Suicide during the COVID-19 pandemic in Japan

Takanao Tanaka, MA¹ and Shohei Okamoto, PhD²*

* Corresponding author

¹ Division of Social Science, Hong Kong University of Science and Technology, Clear Water Bay, Sai Kung, New Territories, Hong Kong (takanao_tanaka@hotmail.co.jp)
² Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan (shohei@z2.keio.jp)

This version: August 29, 2020
Abstract

The prolonged uncertainty of the COVID-19 pandemic, fear and anxiety regarding infections, precautionary social isolation, and the resulting economic disruption could deteriorate psychological health and exacerbate the suicidal risk. Utilizing month-level suicide records covering the entire Japanese population (126 million) in 1,861 administrative units, we assessed if suicide mortality changed during the pandemic. We employed difference-in-difference estimation and found that overall suicide rate declined by 13.5% (95% CI: -17.5% to -9.5%) after the outbreak and the subsequent measures (school closure and the state of emergency). The decline is larger among males than females and among adults than children and older adults. The government’s generous subsidies, reduced working hours, and fewer school sessions potentially account for its sizable decline.
Introduction

The crisis induced by the COVID-19 pandemic has affected every aspect of life. The virus has spread globally\(^1\). To contain the virus, governments have implemented a large-scale costly intervention in an unprecedented fashion: citizens and communities are requested to practice physical distancing, avoid social gatherings, close schools, and stop unnecessary business activities. Thus far, the most scientific and clinical attention has been given to identifying its direct physical risk\(^2,3\) and its prevention\(^4-6\). However, the end of this pandemic is seemingly nowhere near. This raises an emerging concern in a different public health aspect: it could adversely affect people’s mental health\(^7,8\), and, as a more pressing scenario, suicide fatalities could increase\(^9,10\).

The pandemic can affect suicide rate in various ways. Together with fear, uneasiness, and anxiety caused by the disease, social distancing can lead to reduced social and family relationships; increased loneliness, boredom, and inactivity; and restricted access to healthcare services, potentially inducing mental illness and elevated suicidal behaviors\(^10,11\). Financial insecurity and loss of employment are well-known risk factors of suicide\(^12,13\). Thus, the pandemic-driven economic recession could increase potential suicidal deaths\(^14\). Not surprisingly, existing studies suggest that past epidemics such as Spanish Flu and Severe Acute Respiratory Syndrome (SARS) led to higher suicide rates\(^15,16\). Given the unprecedented magnitude, ubiquity, and complexity of the ongoing public health crisis, adequate preventive measures will be eventually required. To formulate effective policy responses, policymakers, healthcare professionals, commissioners, and researchers need a credible assessment on the scale of the changes in suicidal consequences derived from this pandemic.

However, reliable empirical evidence regarding the link between the COVID-19 pandemic and suicide mortality remains scarce. An inclusive assessment requires harmonized data that cover representative and sufficiently large samples but are collected at the disaggregated level\(^17,18\). Such data also should include...
information from both the pre-COVID-19 period (to serve as the baseline samples) and the post-COVID-19 period. However, existing studies use readily available and convenient data that could easily generate biased insights: most studies rely on some measures on suicidality rather than suicide mortality. Some compare suicidal behaviors using snapshot data during the pandemic with a lack of the pre-pandemic baseline samples; while others compare the whole suicide or suicidality trend before and after the pandemic, which might capture common time trend, seasonality, or temporal time shocks across individuals.

In this study, we provide first large-scale evidence linking the COVID-19 outbreak to suicide fatalities using a city-by-month level dataset covering more than 120 million (the entire) Japanese population. Since the confirmation of the first case in Japan, its enormous impacts on the country’s public health, society, and economy have been of great concern. Within a few months, the virus spread rapidly; in response, the national government declared the state of emergency, in which citizens are requested to reduce mobility, avoid social gatherings, and stop unnecessary business, which all concurrently led to economic downturn (Supplementary Fig. 1 and Supplementary Note 2). The Japanese suicide rate is the fifth highest among high-income countries and it has been the top ten causes of deaths for the last two decades. Hence, there have been rising concerns that this COVID-19 crisis may increase suicide deaths.

