly [3]. There is no specific treatment for HPV, but the visible symptoms or genital warts due to the disease can be treated, with the goal of reducing the spread of the infection [35]. HPV, like other sexually transmitted infections, can be prevented through the use of condoms. Presently, three major anti-HPV vaccines exist: the bivalent *Gardasil 4* vaccine (which targets HPV-16 and -18), the quadrivalent *Gardasil 4* vaccine (which targets the oncogenic HPV types -16 and -18 and the warts causing HPV types -6 and -11) and the nonavalent *Gardasil 9* vaccine (which targets the high risk HPV types -16, -18, -31, -33, 45, -52, and -58 and the low risk HPV types -6 and -11) [33].

Epidemiological evidences have shown interactions between Human papillomavirus (HPV), cancer and syphilis [13] [34] [35] [45]. Souza et al. investigated the incidence of HPV-syphilis co-infection among patients in a hospital at Rio de Janeiro, Brazil. They discovered that many of the patients treated of HPV infections had prior syphilis cases, indicating a strong co-infection between the two infections. Zhang et al. [45] studied the risk factors for HPV, Human immuno-deficiency virus (HIV) and syphilis infections among men who have sexual interactions with men (MSM) in China. They discovered that HIV infection was high among individuals infected with syphilis or HPV and much higher among individuals co-infected with HPV and syphilis infections. Tseng et al. [35] investigated the risk factors for anal cancer in both men and women in a population-based study, and showed that prior syphilis infection was associated with persistent HPV infection and increased susceptibility to anal cancer among both genders. The findings in Daling et al. [13] reveal that syphilis and anal cancer co-infections were more common among unmarried men than among the married ones. In another report, da Mota et al. [26] discussed the prevalence of syphilis and its risk factors among young men presented to the Brazilian Army in 2016, and showed that syphilis infection is mostly preceded by sexually transmitted infections (STIs), especially HPV infection, gonorrhea and HIV. Similar conclusions were made by Miranda et al [25].

Mathematical modelling has extensively been applied in studying the dynamics of infectious diseases [28] [32] [40] [41]. In recent times, mathematical models have been formulated to understand the dynamics of syphilis transmission [16] [17] [27] [33]. Garnet et al [16] developed a mathematical model for syphilis transmission, capturing the elementary stages of the disease. They assumed infection acquired temporary immunity for infected individuals. In another paper, an SIRS (susceptible-infected-recovered-susceptible) syphilis model was fitted with real life data [17]. Iboi and Okuonghae [14] rigorously analyzed a deterministic mathematical model, incorporating early latent and late stages of syphilis infection. Saad-Roy et al. [36] analyzed a mathematical model for syphilis in an MSM population. More recently, Okuonghae et al. [27] developed a syphilis model to assess the impact of disease transmission by individuals in the early latent stage of syphilis infection on the general dynamics and transmission of the disease.

Many mathematical modelling studies have been carried out to understand the dynamics of transmission of the Human papillomavirus [4] [21] [22] [29] [37]. Malik et al. [22] studied the optimal control strategies for a vaccination program administering the bivalent *Cervarix*, quadrivalent *Gardasil 4*, and nonavalent *Gardasil 9* HPV vaccines to the female population. Specifically, they considered the situations where the three vaccines are used concurrently in comparison to the case where the bivalent *cervarix* and quadrivalent *Gardasil 4* vaccines were initially used and then, during the course of the vaccination program, one or two of them are interchanged with the nonavalent vaccine. Omame et al. [23] studied a two-sex vaccination model for HPV, to assess the impact of condom use and treatment on the control of HPV in a population. They showed that a vaccine with 75% effectiveness rate for males and about 40% condom compliance level by females could lead to the effective control of HPV in a population.

To understand the interactions among diseases, mathematical models have been formulated and analyzed [5] [6] [24] [30] [32]. Omame et al. [30] studied a co-infection model for HPV and tuberculosis.
(TB), in the presence of HPV vaccination and condom use as well as TB treatment. Their results showed that TB-only treatment strategy can significantly bring down the burden of HPV and the co-infection of the two diseases in a population. Nwankwo and Okuonghae [24] investigated the effect of syphilis treatment in a population where HIV Syphilis are co-circulating, and showed that targeted syphilis treatment could significantly curb the burden of the co-infection of the two diseases. Also, an optimal control model for two-strain tuberculosis and HIV/AIDS co-infection with cost-effectiveness analysis was studied by Agusto and Adekunle [5]. They showed that the control strategy that combines prevention of treatment failure in drug-sensitive TB infectious individuals and the treatment of individuals with drug-resistant TB was the most cost-effective in reducing the burden of the co-infection of HIV/AIDS and two strains of tuberculosis.

To the best of the authors' knowledge, no robust optimal control mathematical model has been developed to capture the combined effect HPV vaccination and syphilis treatment on the control of HPV and syphilis co-infection, despite the availability of epidemiological evidences supporting the co-infections of both diseases. This study assesses the combined effect of these aforementioned strategies, using optimal control analysis, in order to determine ways of bringing down the burden of co-infection of the two diseases.

The model is based on the main assumptions stated below:

i. To avoid model complexity, the primary and secondary stages of syphilis infection are joined together and are referred to as “early stage of syphilis infection”. In a similar manner, the latent and tertiary stages of infection are referred to combined together and known as “late stage of syphilis infection”.

ii. individuals infected with syphilis infection is susceptible to infection with HPV and vice versa. [34].

iii. individuals dually infected with HPV and syphilis can transmit either HPV or syphilis but not mixed infections.

The paper is organized as follows. The model is formulated in Section 2 together with the presentation of its basic properties. The sub-models are analysed in Section 3. Qualitative and quantitative analyses of the full co-infection model with constant and time dependent controls are presented in Section 5 while Section 6 gives the concluding remarks.

2 Model Formulation

The total sexually active population at time \(t \), denoted by \(N(t) \), is divided into twenty mutually-exclusive compartments: Susceptible individuals \((S(t)) \), individuals in early stage of syphilis infection \((I(t)) \), individuals in late stage of syphilis infection \((L(t)) \), individuals treated of syphilis, \((T(t)) \), individuals vaccinated against HPV \((V(t)) \), individuals infected with HPV \((H(t)) \), individuals with persistent HPV infection \((P(t)) \), individuals with anal cancer \((C(t)) \), individuals who have recovered from anal cancer \((R(t)) \), individuals who have recovered from or cleared HPV infection \((R(t)) \), individuals dually infected with HPV and exposed to syphilis \((H(t)) \), individuals dually infected with HPV and syphilis in early stage \(H(t) \), individuals dually infected with HPV and in late stage of syphilis infection, \((H(t)) \), individuals dually infected with persistent HPV and exposed to syphilis infection, \((P(t)) \), individuals dually infected with persistent HPV and in early stage of syphilis infection, \((P(t)) \), individuals dually infected with anal cancer and exposed to syphilis infection \((C(t)) \), individuals dually infected with anal cancer and in early stage of syphilis infection \((C(t)) \), individuals dually infected with anal cancer and in late stage of syphilis infection \((C(t)) \).

Thus

\[
N_{inf} = S + E + I + L + V + H + P + C + R + H + H + H + P + P + P + C + C + C
\]

Based on the above formulations and assumptions, the Anal HPV-syphilis co-infection model is given by the following deterministic system of non-linear differential equations (the flow diagram of the model is...
depicted in Figure 1, the associated state variables and parameters are well described in Tables 1 and 2.

\[\frac{dS}{dt} = (1 - \phi)\Lambda - (\lambda_s + \lambda_n)S - \mu S \]
\[\frac{dE}{dt} = \lambda_s S + \xi_e \lambda_n T - (\sigma_1 + \mu)E - \lambda_n E + (V_n + R_u + R_c)\lambda_s + \alpha_2 C_E + (1 - \rho_2) r_3 H_E + (1 - \chi_1) r_5 P_E \]
\[\frac{dI}{dt} = \sigma_1 E - (\sigma_2 + \tau_1 + \mu)I - \gamma_1 \lambda_n I + (1 - \rho_3) r_5 H_I + (1 - \chi_2) r_7 P_I + \alpha_3 C_I \]
\[\frac{dL}{dt} = \sigma_2 I - (\tau_2 + \mu + \delta_3) L - \gamma_2 \lambda_n L + (1 - \rho_4) r_5 H_L + (1 - \chi_3) r_3 P_L + \alpha_4 C_L \]
\[\frac{dT}{dt} = \tau_1 I + \tau_2 L - \mu T - \xi_e \lambda_n T - \lambda_n T \]
\[\frac{dV_n}{dt} = \phi \Lambda - (1 - \tau_u) \lambda_n V_u - (\mu + \lambda_n) V_u \]
\[\frac{dH}{dt} = \lambda_s S + (1 - \tau_u) \lambda_n V_u - \varepsilon_1 \lambda_n H - (\mu + \delta_{u1} + r_1) H + \tau_2 H_I + \tau_3 H_L + \lambda_u T + \xi_u \lambda_n R_u \]
\[\frac{dP}{dt} = \rho_1 r_1 H - \varepsilon_2 \lambda_n P - \mu P + \tau_3 P_I + \tau_5 P_L - r_2 P \]
\[\frac{dC}{dt} = (1 - \psi) r_2 P - (\mu + \alpha_1 + \delta_c) C + \tau_2 C_I + \tau_3 C_L - \lambda_s C \]
\[\frac{dR_c}{dt} = \alpha_1 C - (\mu + \lambda_s) R_c \]
\[\frac{dR_u}{dt} = (1 - \rho_1) r_1 H + \psi r_2 P - \mu R_u - \varepsilon_1 \lambda_n R_u - \lambda_n R_u \]
\[\frac{dH_u}{dt} = \lambda_u E + \varepsilon_1 \lambda_n H - (\sigma_3 + \mu + r_3 + \delta_{u2}) H_E \]
\[\frac{dH_I}{dt} = \sigma_3 H_E + \gamma_1 \lambda_n I - (\sigma_4 + \mu + \tau_3 + r_4 + \delta_{u1}) H_I \]
\[\frac{dH_L}{dt} = \sigma_4 H_I + \gamma_2 \lambda_n L - (\tau_4 + r_5 + \mu + \delta_{u2} + \delta_{u1}) H_L \]
\[\frac{dP_k}{dt} = \varepsilon_2 \lambda_n P - (r_u + \mu + \sigma_5) P_k + \rho_2 r_3 H_E \]
\[\frac{dP_I}{dt} = \sigma_5 P_k - (\tau_5 + r_7 + \mu + \sigma_6) P_I + \rho_3 r_5 H_I \]
\[\frac{dP_L}{dt} = \sigma_6 P_I - (\tau_6 + r_8 + \mu + \delta_{u3}) P_L + \rho_4 r_3 H_L \]
\[\frac{dC_E}{dt} = \lambda_s C + \chi r_3 P_E - (\mu + \delta_c + \sigma_5 + \alpha_2) C_E \]
\[\frac{dC_I}{dt} = \chi_2 r_5 P_I - (\mu + \delta_c + \sigma_3 + \alpha_3 + \tau_1) C_I + \sigma_4 C_E \]
\[\frac{dC_L}{dt} = \chi_3 r_3 P_L - (\mu + \delta_c + \delta_{u4} + \alpha_4 + \tau_3) C_L + \sigma_5 C_I \]

where,

\[\lambda_s = \beta_s \left[I + C_1 + \eta_s (L + C_2) + \theta_s \{ H_1 + \omega_P P_1 + \eta_s (H_1 + \omega_P P_1) \} \right] \]
\[\lambda_n = \beta_n \left[H + H_E + \omega_P (P + P_k) + \theta_s \{ H_1 + \omega_P P_1 + \eta_s (H_1 + \omega_P P_1) \} \right] \]

