Age-dependence of healthcare interventions for SARS-CoV-2 infection in Ontario, Canada

Irena Papst*1, Michael Li2,3, David Champedon4, Benjamin M. Bolker2,5,6, Jonathan Dushoff2,5, and David J.D. Earn5,6,7

1 Center for Applied Mathematics, Cornell University
2 Department of Biology, McMaster University
3 South African Centre for Epidemiological Modelling and Analysis, University of Stellenbosch
4 Department of Pathology and Laboratory Medicine, Western University
5 Michael G. DeGroote Institute for Infectious Disease Research, McMaster University
6 Department of Mathematics & Statistics, McMaster University
7 Department of Mathematics, University of Toronto

*Corresponding author (email: ip98@cornell.edu)

Compiled on 2020-09-01 at 23:55:50

Abstract

Background: Patient age is the most salient clinical indicator of risk from COVID-19. Age-specific distributions of known SARS-CoV-2 infections and COVID-19-related deaths are available for most countries. However, relatively little attention has been given to the age distributions of hospitalizations and serious healthcare interventions administered to COVID-19 patients. We examined these distributions in Ontario, Canada, in order to quantify the age-related impacts of COVID-19, and to identify potential risks should the healthcare system become overwhelmed with COVID-19 patients in the future.

Methods: We analysed known SARS-CoV-2 infection records from the integrated Public Health Information System (iPHIS) and the Toronto Public Health Coronavirus Rapid Entry System (CORES) between 23 January 2020 and 17 June 2020 (N = 30,546), and estimated the age distributions of hospitalizations, ICU admissions, intubations, and ventilations. We quantified the probability of hospitalization given known SARS-CoV-2 infection, and of survival given COVID-19-related hospitalization.

Results: The distribution of COVID-19-related hospitalizations peaks with a wide plateau covering ages 54-90, whereas deaths are sharply concentrated in very old ages, with a maximum at age 90. The estimated probability of hospitalization given known SARS-CoV-2 infection reaches a maximum of 32.0% at age 75 (95% CI 27.5%-36.7%). The probability of survival given COVID-19-related hospitalization is uncertain for children (due to small sample size), and near 100% for adults younger than 40. After age 40, survival of hospitalized COVID-19 patients declines substantially; for example, a hospitalized 50-year-old patient has a 90.4% chance of surviving COVID-19 (95% CI 81.9%-95.7%).

Interpretation: Concerted efforts to control the spread of SARS-CoV-2 have kept prevalence of the virus low in the population of Ontario. The healthcare system has not been overstretched, yet the probability of survival given hospitalization for COVID-19 has been lower than is generally recognized for patients over 40. If prevalence of the virus were to increase and healthcare capacities were to be exceeded, survival of individuals in the broad age range requiring acute care would be expected to decrease, potentially expanding the distribution of COVID-19-related deaths toward younger ages.
Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first confirmed in Ontario, Canada, on 23 January 2020, in an individual with a recent travel history to Wuhan, Hubei Province, China [1], the site of the first large-scale outbreak of this novel pathogen [2]. The virus was detected sporadically in Ontario through February [3], until the number of known infections (KIs) began to rise consistently in March. The province declared a state of emergency on 17 March 2020 [4], implementing a large-scale economic shutdown, as well as school closures, to help mitigate the spread of the virus.

A major concern associated with the spread of SARS-CoV-2 is the potential for hospitals to become overwhelmed with COVID-19, the disease caused by the virus, which would compromise care of these patients, and reduce access to and quality of care for many other illnesses. Severity of COVID-19 presentation is highly variable among individuals, but is thought to increase with age [5–7]. Deaths attributed to COVID-19 have been found to be strongly concentrated in the elderly [8–10]. Comparatively few studies have explored the age distribution of serious medical interventions administered to COVID-19 patients [11, 12].

In order to understand the potential for the healthcare system to become overwhelmed by SARS-CoV-2 infections, it is important to identify the demographic groups that are most likely to require significant medical care. The goal of this paper is to quantify the relationships between COVID-19 patient age and the administration of serious medical interventions (hospitalizations, Intensive Care Unit (ICU) admissions, intubations, and ventilations) for the province of Ontario. We compare these age-intervention associations with the age distributions of KIs and deaths. We also estimate the age-specific probability of hospitalization given known SARS-CoV-2 infection, and of survival given hospitalization related to COVID-19.

Methods

We use individual-level line lists for known SARS-CoV-2 infections reported up to 17 June 2020 from the integrated Public Health Information System (iPHIS), maintained by Public Health Ontario, and from the Toronto Public Health Coronavirus Rapid Entry System (CORES). We include only KIs marked as “resolved” or “fatal” in the database, to avoid tallying patients whose final outcomes are not yet known. KIs are marked as “resolved” based on public health unit assessment. In all instances, a record is considered resolved if it is 14 days past the symptom onset date (or specimen collection if symptom onset date is not known), though public health occasionally performs additional follow-up to update records. For brevity, we use “resolved KIs” in our analysis to refer to KIs marked as either “resolved” or “fatal” in iPHIS and CORES.

