The relationship between cognitive function, Alzheimer’s disease and sleep duration: A Mendelian randomisation study

Title character count: 117 characters including spaces

Antoine Salzmann MRes¹, Nish Chaturvedi MD¹, Victoria Garfield PhD¹

¹MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, University College London, 1-19 Torrington Place, London, WC1E, 7HB, UK

*Corresponding author: Mr. Antoine Salzmann, 1-19 Torrington Place, London, WC1E, 7HB, UK email antoine.salzmann.14@ucl.ac.uk, Tel +44 (0) 2076705723

Running head title: Cognition, Alzheimer’s disease and sleep duration.

Running head character count: 49 including spaces

Abstract word count: 199 words

Introduction word count: 307 words

Discussion word count: 767 words

Manuscript body word count: 2650 words

Keywords: Mendelian randomisation, sleep duration, cognitive function, Alzheimer’s disease
Abstract (250 words max)

Objective:
Sleep duration is associated with cognitive function and dementia. MR evidence to date, points towards a causal relationship in this direction. However, whether cognitive function or dementia may also cause problematic sleep duration remains unclear.

Methods:
We conducted summary-level Mendelian Randomisation (MR) analyses to estimate the causal association between general cognitive function, ‘g’ (177 SNPs), reaction time (44 SNPs), Alzheimer’s disease (AD) (29 SNPs), and self-reported and objective sleep duration. Sensitivity analyses included: MR-Egger, Weighted median estimator and leave-one-out analyses. We used data from recently published cognitive function, AD and sleep duration genome wide association studies.

Results:
MR results showed that AD was associated with longer, (β=0.14, 95% CI=0.04;0.24), whilst ‘g’, and reaction time were associated with shorter (β=-0.06, 95% CI=-0.11;-0.01 and β=-0.15, 95% CI=-0.29;-0.01, respectively), objective sleep duration. No association was observed between our exposures and self-reported sleep duration.

Interpretation:
These results suggest a causative relationship between AD, ‘g’, reaction time and objective sleep duration, where AD is associated with longer sleep duration and ‘g’ and reaction time are associated with shorter sleep. This study furthers our understanding of the relationship between brain health and sleep duration and sheds light on the causal nature of these associations.

Word count: 199
Introduction

Both short and long sleep duration have been associated with cognitive function, cognitive decline and increased risk of dementia in numerous observational epidemiological studies, but findings are somewhat equivocal, due to common problems such as reverse causality and residual confounding\(^1,2\). Given the high prevalence of sleep problems in the population\(^3\), as well as cognitive impairment and dementia\(^4\), it is important to understand the direction of these relationships, as well as whether they are causal in nature. Short sleep duration in particular, has also been associated with common adverse health outcomes such as type-2 diabetes, hypertension, obesity and cardiovascular diseases\(^5\).

Designs such as Mendelian randomisation (MR) help to overcome some of the limitations of observational studies\(^6\), due to the fact that genes are randomly allocated at conception and, by nature, phenotypes cannot affect individuals’ genotypes\(^6\). One previous MR study investigated causality between self-reported sleep duration and cognitive function, decline, all-cause dementia and Alzheimer’s disease (AD)\(^7\). Findings suggested that sleep duration was causally associated with cognitive function, but not with cognitive decline, dementia or AD. These discordant findings may be due to greatly reduced sample sizes and thus, statistical power to detect effects for these specific outcomes. However, questions remain around bidirectionality. There is growing evidence that poorer cognitive function may play a role in problematic sleep\(^8\) and thus, whether it might precede, as well as be a potential cause of, cognitive decline and dementia\(^9\).
In the present study, we used MR to investigate whether cognitive function and genetic liability to AD is causally related to sleep duration. Cognitive function was measured using a general cognitive ability (g) phenotype and reaction time whilst sleep duration was measured using both self-reported and accelerometer-derived (objective) sleep duration measures. We leveraged data from large-scale summary-level genome-wide association studies (GWAS) of cognitive ability, AD and sleep duration to answer this question.