The parameter \(\theta_s (\theta_s \geq 1) \) is a modification parameter accounting for the increased infectiousness of dually infected individuals due to active HPV, \(\eta_s (\eta_s \geq 1) \) is a modification parameter accounting for increased infectiousness of infected individuals in the latent stage of syphilis, in comparison to those in the early stage of syphilis infection. \(\omega_P (\omega_P \leq 1) \) is a modification parameter accounting for the reduced infectiousness of infected individuals due to persistent HPV infection while \(\theta_s (\theta_s \geq 1) \) is a modification parameter accounting for the increased infectiousness of dually infected individuals due to syphilis infection. In (2), \(\beta_s \) is the effective contact rate for the transmission of syphilis infection, while, \(\beta_n \) is the effective contact rate for the transmission of HPV infection.
Figure 1: Schematic diagram of the model (1)
Table 1: Description of variables and parameters in the model equation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Population of susceptible Individuals</td>
</tr>
<tr>
<td>V_h</td>
<td>Populations of Individuals vaccinated against HPV</td>
</tr>
<tr>
<td>E</td>
<td>Populations of individuals Exposed to syphilis infection</td>
</tr>
<tr>
<td>I</td>
<td>Population of Individuals in the early stage of syphilis infection</td>
</tr>
<tr>
<td>L</td>
<td>Populations of Individuals in the late stage of syphilis infection</td>
</tr>
<tr>
<td>T</td>
<td>Populations of Individuals Treated of syphilis infection</td>
</tr>
<tr>
<td>H</td>
<td>Population of Infected individuals with HPV</td>
</tr>
<tr>
<td>H_E</td>
<td>Individuals infected with HPV and Exposed to syphilis infection</td>
</tr>
<tr>
<td>H_I</td>
<td>Individuals infected with HPV and syphilis infection in early stage</td>
</tr>
<tr>
<td>H_L</td>
<td>Individuals infected with HPV and syphilis infection in late stage</td>
</tr>
<tr>
<td>P</td>
<td>Individuals with persistent HPV infection</td>
</tr>
<tr>
<td>P_E</td>
<td>Individuals with persistent HPV and exposed syphilis infection</td>
</tr>
<tr>
<td>P_I</td>
<td>Individuals with persistent HPV and syphilis infection in late stage</td>
</tr>
<tr>
<td>C</td>
<td>Individuals infected with anal cancer</td>
</tr>
<tr>
<td>C_E</td>
<td>Individuals infected with anal cancer and exposed to syphilis infection</td>
</tr>
<tr>
<td>C_I</td>
<td>Individuals infected with anal cancer and syphilis infection in early stage</td>
</tr>
<tr>
<td>C_L</td>
<td>Individuals infected with anal cancer and syphilis infection in late stage</td>
</tr>
<tr>
<td>R_C</td>
<td>Individuals who recovered from anal cancer</td>
</tr>
<tr>
<td>R_h</td>
<td>Individuals who recovered from HPV</td>
</tr>
</tbody>
</table>
2.1 Basic properties of the co-infection model

The basic dynamical properties of the model will now be explored. Particularly, we establish the following positivity and invariance results.

2.1.1 Positivity and boundedness of solutions

For the model to be epidemiologically meaningful, it is important to prove that all its state variables are non-negative for all time. Following the same approach in Omame et al., we establish the following results.

Theorem 2.1

Let the initial data be

\[S(0) > 0, E(0) \geq 0, I(0) \geq 0, L(0) \geq 0, V_{h}(0) \geq 0, H_{e}(0) \geq 0, P_{e}(0) \geq 0, C_{e}(0) \geq 0, R_{c}(0) \geq 0, R_{h}(0) \geq 0, H_{E}(0) \geq 0, H_{I}(0) \geq 0, H_{L}(0) \geq 0, P_{E}(0) \geq 0, P_{I}(0) > 0, P_{L}(0) \geq 0, C_{E}(0) \geq 0, C_{I}(0) \geq 0, C_{L}(0) \geq 0. \]

Then the solutions of the model are non-negative for all time \(t > 0 \).

Lemma 2.1

The region \(\mathcal{D} \subset \mathbb{R}^{20} \) is positively-invariant for the co-infection model with initial conditions in \(\mathbb{R}^{20} \).

Therefore, \(\mathcal{D} \) is positively invariant. Hence, no solution path can leave through any boundary of \(\mathcal{D} \) and it is sufficient to consider the dynamics of the model in \(\mathcal{D} \). Inside this region, the model is considered to be mathematically and epidemiologically well posed.

3 Analysis of the sub-models

It is instructive to analyze the sub-models of the co-infection model, before analyzing the full model.

3.1 Syphilis-Only sub-model

The syphilis-only sub-model is (obtained by setting \(V_{h} = H = P = C = R_{c} = R_{h} = H_{e} = H_{I} = H_{L} = P_{E} = P_{I} = P_{L} = C_{E} = C_{I} = C_{L} = 0 \) in the model) given by:

\[
\begin{align*}
\frac{dS}{dt} &= \Lambda - (\lambda_{s} + \mu) S \\
\frac{dE}{dt} &= \lambda_{s} S + \xi \lambda_{s} T - (\mu + \sigma_{1}) E \\
\frac{dI}{dt} &= \sigma_{1} E - (\sigma_{2} + \tau_{1} + \mu) I \\
\frac{dL}{dt} &= \sigma_{2} I - (\tau_{2} + \delta_{s1} + \mu) L \\
\frac{dT}{dt} &= \tau_{1} I + \tau_{2} L - \mu T - \xi \lambda_{s} T
\end{align*}
\]

(3)

where now,

\[
\lambda_{s} = \frac{\beta_{s}(I + \eta_{L} L)}{N}
\]

(4)

with

\[
N = S + E + I + L + T
\]
3.1.1 Basic reproduction number of the syphilis only sub-model

The syphilis-only sub-model (3) has a DFE, obtained by setting the right-hand sides of the equations in the model (3) to zero, given by

$$\xi_0 = (S^*, E^*, I^*, L^*, T^*) = \left(\frac{\Lambda}{\mu}, 0, 0, 0, 0 \right)$$ \hspace{1cm} (5)

The basic reproduction number, using the next generation operator method [42], is given by

$$R_{0S} = \frac{\beta_s \sigma_1 (K_3 + \eta L)}{K_1 K_2 K_3}$$ \hspace{1cm} (6)

with,

$$K_1 = (\sigma_1 + \mu), \quad K_2 = (\sigma_2 + \tau_1 + \mu), \quad K_3 = (\tau_2 + \delta_s + \mu)$$

3.1.2 Local asymptotic stability of disease-free equilibrium (DFE) of the syphilis-only submodel

Lemma 3.1 The DFE, ξ_0S, of the syphilis-only sub-model (3) is locally asymptotically stable (LAS) if $R_{0S} < 1$, and unstable if $R_{0S} > 1$.

Proof: The local stability of the syphilis-only sub-model is analysed by the Jacobian matrix of the system (3) at ξ_0, given by:

$$J(\xi_0) = \begin{pmatrix}
-\mu & 0 & -\beta_s & -\beta_s \eta L & 0 \\
0 & -K_1 & \beta_s & \beta_s \eta L & 0 \\
0 & \sigma_1 & -K_2 & 0 & 0 \\
0 & 0 & \sigma_2 & -K_3 & 0 \\
0 & 0 & \tau_1 & \tau_2 & -\mu \\
\end{pmatrix}$$ \hspace{1cm} (6)

where,

$$K_1 = \mu + \sigma_1, \quad K_2 = \sigma_2 + \tau_1 + \mu, \quad K_3 = \tau_2 + \sigma_s + \mu.$$

The eigenvalues are $-\mu, -\mu$ and the solution of the characteristic polynomial:

$$\lambda^3 + \alpha_1 \lambda^2 + \alpha_2 \lambda + \alpha_3 = 0,$$ \hspace{1cm} (7)

where

$$\alpha_1 = (K_1 + K_2 + K_3), \quad \alpha_2 = K_1 K_2 + K_1 K_3 + K_2 K_3 - \beta_s \sigma_1, \quad \alpha_3 = K_1 K_2 K_3 (1 - R_{0S})$$

Applying the Routh-Hurwitz criterion, the cubic equation (7) will have roots with negative real parts if and only if $\alpha_1 > 0$, $\alpha_3 > 0$ and $\alpha_1 \alpha_2 > \alpha_3$. Clearly, $\alpha_1 > 0$ and $\alpha_3 > 0$ (if $R_{0S} < 0$). As a result, the disease-free equilibrium, ξ_0 is locally asymptotically stable if $R_{0S} < 1$.

3.1.3 Global asymptotic stability (GAS) of the disease-free equilibrium (DFE) ξ_0S of the syphilis-only sub-model

We use the method presented in Castillo-Chavez et al [11] to investigate the global asymptotic stability of the disease free equilibrium of the syphilis-only sub-model. In this section, we list two conditions that if met, also guarantee the global asymptotic stability of the disease-free state. First, system (3) must be written in the form:

$$\frac{dX}{dt} = F(W, Q)$$

$$\frac{dI}{dt} = G(W, Q), G(W, 0) = 0$$ \hspace{1cm} (8)
where $W \in R^{m}$ denotes (its components) the number of uninfected individuals and $Q \in R^{n}$ denotes (its components) the number of infected individuals including latent, infections, etc. $U_0 = (W^*, 0)$ denotes the disease-free equilibrium of this system. The conditions $(H1)$ and $(H2)$ below must be met to guarantee local asymptotic stability:

$(H1)$: For $\frac{dX}{dt} = F(W, 0), W^*$ is globally asymptotically stable (GAS),

$(H2)$: $G(W, Q) = AI - G(W, Q)W; G(W, Q) \geq 0$ for $(W, Q) \in \Omega$, where $A = D_2 G(W^*, 0)$ is an M-matrix (the off-diagonal elements of A are nonnegative) and Ω is the region where the model makes biological sense. If System (3) satisfies the above two conditions then the following theorem holds:

Theorem 3.1 The fixed point $U_0S = (W^*, 0)$ is a globally asymptotic stable (GAS) equilibrium of (3) provided that $R_0 < 1$ (LAS) and that assumptions $(H1)$ and $(H2)$ are satisfied.