These data contain 30,546 records of resolved KIs, which, as of this writing on 1 September 2020, comprises 74% of resolved and fatal KIs accounted for in the publicly-available data [13].

These data are also representative of a situation where the healthcare system was not overwhelmed with COVID-19 patients (due to widespread measures to keep SARS-CoV-2 spread under control). ICU occupancy for COVID-19 treatment in Ontario never exceeded more than 13% of the total ICU capacity over the period covered by the data. We calculate this percentage using daily ICU occupancy from publicly-available data [14] and the number of ICU (critical care) beds available according to the Government of Ontario [15]. Based on the latter source, we assume the province had a total of 2012 ICU beds before 16 April 2020, and this capacity increased to 3504 beds on 16 April 2020. We acknowledge that this is a simplification of the ICU expansion effort and that not all ICU beds are allocated to COVID-19 treatment (although this allocation is flexible depending on demand).

We use 2020 Ontario population projections produced by Statistics Canada [16], specifically projections from the “M1” medium-growth scenario [17], although all scenarios yield virtually identical projections for the short time horizon of 2020.

We use provincial SARS-CoV-2 testing data from the Ontario Laboratories Information System (OLIS) database, courtesy of the Institute for Clinical Evaluative Sciences (ICES). This central database records all tests for active SARS-CoV-2 infection in the province. These data are based on reports up to 9 July 2020 and include 39,598 positive tests and 1,086,892 negative tests.
We aggregate age-specific data into two-year age bins (and one wide bin for individuals over 100 years old). We use a binomial generalized additive model to estimate the age-specific probability of hospitalization given KI [18], and a binomial generalized linear model to estimate the age-specific survival probability given hospitalization [19]. Data and source code for all analyses will be provided in an Open Science Framework repository at a later date.

Results

Figure 1 shows the time course of the SARS-CoV-2 epidemic in Ontario up to 17 June 2020, as represented by KIs.

Figure 1: Known infections (KIs) over time in Ontario, split by whether the KI was resolved (marked as “resolved” or “fatal” in iPHIS and CORES) by 17 June 2020 (see Methods). Dashed vertical lines mark important dates for the outbreak in the province. The shaded region indicates a 14-day reporting delay from the last record on 17 June 2020.

Figure 2 shows the age structure of resolved KIs, population demographics, and SARS-CoV-2 infection tests. The pattern observed in the raw counts of resolved KIs (panel A) reflects underlying demographics (panel B) as well as the per capita rate of positive tests, which is in turn related to testing intensity (panel D). Testing intensity is defined as the number of tests administered per 10,000 population by age group. Controlling for demography, the number of detected infections (panel C) is relatively low in ages under 20, increases to a plateau for ages 20-70, and then continually increases after age 70. In ages 15 and under, the testing intensity is approximately 6.5 times smaller than that of all other ages 75 and under. Testing intensity increases after age 75.

Figure 3 shows the distribution of ages for serious medical interventions (panel A) and deaths (panel B) related to COVID-19 for resolved KIs. We present raw counts, as opposed to counts normalized by the age-specific population, because the counts (not per capita rates) determine the pressure on the healthcare system. Hospitalizations are faceted by the most intensive known intervention (with ventilator use being the most intensive, followed by intubation, then ICU admission, and hospitalization). Deaths are split by whether or not the patient has a record of hospitalization for COVID-19 treatment.

The distribution of serious medical interventions is much wider than that of deaths, with the latter peaking at age 90. Hospitalizations are relatively uniformly spread between ages 54-90, while the distribution of ICU-related interventions (ICU admission, intubation, ventilation) is spread over a slightly younger age range. The majority of deaths, 60.1% (95% CI 58.2%-62.0%), have occurred in KIs where there is no record of hospitalization for treatment related to COVID-19.