Methods

Study design

We used a pseudo two-sample MR design\(^{10}\) to estimate the causal association between cognitive function and sleep duration, using summary data from previously published genome-wide association studies (GWAS) (detailed below). Maximum Ns for our analyses were 446,118 (self-reported sleep duration) and 85,499 (objective sleep duration) UK Biobank (UKB) participants. Our study had some sample overlap as both cognitive ability and AD GWASs contained UKB individuals. However, for the objective sleep duration outcome the sample overlap was substantially less than for self-reported sleep duration, as objective sleep measures were only taken in the subsample mentioned above.

Summary statistics of reaction time and general cognitive ability (g)

GWAS summary statistics for 44 reaction time (milliseconds) and 177 g SNPs were downloaded from: http://www.ccace.ed.ac.uk/node/335. This meta-GWAS included 300,486 European ancestry individuals across the UK Biobank, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and Cognitive Genomics
Consortium (COGENT). For every CHARGE and COGENT study, the authors constructed a general cognitive function phenotype \((g)\) from cognitive tests that probed three specific different domains and they then applied principal component analyses to obtain a \(g\) factor. The UKB \(g\) phenotype consisted of all participants who completed the 13 questions included in the verbal and numerical reasoning assessment \((n=168,033)\). A meta-GWAS analysis for \(g\) was then performed for the CHARGE + COGENT results with UKB. The reaction time GWAS consisted of 330,069 UKB individuals who completed this test at baseline and also had genotype data.

Summary statistics of Alzheimer’s disease

We downloaded GWAS summary statistics for 29 AD SNPs from the latest GWAS from https://ctg.cncr.nl/software/summary_statistics. This meta-GWAS consisted of three analytical phases, but the available summary statistics were for phase 3 in which the authors performed a meta-analysis of clinical AD GWASs (clinically diagnosed) with an AD-by-proxy GWAS (AD phenotype derived in UKB, related to family history of AD and weighted by age). This yielded a total sample size of 455,258 \([n=71,880\) (proxy) cases and 383,378 (proxy) controls\] individuals of European ancestry.

Summary statistics of self-reported and objective sleep duration

GWAS summary statistics were downloaded for both self-reported and objective sleep duration from the Sleep Disorder Knowledge Portal (http://sleepdisordergenetics.org) and extracted betas and standard errors for the reaction time and \(g\) SNPs. Briefly, the self-reported and the objective sleep duration
GWA studies comprised 446,118 and 85,499 UK Biobank participants of white European ancestry, respectively. Self-reported sleep duration was based on a question asked at baseline in UKB, specifically ‘About how many hours sleep do you get in every 24 h? (please include naps), with responses in hour increments’, while objective sleep duration was obtained from 7-day wrist-worn accelerometry data in a UKB subsample.

Selection of genetic variants

Genetic variants for reaction time and g were selected from a large-scale genome-wide association study (GWAS) by Davies and colleagues\(^{13}\). These included 44 and 177 independent (R^2 threshold of 0.5 and in a 250kb window, using SNiPA\(^{14}\)) SNPs for reaction time (Supplementary Table 5) and g (Supplementary Table 6), respectively. Genetic variants for AD were taken from Jansen et al.’s GWAS and there was a maximum of 29 SNPs for analysis (28 were available in the objective sleep duration summary statistics, while all 29 were available in the self-reported sleep duration summary statistics) (Supplementary Table 6). For all genetic variants, where the effect/reference alleles were mismatched between the GWASs for our exposures and our outcome, we multiplied the beta coefficient in the sleep duration summary statistics by -1 to ensure correct alignment.