To assess if suicide mortality changed during the pandemic and the following health interventions, our data have some notable advantages. First, our data cover both the pre- and post-pandemic samples from July 2016 to June 2020, and we could investigate the relative change of suicide rate compared to the pre-pandemic baseline (we describe the suicide trend in Supplementary Fig. 2). In particular, employing a difference-in-differences (DID) estimation, we assess whether suicide rates during the pandemic varied compared to the corresponding seasons in the previous years with the assumption of the “parallel trend” and “common shocks” (see Methods). Moreover, our data are collected from 1,861 administrative units,
which enables us to control for various time-invariant confounding factors flexibly. Specifically, we include
city-by-month fixed effects that can control for month-specific shocks in each city (e.g., seasonality in
suicide rate, monthly local events, or climatic conditions), and city-by-year fixed effects that can control
for a year-specific shock in each city (e.g., macroeconomic trend, industrial or population structural changes,
or suicide trends).

The effects of the pandemic might not be evenly distributed across populations and periods. To identify
the vulnerable populations, we further analyze heterogeneous impact across gender and age groups. In
particular, older adults face a heightened risk of infections and deaths2,3, which could amplify their grief
and distress about virus transmission. Besides, existing studies suggest that, unlike normal recession, this
pandemic has gendered impacts: social distancing disproportionately affects female-dominant
employment28, and stay-home-order increases household tasks, and even domestic violence, that could
impair well-being among females29. Additionally, the effects among children might vary during the school
closure30, and those on the working population might vary during the state of emergency, where they are
asked to work from home or even to stop the operation of their businesses.

Results

Main Results

The suicide rate during the COVID-19 pandemic substantially declined compared to the same season
in previous years (Fig. 2a). The DID estimates show that the overall suicide rate decreased by 13.5\% (95\%
confidence interval [CI]: -0.175 to -0.095) after adjusting for permanent unobserved city-by-year and city-by-
month determinants of the suicide rate (we describe the full results in Supplementary Table 2). Using the
event-study approach, from estimated coefficients, we confirm that the assumption for parallel trends is not
violated during the pre-treatment period as average suicide rates in 2016-2019 and in 2020 are not different
(k <= -1). These results are robust to the inclusion of the time-varying weather variables and city-specific quadratic time trends. Moreover, the adoption of the Poisson model does not affect our main findings (Supplementary Fig. 3).

To ascertain that the results are not driven by either the common time trends or common year-specific shocks across cities or regions, we conduct a placebo test. Fig. 3 shows that when using the placebo samples, the estimated coefficients are close to zero, and our real estimate is much smaller than the lower bound of their 95% CI (-.0205 to .0205). This suggests that our results are not driven by the spurious correlation. These patterns hold when we conduct the event-study regression analogously using the placebo samples, ensuring the strong relationship between the pandemic and the suicide rate.

On average, 1,612 individuals died by suicide in each month during our study period. Our back-of-the-envelope calculation finds that the number of averted suicide deaths during the pandemic is 1,027 (95% CI: 720 to 1,334) from February to June 2020. (See Supplementary Fig. 4.) In the corresponding period, the number of direct deaths from COVID-19 is 974 (as of June 30), suggesting that the magnitude of the suicide decline is not negligible.

Heterogeneity

We investigate the heterogeneous impacts of the pandemic across gender, age groups, and periods. While suicide rate evidently dropped across all different subgroups, we find some noteworthy variation in its magnitude: the decline is more remarkable among males (Fig. 2b, α: -119, 95% CI: -157 to -0.80) than females (Fig. 2c, α: -0.67, 95% CI: -1.00 to -0.35). Moreover, the magnitude among adults (Fig 2e, α: -.126, 95% CI: -.165 to -.087) is larger than among children (Fig. 2d, α: -.016, 95% CI: -.027 to -.005) and elderly (Fig. 2f, α: -0.048, 95% CI: -0.077 to -0.018). The event-study regression also observes the parallel trend in the suicide rate during the pre-pandemic period across all subsamples.