Proof

\[
\frac{dW}{dt} = F(W, Q) = \begin{pmatrix} \Lambda - (\lambda_s + \mu)S \\ \tau_sI + \tau_sL - \muT - \xi\lambda_sT \end{pmatrix}, \quad F(W, 0) = \begin{pmatrix} \Lambda - \muS \\ 0 \end{pmatrix}
\]

where W denotes the number of non-infectious individuals and Q denotes the number of infected individuals

\[
G(W, Q) = \begin{pmatrix} \lambda_sS + \xi\lambda_sT - K_1E \\ \sigma_sE - K_2I \\ \sigma_sI - K_3L \end{pmatrix}, \quad A = D_Q G(W^*, 0) = \begin{pmatrix} -K_1 & \beta_s & \beta_\eta \\ \sigma_1 & -K_2 & 0 \\ 0 & \sigma_2 & -K_3 \end{pmatrix}
\]

\[
AQ = \begin{pmatrix} -K_1E + \beta_s(I + \eta L) \\ \sigma_sE - K_2I \\ \sigma_sI - K_3L \end{pmatrix}, \quad \dot{G}(W, Q) = \begin{pmatrix} \beta_\lambda(I + \eta L)(1 - \frac{3}{N}) - \xi\lambda_sT \\ 0 \\ 0 \end{pmatrix}
\]

It is clear from the above, that, $\dot{G}(W, Q) \geq 0$. Hence the DFE, U_0S, may not be globally asymptotically stable, suggesting the possibility of a backward bifurcation. This supports the backward bifurcation analysis in Section (3.1.5).

3.1.4 Endemic equilibrium point (EEP) of the syphilis-only sub-model

In this section, we obtain the endemic equilibrium point (EEP) of the syphilis-only sub-model (3). The endemic equilibrium point (EEP) of the syphilis-only sub-model (3) is given by

$$
\xi_{ES} = (S^{**}, E^{**}, I^{**}, L^{**}, T^{**})
$$

where,

$$
S^{**} = \frac{\lambda^{**}}{\lambda^{**} + \mu}, \quad E^{**} = \frac{\Lambda K_2 K_3 \lambda^{**} (\mu + \xi \lambda^{**})}{(\mu + \lambda^{**}) \left[\mu K_2 K_3 + \xi (\mu K_2 K_3 + \sigma_s \mu K_3 + \sigma_s \sigma_s (\mu + \delta_s)) \right]},
$$

$$
I^{**} = \frac{\Lambda \sigma_s K_3 \lambda^{**}}{\mu K_2 K_3 + \xi (\mu K_2 K_3 + \sigma_s \mu K_3 + \sigma_s \sigma_s (\mu + \delta_s))},
$$

$$
L^{**} = \frac{\Lambda \sigma_s \lambda^{**} (\mu + \xi \lambda^{**})}{(\mu + \lambda^{**}) \left[\mu K_2 K_3 + \xi (\mu K_2 K_3 + \sigma_s \mu K_3 + \sigma_s \sigma_s (\mu + \delta_s)) \right]},
$$

$$
T^{**} = \frac{\Lambda \sigma_s (\tau_s K_3 + \tau_s \sigma_s) \lambda^{**}}{(\mu + \lambda^{**}) \left[\mu K_2 K_3 + \xi (\mu K_2 K_3 + \sigma_s \mu K_3 + \sigma_s \sigma_s (\mu + \delta_s)) \right]}
$$

substituting the right-hand sides of (10) into the force of infection (4) at steady states, we obtain the polynomial equation

$$
a_1 \lambda^{**2} + a_2 \lambda^{**} + a_3 = 0,
$$

where,

$$
a_1 = (K_2 K_3 + \sigma_s \mu K_3 + \sigma_s \sigma_s (\mu + \delta_s)),
$$

$$
a_2 = (\mu K_2 K_3 + \sigma_s \sigma_s (\mu + \delta_s) + \sigma_s \mu K_3) \xi_s + \mu K_2 K_3 + \mu \sigma_s \sigma_s + \sigma_s \sigma_s (\mu + \delta_s) - \beta_s \sigma_s \xi_s (K_3 + \eta \sigma_s) + \mu K_1 K_2 K_3 (1 - R_{0S})
$$

It is worthy of note, from the equation (11), that $a_1 > 0$, while a_2 is greater than zero (less than zero) if $R_{0S} < 1(>1)$. Hence, the following result can be established:
Theorem 3.2 The model (3) has

i a unique endemic equilibrium if $a_3 < 0 \iff R_{os} > 1$;

ii a unique endemic equilibrium if $a_2 < 0$ and $a_1 = 0$ or $a_2^2 - 4a_3a_1 = 0$;

iii two endemic equilibria if $a_1 > 0$, $a_2 < 0$ and $a_2^2 - 4a_3a_1 > 0$ and $R_{os} < 1$;

iv no endemic equilibrium otherwise.

It is also interesting to note that, setting the re-infection term $\xi_s = 0$, reduces the quadratic (11) to $a_2\lambda_s^* + a_3 = 0$, resulting in no sign changes in the polynomial equation (11), as $a_2 > 0$ and $a_3 > 0$ (for $R_{os} < 1$). Hence no existence of an endemic equilibrium for $R_{os} < 1$, ruling out the existence of backward bifurcation in the syphilis only sub-model (3) in the absence of re-infection of treated individuals. This is consistent with the proof in Theorem 3.1.

3.1.5 Bifurcation analysis of the syphilis-only sub-model

Using the same approach as in Castillo-Chavez and Song [10], we shall investigate the possibility of a backward bifurcation for the syphilis-only sub-model. The linearized system evaluate at the DFE is given as

\[
\begin{pmatrix}
-\mu & 0 & -\beta_s & -\beta_s\eta_L & 0 \\
0 & -K_1 & \beta_s & \beta_s\eta_L & 0 \\
0 & \sigma_1 & -K_2 & 0 & 0 \\
0 & 0 & \sigma_2 & -K_3 & 0 \\
0 & 0 & \tau_1 & \tau_2 & -\mu \\
\end{pmatrix}
\]

(12)

where,

$$K_1 = \mu + \sigma_1, \quad K_2 = \sigma_2 + \tau_1 + \mu, \quad K_3 = \tau_2 + \sigma_3 + \mu,$$

The components of the right eigenvector are given as:

$$\omega_1 = -(K_3 + \eta_L) \frac{\omega_5 \beta_s^*}{\sigma_2 \tau_2 + K_3 \tau_1} < 0, \quad \omega_2 = \frac{\mu K_3 \omega_5 K_2}{\sigma_1 (\sigma_2 \tau_2 + K_2 \tau_1)} > 0, \quad \omega_3 = \frac{\mu K_3 \omega_5}{(\sigma_2 \tau_2 + K_3 \tau_1)} > 0,$$

$$\omega_4 = \frac{\mu \omega_5}{(\sigma_2 \tau_2 + K_3 \tau_1)} > 0, \quad \omega_5 = \omega_5 > 0,$$

(13)

The components of the left eigenvector are equally given by:

$$\nu_2 = \frac{\sigma_1}{K_1 K_2}, \quad \nu_3 = \frac{1}{K_2}, \quad \nu_4 = \frac{\eta_L}{K_3 + \eta_L \sigma_2}$$
The time derivative, using Leibniz rule for integration as illustrated in Adams [2], is given by

\[
a = \sum_{k,i,j=1}^n \nu_k \omega_i \omega_j \frac{\partial^2 f_k}{\partial x_i \partial x_j}(0,0),
\]

\[
b = \sum_{k,i=1}^n \nu_k \omega_i \frac{\partial^2 f_k}{\partial x_i \partial \phi}(0,0).
\]

\[
a = -\frac{2\beta^* \nu_2}{N^*} (\omega_3 + \eta \omega_1)(\omega_2 + \omega_3 + \omega_4 + \omega_5) + \frac{2\beta^* \xi \nu_2 \omega_5}{N^*} (\omega_3 + \eta \omega_4)
\]

\[
b = \nu_2 (\omega_3 + \omega_4 \eta L)
\]

\[
= \frac{\mu \sigma_1 \omega_5}{K_1 K_3 (2\omega_2 \tau_2 + \omega_3 \tau_1)} (K_3 + \eta \omega_3) > 0
\]

It can be observed from (14), that setting the re-infection parameter, \(\xi = 0 \), results in \(a < 0 \). Thus, re-infection induced the phenomenon of backward bifurcation in the Syphilis-only sub-model [3]. This is consistent with the results obtained in the analyses in sections 3.1 and 3.1.4. An associated backward bifurcation diagram is depicted in Figure 2.

3.1.6 GAS of EEP of the Syphilis-only sub-model [3]: special case(\(\xi_s = \delta_s = 0 \))

Now that the cause of the backward bifurcation in the syphilis-only sub-model (3) is removed, that is, \(\xi_s = 0 \), we seek to prove the global asymptotic stability of the unique endemic equilibrium of the sub-model, for a special case when disease induced death rates are negligible, that is, \(\delta_s = 0 \).

The Syphilis-only sub-model [3] has an endemic equilibrium given by

\[
\xi_{eS} = (S^{**}, E^{**}, I^{**}, L^{**}, T^{**}).
\]

It should be noted that setting \(\delta_s = 0 \) in (3) gives us \(N \rightarrow \frac{\lambda}{\mu} \) as \(t \rightarrow \infty \). Let \(\bar{\beta}_s = \frac{\mu \beta_s}{\lambda} \) so that

\[
\lambda_s = \bar{\beta}_s (I + \eta L)
\]

Theorem 3.3 Consider the sub-model [3] with \(\xi_s = 0 \). The sub-model is GAS in \(\mathcal{D}_0 \) whenever

\[
\mathcal{D}_0 = \left\{ (S, E, I, L, T) \in \mathcal{D} : E = I = L = T = 0 \right\}
\]

Proof. Consider the syphilis-only sub-model [3] with (15) and \(\xi_s = 0 \) and \(\mathcal{R}_s > 1 \), so that the associated unique endemic equilibrium exists. Also, consider the Lyapunov functional similar to the Goh-Volterra type considered by Ghosh et al [15]:

\[
\mathcal{L} = \int_{S^{**}}^{S} \left(1 - \frac{S^{**}}{S} \right) dw + \int_{E^{**}}^{E} \left(1 - \frac{E^{**}}{E} \right) dw + \int_{I^{**}}^{I} \left(1 - \frac{I^{**}}{I} \right) dw + \int_{L^{**}}^{L} \left(1 - \frac{L^{**}}{L} \right) dw
\]