MR assumptions

MR relies on three core assumptions: i) genetic variants should be robustly associated with the exposure under study (e.g. reaction time and g); ii) genetic variants should be independent of unobserved confounding factors of the relationship under study (e.g. body mass index); iii) genetic variants for the exposure
should not directly be associated with the outcome (e.g. reaction time and g SNPs are not associated with sleep duration). Assumption i was met in our analyses, as our genetic variants came from published large-scale GWAS. Assumption ii was tested by uploading our three lists of SNPs (for g, reaction time and AD) to PhenoScanner (http://www.phenoscanner.medschl.cam.ac.uk/) and, using p-value thresholds of 0.0003 (g= 0.05/177 SNPs), 0.001 (reaction time=0.05/44 SNPs) and 0.002 (AD=0.05/29 SNPs) to account for multiple testing, searched for and downloaded associations between the SNPs and the following confounders: BMI, years of education, smoking status, alcohol consumption, systolic blood pressure, diabetes, cardiovascular disease (stroke/coronary heart disease) and hypertension. If a SNP was associated with any of these confounders then we performed leave-one-out analyses to assess the impact of such SNP on our MR results.

Statistical analyses

Analyses were performed in R (version 3.5.2) using the MendelianRandomization package. We performed inverse-variance weighted (IVW) MR as our main model for estimation of causality. This method calculates the effect of the exposure (e.g. reaction time) on the outcome of interest (e.g. self-reported sleep duration) by averaging the SNPs’ ratio of SNP-outcome (SNP→Y) to SNP-exposure (SNP→X) relationship, calculated using principles identical to a fixed-effects meta-analysis\(^{15}\). We also implemented standard MR sensitivity analyses for horizontal pleiotropy, such as MR-Egger regression (provides an intercept term which reveals the extent of unbalanced horizontal pleiotropy)\(^{16}\) and the weighted median estimator (WME – yields more robust estimates when up to 50% of the genetic variants are invalid)\(^{17}\). Additionally, we performed leave-one-out sensitivity analyses for AD SNPs that had
strong associations with sleep duration (none of the SNPs for reaction time or g were
strongly associated with either of the sleep duration outcomes).

Results

The 300,486 individuals included in the reaction time and g GWA studies were
between the ages of 16 and 102 years, while those included in the AD GWAS were
aged ≥20 years. Participants in the sleep duration GWA studies were from UKB and
aged between 40-69 years at recruitment.

AD and sleep duration

IVW MR results indicated an association between greater genetic liability to AD and
longer objective sleep duration (β=0.14, 95% CI=0.04;0.24), which was highly
consistent with the WME result (β=0.16, 95% CI=0.02;0.30). MR-Egger was
directionally consistent with IVW and WME, but yielded a larger estimate (β=0.26,
95%CI=0.03;0.48). Genetic liability to AD showed much weaker associations with
self-reported sleep duration using IVW (β=0.01, 95% CI=-0.04;0.06), WME
(β=0.004, 95% CI=-0.07;0.08) and MR-Egger (β=-0.02, 95% CI=-0.14;0.10). MR-
Egger intercept p-values were all above 0.05, indicating no issues with horizontal
pleiotropy.

General cognitive ability (g) and sleep duration

Results from IVW showed evidence of an association between higher g and shorter
objective sleep duration (β=-0.06, 95% CI=-0.11;-0.01), However, this association
was weaker in MR-Egger (β=-0.11, 95% CI=-0.33;0.11) and WME analyses (β=-
0.01, 95% CI=-0.07;0.05), yet directionally consistent (Figure 1). Evidence for an
association between g and self-reported sleep duration was weak, using IVW ($\beta=-0.03, 95\% \ CI=-0.07;0.01$), MR-Egger ($\beta=-0.05, 95\% \ CI=-0.22;0.12$) and WME ($\beta=-0.02, 95\% \ CI=-0.06;0.01$). There was no evidence of horizontal pleiotropy in any of these analyses (MR-Egger intercept p-value>0.05).

Reaction time and sleep duration

MR IVW ($\beta=-0.15, 95\% \ CI=-0.29;-0.01$), Egger ($\beta=-1.15, 95\% \ CI=-2.26;-0.04$) and WME analyses ($\beta=-0.18, 95\% \ CI=-0.37;0.01$) all showed evidence of an association between greater reaction time and shorter objective sleep duration (Figure 1).