Figure 4 shows the estimated hospitalization probability given known SARS-CoV-2 infection (panel A) and survival probability given hospitalization for COVID-19 treatment (panel B). There is large uncertainty in both probability estimates for young and very old age groups due to small numbers of KIs and hospitalizations in

All rights reserved. No reuse allowed without permission.
Figure 2: Age distribution of known infections (KIs) in Ontario. The distribution of ages for resolved KIs (panel A), Ontario population projections for 2020 (panel B), resolved KIs per 10,000 population (panel C), and SARS-CoV-2 infection tests per 10,000 population (panel D). The y-axes in panels C and D are on a logarithmic scale.
Figure 3: COVID-19 outcomes by age in Ontario. The distribution of ages for hospital interventions (panel A), and deaths (panel B). Hospital outcomes are nested and tallied by the most intensive medical intervention used for each patient (ventilator use is the most intensive, followed by intubation, ICU admission, and hospitalization). Deaths are faceted by whether or not the patient also had a record of hospitalization for COVID-19 treatment.
Figure 4: Age-dependent COVID-19 hospitalization probability for known SARS-CoV-2 infection (panel A) and survival probability for hospitalized patients (panel B) in Ontario. We estimate the hospitalization probability using a generalized additive model and the survival probability using a generalized linear model (blue curves; see Methods). Vertical lines give age-specific 95% binomial confidence intervals and point areas are proportional to samples sizes.
these ages. The hospitalization probability peaks in the 74-75 age group at 32.0% (95% CI 27.5%-36.7%). In adults, the survival probability is near 100% until about age 40, where it begins to decline steadily. For instance, a hospitalized individual in the age group 50-51 has a 90.4% chance of surviving COVID-19 (95% CI 81.9%-95.7%), implying that roughly 1 in 10 hospitalized COVID-19 patients in this age group die despite receiving medical care while ICUs and hospitals are below capacity.

Interpretation

Summary

The age distribution of deaths attributed to COVID-19 in Ontario (Figure 3B) provides limited insight into the risk that COVID-19 patients could overwhelm Ontario’s healthcare system, especially since many deaths to date have occurred in residential homes, which are independent of the hospital system [20]. The broad age distributions of hospitalizations, ICU admissions, intubation, and ventilation (Figure 3A), reveal the potential pressure on the healthcare system from both middle-aged individuals and seniors, if SARS-CoV-2 prevalence were to increase significantly in the population. Based on known infections (KIs) up to 17 June 2020, the probability of hospitalization given KI increases with age before peaking at ages 74-75, and then declining. The probability of survival given hospitalization for COVID-19 treatment declines with age, and decreases substantially after age 40.

Explanation of findings

Numbers of KIs and testing intensity were lowest in ages younger than 15 (Figure 2), which could reflect poor detection in these ages, lower age-specific prevalence, or both. We discuss this issue further in the Appendix. Relatively high numbers of resolved KIs and testing intensity in those over age 75 can be partly attributed to significant outbreaks in long-term care facilities [20, 21].

Early in the outbreak, the province of Ontario expanded coverage for COVID-19-related treatment to include even individuals who are not usually covered by the Ontario Health Insurance Plan [22]. Access to prompt and successful medical interventions may have kept a large proportion of COVID-19-related hospitalizations from resulting in deaths. The majority of COVID-19-related deaths have occurred in patients with no record of hospitalization (Figure 3B). While we expect that the shape of the age distribution of need for hospitalization (Figure 3A) would remain the same if prevalence were to increase, the distribution of deaths may expand toward younger ages if hospitals and ICUs reach maximum capacity.

The age-dependent hospitalization probabilities that we report (Figure 4A) are likely overestimates, because they are based on resolved KIs, not all infections; these probabilities depend on how widely SARS-CoV-2 testing has been conducted. Throughout most of the epidemic, testing guidelines selected for sufficiently symptomatic individuals [23]; testing guidelines were not expanded to include asymptomatic individuals until 29 May 2020 [24]. As testing efforts continue to grow, hospitalization probability estimates can be expected to decrease, as relatively more asymptomatic and pre-symptomatic individuals are likely to be recorded as KIs.

Our survival probability estimates for hospitalized individuals (Figure 4B) are not affected by the same detection biases present in KI data. Patients admitted to hospital are tested for SARS-CoV-2 as part of infection control protocols, and thus infection detection in hospitalized individuals is not influenced by testing guidelines for the general population. Our survival probability estimates do, however, represent an upper bound with respect to the current standard of care and viral variant. In the absence of significant innovation in COVID-19 treatment or viral evolution to lower disease severity, we expect survival probabilities would decrease if ICUs or hospitals were to reach maximum capacity.

Future directions

We have quantified the age distributions of serious medical interventions for SARS-CoV-2 infection in Ontario, Canada, until 17 June 2020, when the province was first responding to the novel pathogen. The Government of Canada and the Province of Ontario implemented policies meant to help mitigate SARS-CoV-2 spread over this period [25]. Future work should consider whether the age dependence of SARS-CoV-2 infection...
risks is changing over time, as the population adjusts to the pandemic and the testing effort expands. Our study explores only short-term SARS-CoV-2 infection outcomes; future studies should explore the age distributions of long-term morbidities from this infection, so that we may better understand the heterogeneous risks associated with COVID-19. Lastly, all studies relying on known infection counts are subject to bias from how infections are detected via active infection testing, which may disproportionately affect counts in youth (see Appendix). Future work should seek to correct for this bias.