The time derivative, using Leibniz rule for integration as illustrated in Adams [2], is given by

\[
\dot{\mathcal{L}} = \left(1 - \frac{S^{**}}{S} \right) \dot{S} + \left(1 - \frac{E^{**}}{E} \right) \dot{E} + \left(1 - \frac{I^{**}}{I} \right) \dot{I} + \left(1 - \frac{L^{**}}{L} \right) \dot{L}
\]

Substituting the expressions for the derivatives, \(\dot{S}, \dot{E}, \dot{I} \) and \(\dot{L} \) from (3), into the Lyapunov derivative, \(\dot{\mathcal{L}} \), and carrying out certain algebraic manipulations, we have that

\[
\dot{\mathcal{L}} = \mu S^{**} \left(2 - \frac{S^{**}}{S} - \frac{S}{S^{**}} \right) + 3\bar{\beta}_s S^{**} I^{**} + 4\bar{\beta}_s \eta L^{**} S^{**} - \frac{\bar{\beta}_s (S^{**})^2}{S} (I^{**} + \eta L^{**})
\]

\[
- \frac{\bar{\beta}_s S E^{**} (I + \eta L)}{E} - \frac{\bar{\beta}_s S^{**} E (I^{**})^2}{E^{**} I} - \frac{\bar{\beta}_s S^{**} \eta EI^{**} L^{**}}{IE^{**}} - \frac{\bar{\beta}_s \eta (L^{**})^2 IS^{**}}{I^{**} L}
\]

(16)
The basic reproduction number, using the next generation operator method \([42]\) is given by the model (18) to zero, given by

The HPV-only sub-model (18) has a DFE, obtained by setting the right-hand sides of the equations in 3.2.1 Basic reproduction number of the HPV-only sub-model

where now,

Thus, \(\hat{L} \leq 0 \) for \(\mathcal{R}_0 > 1 \). Hence, \(\mathcal{L} \) is a Lyapunov function in \(\mathcal{D} \) and it follows from the La Salle’s Invariance principle \([19]\), that every solution to the equations of the syphilis-only sub-model \([3]\) with initial conditions in \(\mathcal{D}_1 \) approaches the associated unique endemic equilibrium \(\xi_{e} \), of the syphilis-only sub-model as \(t \to \infty \) for \(\mathcal{R}_{10} > 1 \).

The epidemiological implication of Theorem 3.3 is that, if a previous infection with syphilis confers lifetime protection against re-infection, then syphilis infection will persist in the population, if the threshold quantity, \(\mathcal{R}_0 > 1 \).

3.2 HPV-Only sub-model

The HPV-only sub-model is (obtained by setting \(E = I = L = T = H_s = H_t = H_e = P_s = P_t = P_e = C_s = C_t = C_e = 0 \) in the model \([1]\) given by:

where now,

with

\[N = S + V_u + H + P + C + R_c + R_u \]

3.2.1 Basic reproduction number of the HPV-only sub-model

The HPV-only sub-model \([18]\) has a DFE, obtained by setting the right-hand sides of the equations in the model \([18]\) to zero, given by

The basic reproduction number, using the next generation operator method \([12]\) is given by

with,

\[K_4 = \mu + \delta_a + r_1, \quad K_5 = \mu + r_2 \]

The local and global asymptotic stability analyses of the HPV-only sub-model \([18]\) were well explored by Omame et al. \([30]\).
4 Local asymptotic stability of disease-free equilibrium co-infection model (1)

Lemma 4.1 The DFE, ξ_0, of the HPV-Syphilis co-infection model (1) is locally asymptotically stable (LAS) if $R_0 < 1$, and unstable if $R_0 > 1$.

The epidemiological implication of Lemma 4.1 is that when $R_0 < 1$, a small influx of HPV or syphilis-infected individuals into the population will not generate large HPV or syphilis outbreaks, and the diseases will die out.

Table 2: Description of parameters in the model (1).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Λ_h</td>
<td>Recruitment rate for humans</td>
<td>120895</td>
<td>[9]</td>
</tr>
<tr>
<td>μ_h</td>
<td>Natural death rate</td>
<td>0.0135</td>
<td>[9]</td>
</tr>
<tr>
<td>ϕ</td>
<td>fraction of individuals vaccinated against HPV</td>
<td>0.70</td>
<td>Assumed</td>
</tr>
<tr>
<td>τ_{i_1}, τ_{i_2}</td>
<td>Syphilis treatment rate for singly infected in compartments I and L, respectively</td>
<td>3.65</td>
<td>Implied from [10]</td>
</tr>
<tr>
<td>$r_{1, i = 3, 8}$</td>
<td>HPV natural recovery or clearance rate for individuals in compartments H_i, H_i, P_i, P_i, C_i and C_i, respectively</td>
<td>0.9</td>
<td>[31]</td>
</tr>
<tr>
<td>β_{s}</td>
<td>Effective contact rate for syphilis infection</td>
<td>7.0</td>
<td>[23]</td>
</tr>
<tr>
<td>β_h</td>
<td>Effective contact rate for HPV infection</td>
<td>2.0</td>
<td>[30]</td>
</tr>
<tr>
<td>$r_{i, i = 3, 8}$</td>
<td>HPV natural recovery or clearance rates for dually infected individuals in compartments H_i, H_i, P_i, P_i, C_i and C_i, respectively</td>
<td>0.9</td>
<td>[30]</td>
</tr>
<tr>
<td>δ_{i_1}</td>
<td>Syphilis-induced death rate for singly infected individuals</td>
<td>0.06849</td>
<td>[11]</td>
</tr>
<tr>
<td>δ_{i_2, i_3, i_4}</td>
<td>Syphilis-induced death rates for dually infected individuals in compartments H_i, P_i, and C_i, respectively</td>
<td>0.06849</td>
<td>Assumed</td>
</tr>
<tr>
<td>δ_{i_1}</td>
<td>HPV-induced death rate for singly infected individuals</td>
<td>0.001</td>
<td>[29]</td>
</tr>
<tr>
<td>δ_c</td>
<td>Cancer-induced death rate</td>
<td>0.001</td>
<td>[31]</td>
</tr>
<tr>
<td>δ_{i_2, i_3, i_4}</td>
<td>HPV-induced death rates for dually infected individuals in compartments H_i, H_i, and H_i, respectively</td>
<td>0.001</td>
<td>[30]</td>
</tr>
<tr>
<td>$\alpha_{i,i = 1,2,3,4}$</td>
<td>Anal cancer treatment rates for individuals in compartments C_i, C_i, C_i and C_i, respectively</td>
<td>0.76</td>
<td>[21]</td>
</tr>
<tr>
<td>η</td>
<td>Modification parameter accounting for infectiousness of syphilis infected individuals in late latent stage</td>
<td>0.001</td>
<td>[21]</td>
</tr>
<tr>
<td>θ_i</td>
<td>Modification parameter accounting for increased infectiousness of dually infected individuals due to HPV infection</td>
<td>1.3</td>
<td>Assumed</td>
</tr>
<tr>
<td>θ_s</td>
<td>Modification parameter accounting for increased infectiousness of dually infected individuals due to syphilis infection</td>
<td>1.3</td>
<td>Assumed</td>
</tr>
<tr>
<td>ξ_i</td>
<td>Syphilis re-infection rate</td>
<td>0.6</td>
<td>[24]</td>
</tr>
<tr>
<td>ξ_h</td>
<td>HPV re-infection rate</td>
<td>0.2</td>
<td>[31]</td>
</tr>
<tr>
<td>ω_p</td>
<td>Modification parameter accounting for infectiousness of persistent HPV-infected individuals</td>
<td>0.9</td>
<td>[4]</td>
</tr>
<tr>
<td>ψ</td>
<td>fraction of persistent HPV-infected individuals who recover naturally and do not develop anal cancer</td>
<td>0.5</td>
<td>[21]</td>
</tr>
<tr>
<td>$\gamma_i, i = 1,2,3$</td>
<td>Modification parameter accounting for the susceptibility of syphilis-infected individuals to HPV infection</td>
<td>1.2</td>
<td>[34, 35]</td>
</tr>
<tr>
<td>$\xi_i, i = 1,2,3$</td>
<td>Modification parameter accounting for the susceptibility of HPV-infected individuals to syphilis infection</td>
<td>1.3</td>
<td>[26, 25]</td>
</tr>
<tr>
<td>$\rho_i, i = 1,2,3$</td>
<td>Fraction of HPV-infected individuals who develop persistent HPV infection</td>
<td>0.5</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\sigma_1, \sigma_3, \sigma_5$</td>
<td>Progression rates to early stage of syphilis infection</td>
<td>0.2</td>
<td>Assumed</td>
</tr>
<tr>
<td>$\sigma_2, \sigma_4, \sigma_6$</td>
<td>progression rates to late stage of syphilis infection</td>
<td>0.2</td>
<td>[16]</td>
</tr>
</tbody>
</table>
4.1 Global asymptotic stability of the disease free equilibrium model \([1]\)

Using the same approach as in Section \([3.1.3]\) we can establish the following result. Consider the conditions below:

(H1): For \(\frac{dW}{dt} = F(W, 0)\), \(W^*\) is globally asymptotically stable (GAS),

(H2): \(G(W, Q) = AQ - \mathcal{G}(W, Q)W, G(W, Q) \geq 0\) for \((W, Q) \in \Omega\),

where \(A = DQG(W^*, 0)\) is an M-matrix (the off-diagonal elements of \(A\) are nonnegative) and \(\Omega\) is the region where the model makes biological sense. If System \([1]\) satisfies the above two conditions then the following theorem holds:

Theorem 4.1 The fixed point \(U_0 = (W^*, 0)\) is a globally asymptotic stable (GAS) equilibrium of \([1]\) provided that \(R_0 < 1\) (LAS) and that assumptions (H1) and (H2) are satisfied.

The proof follows as in Section \([3.1.3]\), where

\[
\begin{align*}
\lambda_0 E + \beta_1 \{I + C_1 + \eta_1(L + C_L) + \theta_1(H_1 + \omega_P P_1 + \eta_1(H_L + \omega_P P_L))\} \left[1 - \frac{S + \gamma L + R_A + R_C}{N} \right] - \xi_3 \lambda_3 T & = 0, \\
\gamma_3 \lambda_3 L & = 0, \\
\gamma_2 \lambda_2 L & = 0, \\
\varepsilon \lambda_1 H + \beta_1 \{H + H_L + \omega_P (P + P_L) + \theta_1 (H_1 + \omega_P P_1 + \eta_1 (H_L + \omega_P P_L))\} \left[\frac{S^* + \gamma (1 - \pi)}{N^*} - \frac{(S + \gamma (1 - \pi)) \mathcal{V}}{N^*} \right] - \xi_3 \lambda_3 R_A & = 0, \\
- \lambda E + \xi_1 \lambda H & = 0, \\
- \gamma_1 \lambda I & = 0, \\
- \gamma_2 \lambda L & = 0, \\
- \varepsilon \lambda P & = 0, \\
0 & = 0, \\
0 & = 0, \\
0 & = 0, \\
0 & = 0,
\end{align*}
\]

It is evident from the above, that \(\hat{G}(W, Q) \neq 0\), which means that the condition (H2) is not satisfied. Hence the DFE, \(U_0 = (W^*, 0)\) may not be globally asymptotically stable, suggesting the possibility of a backward bifurcation. This supports the backward bifurcation analysis for the full co-infection model \([1]\) in the next section.