However, all MR approaches showed much weaker associations between reaction time and self-reported sleep duration, IVW ($\beta=0.10, 95\% \ CI=-0.05;0.24$), MR-Egger ($\beta=-0.47, 95\% \ CI=-1.67;0.73$) and WME ($\beta=0.04, 95\% \ CI=-0.09;0.17$) (Figure 1). All MR-Egger intercept p-values indicated that there were no concerns with unbalanced horizontal pleiotropy (all $p>0.05$).

Additional sensitivity analyses

Leave-one-out analysis Stage 1: SNPs for g, reaction time and AD associated with sleep duration at $p<0.01$

We performed leave-one-out analysis by excluding one AD SNP (rs4727449) that was strongly associated with both objective and self-reported sleep duration (p-values= 0.004 and 0.001, respectively). For objective sleep duration, IVW, MR-Egger and WME results remained highly similar to those reported earlier: $\beta=0.12, 95\% \ CI=0.02;0.22$, $\beta=0.26, 95\% \ CI=0.04;0.48$, $\beta=0.15, 95\% \ CI=0.01;0.30$, respectively. Results for AD and self-reported sleep duration were also similar and the associations remained weak: IVW ($\beta=0.01, 95\% \ CI=-0.05;0.07$), MR-Egger ($\beta=-0.03$;
95%CI=-0.16;0.11) and WME (β=-0.02; 95%CI=-0.10;0.07). Across all of these analyses the MR-Egger intercept p-value was >0.05.

Results for g, reaction time and both self-reported and objective sleep duration are presented in Supplementary Table 1. No reaction time SNPs were associated with objective sleep duration. In all cases, IVW, MR-Egger and WME results from leave-one-out analysis remained highly similar to those reported earlier, with MR-Egger intercepts p-values remaining above the 0.05 threshold.

Leave-one-out analysis Stage 2: SNPs for g, reaction time and AD associated with confounders

In these analyses, we excluded SNPs for g, reaction time and AD that were strongly associated with confounders. SNPs excluded for sensitivity analysis are shown in Supplementary Table 2-4. We re-ran all the MR analyses (IVW, MR-Egger and WME) each time we excluded a SNP to assess the impact on our results. For AD, exclusion of each of the three SNPs in turn, led to no qualitative differences in the results for both objective and self-reported sleep duration (Supplementary Table 2). Similarly, exclusion of each SNP for reaction time and g showed no qualitative difference in the results for objective and self-reported sleep duration (Supplementary Table 3 and 4, respectively).
Discussion

Using complementary Mendelian randomisation approaches, we show that genetic liability to clinically-diagnosed Alzheimer’s disease is associated with longer, while better general cognitive ability ‘g’, but slower reaction times were associated with shorter, objective sleep duration. These latter associations were weaker than the clear relationship we observed between AD and objective sleep duration, as they were not as strong in MR-Egger and WME sensitivity analyses. However, we observed no evidence of associations between these exposures and self-reported sleep duration.

The strong relationship between AD and longer objective sleep duration remained robust across all MR approaches, including standard sensitivity, as well as leave-one-out analyses. The only previous MR study in this area however, showed that self-reported sleep duration was not associated with greater risk of AD7, but there are some important things to consider here. Firstly, there were far fewer AD cases in the previous MR study (N=1,343) in comparison to the present study and thus, this could simply be a statistical power issue. Secondly, our findings and those of Henry et al.7 suggest that there is no relationship, in either direction, between AD and self-reported sleep duration and that the association with objective sleep duration is more important, as individuals are more likely to misreport the number of hours slept per night. This is supported by evidence which suggests that people overestimate their sleep duration by 0.80 hours, as compared to objectively measured sleep duration18. Moreover, finding that genetic liability to AD relates to longer objective sleep duration is a step towards disentangling the true direction of this relationship. This also lends
support to earlier research which suggests that problematic sleep in fact may be in part, caused by a diagnosis of AD9.