Limitations

Our analysis excludes a small proportion of Ontario population because we were unable to access known infection records from the Ottawa Public Health COVID-19 Ottawa Database and the Middlesex-London COVID-19 Case and Contact Management tool. In general, the number of KIs underestimates the true prevalence of SARS-CoV-2 infection in the general population, most notably because provincial testing guidelines selecting for symptomatic individuals induced bias in these data and the age-specific asymptomatic proportion is not yet known. The results presented in this study pertaining to children and teenagers are particularly limited due to undersampling in those age groups, revealed by the testing intensity data, and should be interpreted with caution. Our study covers a period of extensive economic shutdown; as the province continues reopening, we expect the age-specific contact structure to change and contact rates to generally increase, which will affect observed patterns in the age distributions of KIs and deaths.

Conclusion

Although the age distribution of COVID-19 deaths in Ontario has been strongly skewed to the elderly (peaking at 90 years old), the age distribution of COVID-19 hospitalizations is much broader, highlighting potentially serious risks to public health and the healthcare system in an uncontrolled outbreak of SARS-CoV-2. Measures that control disease spread and maintain hospital occupancy below capacity will continue to be important in the absence of improved treatments or vaccination for SARS-CoV-2 infection.

Acknowledgments

We thank Sarah Morrison for assistance with literature review. We are grateful to the Ontario COVID-19 Modelling Table for valuable discussions. Data were kindly provided by Public Health Ontario.

This study was supported by the Institute for Clinical Evaluative Sciences (ICES) which is funded by the Ontario Ministry of Health and Long-Term Care (MOHLTC). The opinions, results and conclusions are those of the authors and are independent from the funding source. No endorsement by ICES or the Ontario MOHLTC is intended or should be inferred.

This study was supported by the Ontario Health Data Platform (OHDP), a Province of Ontario initiative to support Ontario’s ongoing response to COVID-19 and its related impacts. The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding sources. No endorsement by the OHDP, its partners, or the Province of Ontario is intended or should be inferred.

Funding statement

DJDE, BMB, and JD were funded by the Natural Sciences and Engineering Research Council of Canada, the Michael G. DeGroote Institute for Infectious Disease Research at McMaster University, and the Public Health Agency of Canada.

Competing interests

The authors declare no competing interests.
Appendix

Detection of and exposure to SARS-CoV-2 in ages under 20

For the majority of the period covered by the data in this study, testing guidelines in Ontario selected for sufficiently symptomatic individuals [23]; it was not until 29 May 2020 that Ontario expanded testing guidelines to include asymptomatic individuals [24]. Children infected with SARS-CoV-2 may be asymptomatic or have milder clinical presentations of COVID-19 than adults [26, 27]. Moreover, the symptom profile of pediatric SARS-CoV-2 infection differs from that of adults [26–29] and may have been poorly represented in screening guidelines and public awareness campaigns earlier in the pandemic. It is also possible that once the first KI was established in a household, the rest of the household did not get tested (even in the presence of symptoms meeting testing criteria) as it was already known that the pathogen was present in close contacts and testing capacity was initially limited. Since children are not often identified as the index case in a household SARS-CoV-2 outbreak [30], this effect may disproportionately undercount SARS-CoV-2 infection in children and teenagers.

It is also possible that Ontario youth are simply not being infected with SARS-CoV-2 as frequently compared to other age groups [6, 30, 31]. However, any studies making this claim by appealing to data based on active infections in a diagnostic testing scheme are potentially subject to the detection biases outlined above. Well-timed wide-spread school closures in Ontario may have curtailed SARS-CoV-2 spread in youth [32], though it is difficult to disentangle the specific effect of school closures from that of all other non-pharmaceutical interventions undertaken simultaneously [33].

Serological studies may help determine the true extent of exposure to SARS-CoV-2 in all ages, but especially in those under 20, which is particularly important given recent findings of high viral loads in children [34] and that those between ages 10 and 19 transmit the virus at least as effectively as adults [35]. Public Health Ontario conducted an age-specific seroprevalence study for the period of 27 Mar 2020 to 30 Jun 2020 [36], though small sample sizes prevented particularly reliable estimates in youth. A recent, large-scale antibody study in New York City revealed that the 0-17 age group had the highest antibody test positivity rate [37] despite having the lowest number of known infections per 100,000 population [38]. While these results may not be directly transferable to Ontario given the difference in outbreak scale, they suggest that low counts of KIs in youth may not necessarily imply low age-specific prevalence.

References

[16] Table 17-10-0057-01 Projected population, by projection scenario, age and sex, as of July 1 (x 1,000). DOI: 10.25318/1710005701-eng. (2019).