4.2 Backward bifurcation analysis of the full co-infection model \([1]\)

We shall investigate the type of bifurcation the model \([1]\) may undergo, using the Centre Manifold Theory as discussed in \([10]\). The following result can be obtained using the approach in \([10]\).

Theorem 4.2 If \(R_0 < 1\) and a backward bifurcation coefficient \(a > 0\), where

\[
a = \frac{2 \beta^* (\omega_1 + \eta_1 \omega_3) \nu_2}{N^*} - \frac{2 \beta^* (\omega_1 + \eta_1 \omega_3)}{N^*} \{\varepsilon_1 \omega_1 (\nu_1 - \nu_{12}) + \varepsilon_2 \omega_2 (\nu_4 - \nu_{15})\} - \frac{2 \beta^* \{x^* + (1 - \pi) \nu_6^* \} \nu_2}{N^*} \{\omega_1 + \omega_2 + \omega_3 + \omega_4 + \omega_5 + \omega_6 + \omega_7 + \omega_8 + \omega_9 + \omega_{10} + \omega_{11}\} - \frac{2 \beta^* (\omega_1 + \eta_1 \omega_3) \nu_2}{N^*} \{\omega_2 (\nu_2 - \nu_{12}) + \gamma_1 \omega_1 (\nu_1 - \nu_{13}) + \gamma_2 \omega_2 (\nu_4 - \nu_{14}) - (\omega_1 + \omega_8 + (1 - \pi) \omega_6 - \xi_3 \omega_{11}) \nu_2\}
\]

then model \([1]\) exhibits backward bifurcation at \(R_0 = 1\). If \(a < 0\), then the system \([1]\) exhibits a forward bifurcation at \(R_0 = 1\).

Proof Suppose

\[
\]

represents any arbitrary endemic equilibrium of the model (that is, an endemic equilibrium in which at least one of the infected components is non-zero). To apply the Centre Manifold Theory, it is necessary
to carry out the following change of variables.

Let

\[S = x_1, \quad E = x_2, \quad I = x_3, \quad L = x_4, \quad T = x_5, \quad V_u = x_6, \quad H = x_7, \quad P = x_8, \quad C = x_9, \]

\[R_e = x_{10}, \quad R_u = x_{11}, \quad H_e = x_{12}, \quad H_u = x_{13}, \quad P_e = x_{14}, \quad P_u = x_{15}, \quad P_t = x_{16}, \quad P_l = x_{17}, \]

\[C_w = x_{18}, \quad C_s = x_{19}, \quad C_l = x_{20} \]

so that

\[N = \sum_{i=1}^{20} x_i. \]

Further, using the vector notation

\[X = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}, x_{20})^T \]

the model can be re-written in the form

\[\frac{dX}{dt} = f = (f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19}, f_{20})^T \]

as follows:

\[x_1 = (1 - \phi)\lambda - (\lambda_i + \lambda_u)x_1 - \mu x_1 \]
\[x_2 = \lambda_i x_1 + \xi \lambda_i x_3 + (x_6 + x_{11} + x_{10})\lambda_i + \alpha_i x_{18} + (1 - \rho_s)\tau_i x_{12} + (1 - \chi_i)\lambda_u x_1 + (\sigma_1 + \mu)x_2 - \lambda_u x_2 \]
\[x_3 = \sigma_2 x_2 + (1 - \rho_s)\tau_i x_{13} + (1 - \chi_i)\tau_i x_{16} + \alpha_i x_{19} - (\sigma_2 + \tau_i + \mu)x_3 - \gamma_1 \lambda_i x_3 \]
\[x_4 = \sigma_3 x_3 + (1 - \rho_s)\tau_i x_{14} + (1 - \chi_i)\lambda_u x_1 + \alpha_i x_{20} - (\tau_i + \mu + \delta_u)x_4 - \gamma_2 \lambda_i x_4 \]
\[x_5 = \tau_i x_3 + \tau_s x_4 - \mu x_5 - \xi \lambda_i x_5 - \lambda_u x_5 \]
\[x_6 = \phi \lambda_i - (1 - \pi_u)\lambda_u x_6 - (\mu + \lambda_i) x_6 \]
\[x_7 = \lambda_i x_1 + (1 - \pi_u)\lambda_u x_6 - \xi \lambda_i x_7 + \tau_i x_{13} + \tau_s x_4 + \lambda_u x_5 + \xi \lambda_u x_11 - (\mu + \delta_u + \tau_i)x_7 \]
\[x_8 = \rho_t \tau_i x_7 + \tau_i x_{16} + \tau_s x_{17} - \xi \lambda_i x_8 - \mu x_8 - \tau_i x_8 \]
\[x_9 = (1 - \psi)\tau_i x_8 + \tau_i x_{19} + \tau_s x_{20} - \lambda_u x_9 - (\mu + \pi_i + \delta_u)x_9 \]
\[x_{10} = \alpha_i x_9 - (\mu + \lambda_i) x_{10} \]
\[x_{11} = (1 - \rho_i)\tau_i x_7 + \psi \tau_i x_8 + \mu x_{11} - \xi \lambda_i x_{11} - \lambda_u x_{11} \]
\[x_{12} = \lambda_u x_2 + \xi \lambda_i x_7 - (\sigma_3 + \mu + \tau_i + \delta_u)x_12 \]
\[x_{13} = \sigma_3 x_{12} + \gamma_1 \lambda_u x_3 - (\sigma_2 + \mu + \tau_i + \delta_u)x_{13} \]
\[x_{14} = \sigma_2 x_{13} + \gamma_2 \lambda_i x_4 - (\tau_i + \tau_s + \mu + \delta_u)x_{14} \]
\[x_{15} = \sigma_3 x_{15} + \rho_3 \tau_i x_{12} - (\tau_i + \tau_s + \mu + \delta_u)x_{15} \]
\[x_{16} = \sigma_2 x_{15} + \rho_3 \tau_i x_{13} - (\tau_i + \tau_s + \mu + \delta_u)x_{16} \]
\[x_{17} = \sigma_3 x_{16} + \rho_3 \tau_i x_{14} - (\tau_i + \tau_s + \mu + \delta_u)x_{17} \]
\[x_{18} = \lambda_i x_9 + \lambda_i x_{15} - (\mu + \delta_u + \tau_i + \alpha_i)x_{18} \]
\[x_{19} = \chi_r x_{16} + \sigma_2 x_{18} - (\mu + \delta_u + \sigma_2 + \alpha_i + \tau_i)x_{19} \]
\[x_{20} = \chi_r x_{17} + \sigma_3 x_{19} - (\mu + \delta_u + \delta_u + \alpha_i + \tau_i)x_{20} \]

where,

\[\lambda_i = \beta_i \left[x_3 + x_{19} + \eta_\lambda (x_4 + x_{20}) + \eta_\lambda \left\{ x_{13} + \omega_\lambda x_{16} + \eta_\lambda (x_{14} + \omega_\lambda x_{17}) \right\} \right] \]
\[\lambda_u = \beta_u \left[x_7 + x_{12} + \omega_\lambda (x_8 + x_{15}) + \eta_\lambda \left\{ x_{13} + \omega_\lambda x_{16} + \eta_\lambda (x_{14} + \omega_\lambda x_{17}) \right\} \right] \]

Consider the case when \(R_{os} = 1 \). Suppose, further, that \(\beta_s \) is chosen as a bifurcation parameter. Solving for \(\beta_s = \beta_s^* \) from \(R_{os} = 1 \) gives

\[\beta_s = \beta_s^* = \frac{K_1 K_2 K_3}{\sigma (K_3 + \eta_\lambda \sigma_2)} \]
Evaluating the Jacobian of the system [20] at the DFE, $J(\xi_0)$, and using the approach in [10], we have that $J(\xi_0)$ has a right eigenvector (associated with the simple zero eigenvalue of $J(\xi_0)$) given by

$$\mathbf{w} = [\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6, \omega_7, \omega_8, \omega_9, \omega_{10}, \omega_{11}, \omega_{12}, \omega_{13}, \omega_{14}, \omega_{15}, \omega_{16}, \omega_{17}, \omega_{18}, \omega_{19}, \omega_{20}]^T$$

where,

$$\omega_1 = -\frac{1}{\mu} \left[K_1 K_2 x_1^* + \beta_1 x_1 (K_5 + \omega_2 \rho_1 r_1) \right] < 0, \quad \omega_2 = \frac{K_2}{\sigma_1 \sigma_2^*} > 0, \quad \omega_3 = \frac{1}{\sigma_2} > 0, \quad \omega_4 = \frac{1}{K_3} > 0,$$

$$\omega_5 = \frac{\tau_1 K_3 + \gamma_2 \sigma_1^2}{\mu \sigma_2^2 K_3} > 0, \quad \omega_6 = -\frac{1}{\mu} \left[K_1 K_2 x_6^* + \left(1 - \sigma_1 \right) \beta_1 x_6^* (K_5 + \omega_2 \rho_1 r_1) \right] < 0,$$

$$\omega_7 = \omega_5 > 0, \quad \omega_8 = \frac{\rho_1 \gamma_1}{K_5} \omega_5 > 0, \quad \omega_9 = \frac{G_1 \rho_1 \gamma_1}{K_5 K_6} \omega_5 > 0, \quad \omega_{10} = \frac{\sigma_1 G_1 \rho_1 r_1}{\mu K_5 K_6} \omega_5 > 0,$$

$$\omega_{11} = \left(K_5 G_8 + \psi \rho_2 \rho_3 \right) \omega_5 > 0,$$

$$\omega_{12} = \omega_{13} = \omega_{14} = \omega_{15} = \omega_{16} = \omega_{17} = \omega_{18} = \omega_{19} = \omega_{20} = 0.$$