In contrast, we observed that both reaction time and general cognitive ability (\(g\)) were strongly associated with shorter objective, but not self-reported, sleep duration. This is supported by research which suggests that poorer cognitive function may play a role in problematic (objectively-measured) sleep, such that \(\beta\)-amyloid load in medial prefrontal cortex (mPFC) is associated with non-rapid eye movement slow wave activity (NREM SWA) impairment8. The authors used polysomnography (PSG) to measure sleep parameters in adults without cognitive impairment and found that greater burden of \(\beta\)-amyloid was related to diminished NREM SWA. However, this study was cross-sectional, had a small sample (\(N=26\)) and was correlational, which precluded any causal conclusions.

That we show different results for objective vs. self-reported sleep duration, and for diagnosed AD vs. cognitive function measures warrants discussion. Firstly, the discrepancies in findings for objective vs. self-reported sleep duration may reflect measurement error and the fact that the agreement between these types of measure is reportedly modest (\(r=0.45\), at best18). Thus, the results for cognitive function/AD and objective duration of sleep may be more accurate. Secondly, the overlap in samples between the objective sleep duration GWAS and the cognitive function and AD GWASs is substantially lower. This is because, although all of these GWASs included UKB, the objective sleep duration GWAS only had data available on 17\% of the sample, as the majority of UKB participants have not undergone actigraphy. However, the self-reported sleep duration GWAS included 90\% of the UKB sample.
The discrepancy of findings between AD and cognitive function could be reflective of the distinction between poorer cognitive function as measured by cognitive tests vs. having clinically diagnosed AD. These phenotypes are not interchangeable and were certainly not derived in the same way, although it is well established that individuals with AD often have cognitive impairment.

Limitations of the present study include the fact that the UKB reaction time measure is not standardised and was designed specifically for this cohort; the AD-by-proxy phenotype was derived using AD family history data and not a clinical diagnosis and the partial overlap in samples in the GWAS summary statistics used. Important strengths are the use of objective sleep duration as an outcome; application of a range of MR approaches, alongside additional sensitivity analyses and assumption checks which confirmed the robustness of our results; exploitation of large-scale genomic summary statistics to help disentangle the direction of effect between sleep duration, cognitive function and Alzheimer's disease.

In conclusion, our novel findings show, using Mendelian randomisation, that genetic liability to AD is strongly associated with longer objectively-measured sleep duration, and that poorer cognitive function is related to shorter objective sleep duration. These results highlight the importance of using objective sleep measurements when trying to understand their relationships with cognitive function and neurological diseases. Furthermore, our findings have contributed to understanding how problematic sleep may be a consequence and not only a cause of, poorer brain health.

Acknowledgements
VG is funded by a joint Diabetes UK/British Heart Foundation grant (15/0005250).
AS and NC are supported by the UK Medical Research Council (MC_ST_LHA_2019, MC_UU_0019/2).

Author contributions

VG and NC jointly conceived the study idea and design. AS and VG performed statistical analyses. VG and AS wrote the manuscript; AS and NC checked it for intellectual content. All authors approved the final manuscript.

Conflict of Interest

None to report.

References

epidemiology contribute to understanding environmental determinants of

waves and related hippocampus-dependent memory consolidation. Nat.

modifiable risk factors for cognitive decline and dementia: A population-based

10. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities

identifies new loci and functional pathways influencing Alzheimer’s disease

identifies genetic loci for self-reported habitual sleep duration supported by

2018;9(1):2098.

15. Burgess S, Bowden J. Integrating summarized data from multiple genetic
variants in Mendelian randomization: bias and coverage properties of inverse-
variance weighted methods. 2015;

Figures

Figure 1:
Figure Legends:

Figure 1: Associations between Alzheimer’s disease, ‘g’ and reaction time, and objective and self-reported sleep duration. Abbreviations: Inverse variance weighted (IVW), weighted median estimator (WME).