The components of the left eigenvector of $J(\xi_0)|_{\beta_1=\beta_2^*}$, $\mathbf{v} = (\nu_1, \nu_2, \ldots, \nu_{20})$, satisfying $\mathbf{v} \cdot \mathbf{w} = 1$ are

$$\nu_2 = \frac{\sigma_1 (K_3 + \eta_1 \sigma_2)}{K_1 K_2 K_3 \eta_1} > 0,$$

$$\nu_3 = \frac{K_3 + \eta_2 \sigma_2}{K_2 K_3 \eta_1} > 0,$$

$$\nu_4 = \frac{1}{K_3} > 0,$$

$$\nu_5 > 0,$$

$$\nu_8 = \frac{\omega_8 \beta_2 (x_1^* + x_6^* \nu_7) \nu_7 > 0,$$

$$\nu_{12} = \nu_{13} = \nu_{14} = \nu_{15} = \nu_{16} = \nu_{17} = \nu_{18} = \nu_{19} = \nu_{20} = 0.$$
It follows from Theorem 4.1 in [10], by computing the non-zero partial derivatives of $F(x)$ (evaluated at the disease free equilibrium, $(ξ_i)$) that the associated bifurcation coefficients defined by a and b, given by

$$a = \sum_{k,i,j=1}^n v(ω_j) \frac{∂^2 f_k}{∂x_i∂x_j}(0,0) \quad \text{and} \quad b = \sum_{k,i,j=1}^n v(ω_j) \frac{∂^2 f_k}{∂x_i∂x_j}(0,0),$$

are computed to be

$$a = -\frac{2b^7(ω_3 + η_iω_j)ν_2}{N^5} \{ω_5 + ω_4 + ω_5 - ξ_ω(ω_3 + ω_5 + ω_5 + ω_5)\}
+ \frac{2b^7(ω_3 + η_iω_j)ν_2}{N^5} \{ε(ω_7(ν_12 - ν_7) + εω_8(ν_15 - ν_8))\}
- \frac{2b^7(ω_3 + η_iω_j)ν_2}{N^5} \{ω_5 + ω_3 + ω_4 + ω_5 + ω_7 + ω_8 + ω_5 + ω_10 + ω_11\}
+ \frac{2b^7(ω_3 + η_iω_j)ν_2}{N^5} \{ω_2(ν_12 - ν_2) + γ_2ω_3(ν_13 - ν_3) + γ_2ω_4(ν_14 - ν_4) + (ω_1 + ω_5 + (1 - π_0)ω_6 + ξ_ωω_11)ν_7\} \tag{22}$$

and

$$b = \sum_{k,i,j=1}^n v(ω_j) \frac{∂^2 f_k}{∂x_i∂x_j}(0,0) = (ω_3 + η_iω_j)ν_2 > 0$$

Since the bifurcation coefficient b is positive, it follows from Theorem 4.1 in [10] that the model [1], or the transformed model [20], will undergo a backward bifurcation if the backward bifurcation coefficient, a, given by (22) is positive. □

5 Analysis of optimal Control Problem

We apply Pontryagin’s Maximum Principle, in this section, to determine the necessary conditions for the optimal control of the HPV-Syphilis co-infection model. We assume that the proportion of vaccinated individuals, $φ$ for HPV and the Syphilis treatment rates $u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8$ are now time dependent and will therefore act as the control variables. Hence we have

$$\dot{S} = (1 - φ(t))Λ - (λ_S + λ_0)S - μS$$
$$\dot{E} = λ_S + ξ_ωE - (σ_1 + μ)E - (V_1 + R_1 + R_2)λ_S + α_3C_t + (1 - ρ_0)r_3H_E + (1 - χ_1)r_6P_E$$
$$\dot{I} = σ_1E - (σ_2 + u_1(t) + μ)I - γ_3λ_aI + (1 - π_3)r_4H_I + (1 - χ_2)r_7P_I + α_5C_t$$
$$\dot{L} = σ_2I - (u_2(t) + μ + δ_1)L - γ_2λ_aL + (1 - ρ_4)r_5H_L + (1 - χ_3)r_8P_L + α_4C_t$$
$$\dot{T} = u_3(t)I + u_2(t)L - μT - ξ_ωλ_T - λ_TT$$
$$\dot{V}_n = φ(t)Λ - (1 - π_n)λ_nV_n - (μ + λ_1)V_n$$
$$\dot{H} = ξ_ωS + (1 - π_2)λ_nV_n - (μ + δ_2)H - (μ + δ_1 + r_1)H + u_5(t)H_I + u_4(t)H_L + λ_TT + ξ_ωλ_nR_n$$
$$\dot{P} = ρ_1r_1H - (μ + α_1 + δ_2)C + u_7(t)C + u_8(t)C_L - λ_0C$$
$$\dot{R}_C = α_0C - (μ + λ_3)R_C$$
$$\dot{R}_b = (1 - φ(t))R_b$$
$$\dot{H}_E = ξ_ωE$$
$$\dot{H}_I = σ_5H_E + γ_3λ_aI - (σ_4 + μ + u_5(t) + r_1 + δ_3)H_I$$
$$\dot{H}_L = σ_4H_I + γ_2λ_aL - (u_4(t) + r_1 + μ + δ_2 + δ_3)H_L$$
$$\dot{P}_E = ε_2λ_P - (r_6 + μ + σ_2)P_E + ρ_5r_3H_E$$
$$\dot{P}_I = σ_3P_E - (u_5(t) + r_7 + μ + σ_1)P_I$$
$$\dot{P}_L = σ_5P_I$$
$$\dot{C}_E = λ_C + χ_1r_4P_E - (μ + δ_1 + σ_7 + α_2)C_E$$
$$\dot{C}_I = χ_2r_7P_I - (μ + δ_2 + σ_8 + α_3 + ω_7(t))C_I + σ_7C_E$$
$$\dot{C}_L = χ_3r_8P_L - (μ + δ_2 + δ_4 + α_4 + u_8(t))C_L + σ_8C_I$$

where,

$$λ_0 = \frac{β_0[I + C_t + η_3(L + C_t)]}{N} \{H_t + ω_PP_t + η_3(H_L + ω_PP_L)\}$$
$$λ_0 = \frac{β_0[H + H_E + ω_P(P + P_E)]}{N} \{H_t + ω_PP_t + η_3(H_L + ω_PP_L)\}$$ \tag{24}
For this, we consider the objective functional

$$
J[u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, \phi] = \int_0^T \left[E(t) + I(t) + L(t) + H(t) + P(t) + C(t) + H_E(t) + H(t) \\
+ H_L(t) + P_E(t) + P(t) + R(t) + C(t) + C_1(t) + C_1(t) \\
+ \frac{W_1}{2} u_2^2 + \frac{W_1}{2} u_3^2 + \frac{W_1}{2} u_4^2 + \frac{W_1}{2} u_5^2 + \frac{W_1}{2} u_6^2 + \frac{W_1}{2} u_7^2 \\
+ \frac{W_1}{2} u_2^2 + \frac{W_1}{2} u_3^2 + \frac{W_1}{2} u_4^2 \right] dt
$$

(25)

The parameters, W_1 is the weight on the benefit and cost of implementing the optimal control measure, where W_1 balances the cost factors as a result of the size and the relevance of the terms making up the objective functional. T is the final time.

We seek an optimal control, $\phi^*, u_1^*, u_2^*, u_3^*, u_4^*, u_5^*, u_6^*, u_7^*$, and u_8^* such that

$$
J(\phi^*, u_1^*, u_2^*, u_3^*, u_4^*, u_5^*, u_6^*, u_7^*) = \min \{J(\phi, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8) | \phi, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8 \in U \}
$$

(26)

where $U = \{(\phi^*, u_1^*, u_2^*, u_3^*, u_4^*, u_5^*, u_6^*, u_7^*) \text{ such that } \phi^*, u_1^*, u_2^*, u_3^*, u_4^*, u_5^*, u_6^*, u_7^* \text{ are measurable with } 0 \leq \phi^* \leq 1, 0 \leq u_1^* \leq 1, 0 \leq u_2^* \leq 1, 0 \leq u_3^* \leq 1, 0 \leq u_4^* \leq 1, 0 \leq u_5^* \leq 1, 0 \leq u_6^* \leq 1, 0 \leq u_7^* \leq 1, \text{ for } t \in [0, T]) \text{ is the control set.}

The Pontryagin’s Maximum Principle gives the necessary conditions which an optimal control pair must satisfy.

This principle transforms (23), (25) and (26) into a problem of minimizing a Hamiltonian, H_{am}, pointwisely with regards to the control functions, $\phi, u_1, u_2, u_3, u_4, u_5, u_6, u_7$ and u_8:

$$
H_{am} = E(t) + I(t) + L(t) + H(t) + P(t) + C(t) + H_E(t) + H(t) + H(t) + P_E(t) + P(t) + P(t) \\
+ I(t) + C_E(t) + C(t) + C_1(t) + \frac{1}{2} \sum_{i=1}^{7} w_i \phi_i^2 + \frac{1}{2} \sum_{i=1}^{7} w_i u_i^2 + \frac{1}{2} \sum_{i=1}^{7} w_i \phi_i^2 + \frac{1}{2} \sum_{i=1}^{7} w_i u_i^2 + \frac{1}{2} \sum_{i=1}^{7} w_i \phi_i^2 + \frac{1}{2} \sum_{i=1}^{7} w_i u_i^2
$$

(27)

Theorem 5.1 For an optimal control set $\phi, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8$ that minimizes J over $U, \text{ there are adjoint variables, } \lambda_1, \lambda_2, \ldots, \lambda_20$ satisfying

$$
-\frac{\partial \lambda_i}{\partial t} = \frac{\partial H_{am}}{\partial \phi_i}
$$

and with transversality conditions

$$
\lambda_i(t_f) = 0, \quad \lambda_i = S, E, I, L, T, V_6, H, P, C, R_6, R_6, H_E, H_L, P_E, P_E, C_6, C_6, C_6, C_6, C_6.
$$

(28)
Furthermore,

\[
\phi^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_1 - \lambda_3)}{u_1}, \frac{(\lambda_2 - \lambda_4)}{u_2}, \frac{(\lambda_3 - \lambda_5)}{u_3}, \frac{(\lambda_4 - \lambda_6)}{u_4} \right\} \right\}, \quad u_1^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_1 - \lambda_3)I^*}{w_1}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_3}, \frac{(\lambda_4 - \lambda_6)P^*}{w_4} \right\} \right\},
\]

\[
\begin{align*}
&u_2^* = \max \left\{ 0, \min \left\{ \frac{\lambda_2}{u_2}, \frac{(\lambda_4 - \lambda_6)L^*}{w_3}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_4 - \lambda_6)P^*}{w_5} \right\} \right\}, \\
&u_3^* = \max \left\{ 0, \min \left\{ \frac{\lambda_3}{u_3}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_4 - \lambda_6)P^*}{w_5} \right\} \right\}, \\
&u_4^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_4 - \lambda_6)P^*}{w_5} \right\} \right\}, \\
&u_5^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{\lambda_1 - \lambda_6}{w_6} \right\} \right\}, \\
&u_6^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_1 - \lambda_6)P^*}{w_5} \right\} \right\}, \\
&u_7^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_1 - \lambda_6)C^*}{w_6} \right\} \right\}, \\
&u_8^* = \max \left\{ 0, \min \left\{ \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_2 - \lambda_4)L^*}{w_2}, \frac{(\lambda_3 - \lambda_5)H^*}{w_4}, \frac{(\lambda_1 - \lambda_6)P^*}{w_5} \right\} \right\}.
\end{align*}
\]

Proof of Theorem 5.1

Suppose \(U^* = (\phi^*, u_1^*, u_2^*, \ldots, u_8^*) \) is an optimal control and \(S^*, E^*, I^*, L^*, T^*, V_a^*, H^*, P^*, C^*, R_v^* \) are the corresponding state variables. Applying the Pontryagin’s Maximum Principle \(\{33\} \), there exist adjoint variables satisfying:

\[
\begin{align*}
\frac{d\lambda_1}{dt} &= -\frac{\partial H_{am}}{\partial S}, \quad \lambda_1(t_f) = 0, \\
\frac{d\lambda_2}{dt} &= -\frac{\partial H_{am}}{\partial E}, \quad \lambda_2(t_f) = 0, \\
\frac{d\lambda_3}{dt} &= -\frac{\partial H_{am}}{\partial I^*}, \quad \lambda_3(t_f) = 0, \\
\frac{d\lambda_4}{dt} &= -\frac{\partial H_{am}}{\partial L^*}, \quad \lambda_4(t_f) = 0, \\
\frac{d\lambda_5}{dt} &= -\frac{\partial H_{am}}{\partial H^*}, \quad \lambda_5(t_f) = 0, \\
\frac{d\lambda_6}{dt} &= -\frac{\partial H_{am}}{\partial P^*}, \quad \lambda_6(t_f) = 0, \\
\frac{d\lambda_7}{dt} &= -\frac{\partial H_{am}}{\partial C^*}, \quad \lambda_7(t_f) = 0, \\
\frac{d\lambda_8}{dt} &= -\frac{\partial H_{am}}{\partial T^*}, \quad \lambda_8(t_f) = 0,
\end{align*}
\]

with transversality conditions:

\[
\begin{align*}
\lambda_1(t_f) &= \lambda_2(t_f) = \lambda_3(t_f) = \lambda_4(t_f) = \lambda_5(t_f) = \lambda_6(t_f) = \lambda_7(t_f) = \lambda_8(t_f) = 0.
\end{align*}
\]

We can determine the behaviour of the control by differentiating the Hamiltonian, \(H_{am} \) with respect to the controls \((\phi, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8) \) at \(t \). On the interior of the control set, where \(0 < u_j < 1 \) for all \((j = 1, \ldots, 8) \) and \(0 < \phi < 1 \), we obtain

\[
0 = \frac{\partial H_{am}}{\partial \phi} = w_1 \phi - (\lambda_1 - \lambda_6), \quad 0 = \frac{\partial H_{am}}{\partial u_1} = w_2 u_1 - (\lambda_3 - \lambda_5)I^*, \quad 0 = \frac{\partial H_{am}}{\partial u_2} = w_3 u_2 - (\lambda_4 - \lambda_6)L^*
\]

\[
0 = \frac{\partial H_{am}}{\partial u_3} = w_4 u_3 - (\lambda_4 - \lambda_6)H^*, \quad 0 = \frac{\partial H_{am}}{\partial u_4} = w_5 u_4 - (\lambda_3 - \lambda_5)H^*, \quad 0 = \frac{\partial H_{am}}{\partial u_5} = \lambda_6 u_5 - (\lambda_1 - \lambda_7)P^*_f
\]

\[
0 = \frac{\partial H_{am}}{\partial u_6} = \lambda_7 u_6 - (\lambda_1 - \lambda_7)C^*_f.
\]

Therefore, we have that

\[
\begin{align*}
\phi^* &= \frac{(\lambda_1 - \lambda_6)}{w_1}, \quad u_1^* = \frac{(\lambda_3 - \lambda_5)I^*}{w_2}, \quad u_2^* = \frac{(\lambda_4 - \lambda_6)L^*}{w_3}, \quad u_3^* = \frac{(\lambda_1 - \lambda_7)H^*}{w_4}, \quad u_4^* = \frac{(\lambda_1 - \lambda_7)P^*_f}{w_5}, \\
u_5^* = \frac{(\lambda_1 - \lambda_7)P^*_f}{w_6}, \quad u_6^* = \frac{(\lambda_1 - \lambda_7)P^*_f}{w_7}, \quad u_7^* = \frac{(\lambda_1 - \lambda_7)C^*_f}{w_8}, \quad u_8^* = \frac{(\lambda_1 - \lambda_7)P^*_f}{w_9}.
\end{align*}
\]
5.1 Numerical simulations

We now simulate the optimal control model (23) numerically using the parameter estimates in Table 2 so that the reproduction number, \(R_0 = 1.80842 \) (unless otherwise stated), to assess the potential impact of various targeted control strategies on the transmission dynamics of HPV and Syphilis in the population. Demographic parameters relevant to the city of Rio de Janeiro in Brazil were chosen. Specifically, since the total population of sexually active susceptible individuals (15-64 years) in the State of Rio de Janeiro in Brazil is estimated to be 12,850,804, at disease-free equilibrium, \(\Lambda = 8,946,246 \) [9]. In Brazil, the life expectancy is estimated at 74 years [9]. Hence we have that \(\mu = 0.0135 \), so that \(\Lambda = 120895 \) per year.

Numerical simulations of the optimal control problem (23), adjoint equations (30) and characterizations of the control (33) are implemented by the Runge-Kutta method using the forward sweep (carried out in MATLAB). The balancing factor \(w_1 = 10^3 \) (The Centre for Disease Control cost per dose of the pediatric Gardasil 4, Gardasil 9, and the Cervarix, respectively, is $121.03, $134.26 and $107.97 [12, 22]). Since the associated costs considered are combinations of price per dose, storage/admistration-related costs and transportation, etc, we will assume \(w_1 = 10^3 \). Following the estimates for syphilis treatment in [18], the balancing factors for syphilis-infected individuals are: \(u_2 = u_3 = 200, w_4 = w_5 = w_6 = w_7 = w_8 = w_9 = 220 \). Here, we assume that the cost of treatment for co-infected individuals is more than the cost of treatment for singly-infected individuals. Following the reported prevalence of Syphilis and HPV as well as the co-infection prevalence in [34, 39] and the demographic data obtained from [9], we set the initial conditions at: \(S(0) = 100,000, E(0) = 10,000, I(0) = 20,000, T(0) = 0, V_H(0) = 100,000, H(0) = 2000, P(0) = 1000, C(0) = 2000, R_C(0) = 0, R_H(0) = 0, H_C(0) = 2000, H_I(0) = 10,000, H_L(0) = 10,000, F_C(0) = 1000, P_I(0) = 1000, P_L(0) = 1000, C_E(0) = 1000, C_I(0) = 10,000, C_L(0) = 5000 \). We implement the following four different control strategies for numerical simulations of the co-infection model (23):

I. Optimal HPV vaccination strategy (\(\phi \neq 0 \));
II. Syphilis treatment controls for singly infected individuals (\(u_1 \neq u_2 \neq 0 \));
III. Syphilis treatment controls for dually infected individuals only (\(u_3 \neq u_4 \neq u_5 \neq u_6 \neq u_7 \neq u_8 \neq 0 \));
IV. Universal strategy (\(\phi \neq u_1 \neq u_2 \neq u_3 \neq u_4 \neq u_5 \neq u_6 \neq u_7 \neq u_8 \neq 0 \)).

The control profiles for each of the various controls are presented in Figures 8, 10 and 12.

5.1.1 Strategy I: Optimal HPV vaccination strategy (\(\phi \neq 0 \))

Applying this strategy, we note in Figures 3 (a) and 3 (b) that the total number of individuals singly infected with HPV and persistent HPV, respectively, is less than the total number when no control is applied. It can equally be observed that optimal HPV vaccination strategy has a high positive population level impact on the populations of infected individuals dually infected with HPV and Syphilis in early and late stages of infection, respectively, (Figures 4 (a) and 4 (b)), infected individuals dually infected with persistent HPV and Syphilis, respectively, is less than the total number when no control is applied. In addition high population level impact is noticed on the total number of individuals dually infected with Cancer and Syphilis in early and late stages of infection, respectively, as shown in (Figure 6a - 6d). Applying this control, we observe that the total number of individuals dually infected with HPV and Syphilis in early and late stages of infection respectively, is less than the total population when no control is applied as in Figures 5 (c) and 5 (d). The simulations of the total number of dually infected individuals in the presence of Syphilis treatment controls are depicted in Figures 9 (a) and 9 (b). Applying this control, we observe that the total number of individuals dually infected with HPV and Syphilis in early and late stages of infection respectively, is less than the total population when no control is applied as expected (Figure 6(a) and 6(b)). Similarly, it is noticed from Figures 7 (c) and 8 (d), that the total number of individuals dually infected with persistent HPV and Syphilis in early and late stages of infection, respectively, is lesser when this control is applied. In addition high population level impact is noticed on the total number of individuals dually infected with Cancer and Syphilis in early and late stages of infection, respectively, as shown in (Figure 13(a) and 13 (b)). This supports the epidemiological report in the introduction section that syphilis is a risk factor for HPV infection [34]. Hence, if we focus on syphilis treatment controls, it can significantly bring down the burden of the co-infection of HPV and syphilis in a population. The simulations equally agree with the findings in Tseng et al. [35], that prior syphilis infection was associated with persistent HPV and increased susceptibility to anal cancer. As a result, treating syphilis infection in individuals dually
Figure 3: Plots of the total number of individuals singly infected with HPV and persistent HPV, respectively (Figures 3a and 3b) in the presence of optimal vaccination control only ($\phi \neq 0$) and total number of individuals singly infected with syphilis in early and late stages of infection, respectively (Figures 3c and 3d) in the presence of treatment controls for singly infected only ($u_1 \neq u_2 = 0$). Here, $\beta_s = 7.0$, $\beta_u = 2.0$. All other parameters as in Table 2.

Figure 4: Plots of the co-infection cases for individuals dually infected with HPV and syphilis in early and late stages of infection, respectively (Figure 4a and 4b) and co-infection cases for individuals dually infected with persistent HPV and syphilis in early and late stages of infection, respectively (Figures 4c and 4d), when optimal vaccination control only strategy ($\phi \neq 0$) and syphilis treatment controls for singly-infected ($u_1 \neq u_2 \neq 0$) are administered. Here, $\beta_s = 7.0$, $\beta_u = 2.0$. All other parameters as in Table 2.
infected with persistent HPV and anal cancer or focusing on syphilis treatment among individuals dually infected with syphilis and anal cancer, will significantly curb the mixed infections.

5.1.4 Strategy IV: Universal strategy \((\phi \neq 0 \neq u_1 \neq u_2 \neq u_3 \neq u_4 \neq u_5 \neq u_6 \neq u_7 \neq u_8 \neq 0) \)

The simulations of the optimal control model (23) in the presence of combined optimal HPV vaccination strategy and syphilis treatment controls are depicted in Figures 14 (a), 15 (b) and 16 (c). It is observed in Figure 14 (a) that the combined control strategy has a high population level impact on the populations of individuals singly infected with syphilis in early stage (Figure 14 (a)), individuals singly infected with syphilis in late stage (Figure 14 (b)), individuals singly infected with HPV (Figure 14 (c)) and individuals singly infected with persistent HPV (Figure 14 (d)). In a similar manner, the total number of individuals dually infected with HPV and syphilis in early and late stages of infection, respectively (Figures 15 (a) and 15 (b)), total number of individuals dually infected with persistent HPV and syphilis in early and late stages of infection (Figures 15 (c) and 15 (d)) and total number of individuals dually infected with anal cancer and syphilis in early and late stages of infection, respectively (Figures 16 (a) and 16 (b)) all recorded lesser population number when the universal strategy is implemented than no control is administered.

5.2 Cost-effectiveness analysis

The cost-effectiveness analysis is used to evaluate the health interventions related benefits so as to justify the costs of the strategies. This is obtained by comparing the differences among the health outcomes and costs of those interventions; achieved by computing the incremental cost-effectiveness ratio (ICER), which is defined as the cost per health outcome. It is given by:

\[
\text{ICER} = \frac{\text{Difference in costs between strategies}}{\text{Difference in health effects between strategies}}.
\]

We calculated the total number of co-infection cases averted and the total cost of the strategies applied in Table 3. This is equally presented in Figure 18. The total number of co-infection cases prevented is obtained by calculating the total number of individuals when controls are implemented and the total number when there is no control applied. Similarly, we apply the cost functions \(\frac{1}{2} w_1 \phi_1 \sigma_1, \frac{1}{2} w_2 u_1 \phi_1, \frac{1}{2} w_3 u_2 \phi_1, \frac{1}{2} w_4 u_3 \phi_1, \frac{1}{2} w_5 u_4 \phi_1, \frac{1}{2} w_6 u_5 \phi_1, \frac{1}{2} w_7 u_6 \phi_1, \frac{1}{2} w_8 u_7 \phi_1 \), \(\phi_1 \neq 0 \neq u_1 \neq u_2 \neq u_3 \neq u_4 \neq u_5 \neq u_6 \neq u_7 \neq u_8 \neq 0 \), over time, to compute the total cost for the various strategies implemented. We compared the cost-effectiveness of strategy I (Optimal HPV vaccination strategy for sexually active susceptible individuals) and strategy II (syphilis treatment controls for singly infected individuals).

\[
\begin{align*}
\text{ICER (II)} &= \frac{3996}{34,302} = 0.1165 \\
\text{ICER (I)} &= \frac{4996.5 - 3996}{34,425 - 34,302} = 8.1341
\end{align*}
\]

From ICER (I) and ICER(II), we see a cost saving of 0.1165 observed for strategy II over strategy I. This implies that strategy I strongly dominated strategy II, showing that strategy I is more costly and less effective compared to strategy II. Hence, strategy I is removed from subsequent ICER computations, shown in Table 4. We now compare strategy II and strategy III.

\[
\begin{align*}
\text{ICER (II)} &= \frac{3996}{34,302} = 0.1165 \\
\text{ICER (III)} &= \frac{5954.5 - 3996}{41,372.6 - 34,302} = 0.2770
\end{align*}
\]
Figure 6: Plots of the co-infection cases for individuals dually infected with HPV and syphilis in early and late stages of infection, respectively (Figures 6(a) and 6(b)) as well as co-infection cases for individuals dually infected with persistent HPV and syphilis in early and late stages of infection, respectively (Figures 6(c) and 6(d)). Here, $\beta_s = 7.0$, $\beta_u = 2.0$, $\phi = u_1 = u_2 = 0$, $u_3 \neq u_4 \neq u_5 \neq u_6 \neq u_7 \neq u_8 \neq 0$. All other parameters as in Table 2.

Figure 7

Figure 8: Effects of optimal control ϕ on the dynamics of the co-infection optimal control model

Table 3: Increasing order of the total infection averted due to the control strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total infection averted</th>
<th>Total cost</th>
<th>ACER</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>II: $u_1(t), u_2(t)$</td>
<td>34,302</td>
<td>3,996</td>
<td>0.1165</td>
<td>0.1165</td>
</tr>
<tr>
<td>I: $\phi(t)$</td>
<td>34,425</td>
<td>4,996.5</td>
<td>0.1451</td>
<td>8.1341</td>
</tr>
<tr>
<td>III: $u_3(t), u_4(t), u_5(t), u_6(t), u_7(t), u_8(t)$</td>
<td>41,372.6</td>
<td>5,954.5</td>
<td>0.1439</td>
<td>0.1379</td>
</tr>
<tr>
<td>IV: $\phi(t), u_1(t), u_2(t), u_3(t), u_4(t), u_5(t), u_6(t), u_7(t), u_8(t)$</td>
<td>69,380</td>
<td>10,286</td>
<td>0.1483</td>
<td>0.1547</td>
</tr>
</tbody>
</table>
Figure 9

Figure 10: Combined effects of optimal controls u_1, u_2, u_3 and u_4 on the dynamics of the co-infection optimal control model \([23]\).

Figure 11

Figure 12: Combined effects of optimal controls u_5, u_6, u_7 and u_8 on the dynamics of the co-infection optimal control model \([23]\).

Figure 13: Plots of the co-infection cases for individuals dually infected with anal cancer and syphilis in early and late stages of infection, respectively (Figures 13(a) and 13(b)). Here, $\beta_s = 7.0$, $\beta_a = 2.0$, $\phi = u_1 = u_2 = 0$, $u_3 \neq u_4 \neq u_5 \neq u_6 \neq u_7 \neq u_8 \neq 0$. All other parameters as in Table 2.
Figure 14: Plots of the total number of infected individuals singly infected with syphilis in early and late stages of infection, respectively (Figures 14a and 14b) and total number of infected individuals infected with HPV and persistent HPV, respectively (Figures 14c and 14d), when the universal control strategy is implemented and when there is no control administered. Here, $\beta_s = 7.0$, $\beta_u = 2.0$. All other parameters as in Table 2.

Figure 15: Plots of the co-infection cases for individuals dually infected with HPV and syphilis in early and late stages of infection, respectively (Figures 15a and 15b) and co-infection cases for individuals dually infected with persistent HPV and syphilis in early and late stages of infection, respectively (Figures 15c and 15d), when the universal control strategy is implemented and when there is no control administered. Here, $\beta_s = 7.0$, $\beta_u = 2.0$. All other parameters as in Table 2.
Figure 16: Plots of the co-infection cases for individuals dually infected with anal cancer and syphilis in early and late stages of infection, respectively(Figures 16a and 16b), when there is universal control strategy and when there is no control administered. Here, $\beta_s = 7.0, \beta_h = 2.0$. All other parameters as in Table 2.

![Figure 16a](image1)

![Figure 16b](image2)

Figure 17: Cost functions of the different control strategies

Figure 18: Cost functions of the different control strategies

Table 4: Increasing order of the total infection averted due to the control strategies

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total infection averted</th>
<th>Total cost</th>
<th>ACER</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>II: $u_1(t), u_2(t)$</td>
<td>34, 302</td>
<td>3, 996</td>
<td>0.1165</td>
<td>0.1165</td>
</tr>
<tr>
<td>III: $u_3(t), u_4(t), u_5(t), u_6(t), u_7(t), u_8(t)$</td>
<td>41, 372.6</td>
<td>5, 954.5</td>
<td>0.1439</td>
<td>0.2770</td>
</tr>
<tr>
<td>IV: $\phi(t), u_1(t), u_2(t), u_3(t), u_4(t), u_5(t), u_6(t), u_7(t), u_8(t)$</td>
<td>69, 380</td>
<td>10, 286</td>
<td>0.1483</td>
<td>0.1547</td>
</tr>
</tbody>
</table>
Comparing strategy II and strategy III, we observe that ICER (III) is greater than ICER (II), showing that strategy III strongly dominated strategy II and is more expensive and less effective compared to strategy II. Therefore, strategy III is removed from the list of next alternative strategies and we re-calculate ICER for the remaining competing strategies II and IV, as shown in Table 5.

\[
\text{ICER (II)} = \frac{3996}{34,302} = 0.1165
\]
\[
\text{ICER (IV)} = \frac{10286 - 3996}{69,380 - 34,302} = 0.1793
\]

Comparing strategy II and strategy IV, it can be observed that ICER (IV) is greater than and strongly dominates ICER (II), showing that strategy IV is more costly and less effective compared to strategy III. As a result, strategy II (the strategy that implements syphilis treatment controls for singly infected individuals) has the least ICER and is the most cost-effective of all the control strategies for the control of HPV and syphilis co-infections. This is clearly illustrated in Figure 18, which also agrees with the results obtained from both ACER and ICER methods that strategy II is the most cost-effective strategy.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Total infection averted</th>
<th>Total cost</th>
<th>ACER</th>
<th>ICER</th>
</tr>
</thead>
<tbody>
<tr>
<td>II: (u_1(t), u_2(t))</td>
<td>34, 392</td>
<td>3, 996</td>
<td>0.1165</td>
<td>0.1165</td>
</tr>
<tr>
<td>IV: (\phi(t), u_1(t), u_2(t), u_3(t), u_4(t), u_5(t), u_6(t), u_7(t), u_8(t))</td>
<td>69, 380</td>
<td>10, 286</td>
<td>0.1483</td>
<td>0.1793</td>
</tr>
</tbody>
</table>

6 Conclusion

In this work, we have developed and presented a co-infection model for HPV and syphilis with cost-effectiveness optimal control analysis. The full co-infection model was shown to undergo the phenomenon of backward bifurcation when a certain condition was satisfied. The global asymptotic stability of the disease-free equilibrium of the full model was shown not to exist, when the associated reproduction number was less than unity. The existence of endemic equilibrium of the syphilis-only sub-model was shown to exist and the global asymptotic stability of the disease-free and endemic equilibria of both the syphilis-only sub-model and HPV-only sub-model were established. The global asymptotic stability of disease-free equilibrium of the HPV-only sub-model was also proven.

Numerical simulations of the optimal control model showed that:

i. HPV vaccination control has a positive population level impact in reducing the burden of HPV and the co-infection cases in a population

ii. Syphilis treatment controls for singly infected individuals not only help bring down the burden of syphilis infection, but also reduce the burden of the HPV and syphilis co-infections.

iii. The control strategy which implements syphilis treatment for singly infected individuals is the most cost-effective of all the control strategies in reducing the burden of HPV and syphilis co-infections.
References

[34] Souza LMS, Miller WM, Nery JAC, de Andrade AFB, Asensi MD, A syphilis Co-Infection Study in Human Papilloma Virus Patients Attended in the Sexually Transmitted Infection Ambulatory Clinic, Santa Casa de Misericórdia Hospital, Rio de Janeiro, Brazil, The Brazilian Journal of Infectious Diseases 2009 13(3):207-209