The results in Fig. 4 reveal that the effects also vary according to the government’s anti-contagion
measures (we describe the full results in Supplementary Table 3). The effects are the largest among male adults during the state of emergency (α: -1.159, 95% CI: -.205 to -.114), where they were requested to stop unnecessary business, reduce social contacts, and stay home if possible (Panel a). Because the male adults account for nearly 50% of total suicides, this mainly drives our baseline results. We also find that the effects among students are statistically significant only during school closure (α: -.074, 95% CI: -.123 to -.025) (Panel c). In Supplementary Fig. 5, we describe the results on heterogeneity using the job status, including self-employed, employed, housewife, and retired. (See Supplementary Note 3 for details.)

Mechanisms

We have established the results that suicide rate, perhaps unexpectedly, decreased during the pandemic. Several potential mechanisms could explain our findings. First, in response to this crisis, the national government provided several subsidies and benefits to citizens and enterprises (Supplementary Note 1). We observe that household income slightly increased during the pandemic, which was primarily driven by the rise in special income (all citizens were eligible to receive cash benefits of 100,000 yen ≈ 1,000 USD) (Fig. 5a). Moreover, we find that the claims for business subsidy grew rapidly since May, and the number of bankruptcies declined by about 50% compared to the pre-pandemic period in May (Fig. 5b). These suggest that the severity of macroeconomic shocks attributable to the pandemic might have reduced due to government’s considerate fiscal response. We see that working hours for both full-time and part-time workers declined substantially (10%~20%) during the pandemic (Fig. 5c). Overwork and commuting are well-recognized risk factors of suicide, particularly among the working population in Japan31; hence, reduced working hours and encouraged work-from-home policy could have improved people’s mental health and brought sizable benefits. This explanation is consistent with our finding of the largest decline in suicide rates during the state of emergency among male adults, which mainly comprise the working population.
International comparison of the disease spread, the government regulations, and fiscal support can also provide some notable insights on the mechanisms. During our study period, the confirmed COVID-19 cases per population in Japan were only 2% of those in the US and 6% of those in Germany (Fig. 5d), suggesting that the direct stress from the disease may not have been extraordinary. Moreover, the stringency of the government’s health intervention is among the most lenient, which is based on “request” rather than “enforcement,” ensuring a high degree of individual freedom (Fig. 5e). This could implicate that people could have managed their mental well-being even when they were asked to practice social distancing. Nevertheless, the national government provided very generous fiscal supports for households and enterprises, which accounts for 10% of its annual GDP (Fig. 5f). These could have brought about some beneficial effects on their mental health and helped prevent suicidal behaviors.

Lastly, suicide may have declined because of positive psychological responses to the crisis32. Existing studies often find a drop in suicide rates after national disasters, including Hurricane Katrina or the 9/11 terrorist attack. One potential explanation is the positive psychological responses of citizens, called the pulling-together effect or honeymoon phase33,34 (see Supplementary Note 4 for details). During the COVID-19 outbreak, virus containment measures required citizens to reduce their social contacts collaboratively, and this might have generated a sense of partnership within communities. Another explanation could be that the pandemic might have altered individuals’ views on life. Facing real fatal risk, people might have started thinking of life as more precious and deaths more frightening, which could have prevented them from committing suicide. We emphasize that while this pandemic may not be comparable to any of past disasters, our results are largely consistent with previous studies.
Discussion

Our study is among the first to investigate the impacts of the COVID-19 pandemic on suicide rates. Utilizing high-frequency data that cover more than 120 million people in Japan, we find that the suicide rate declined by 13.5% during the period of our study contrary to the emerging concerns\(^9,10\) and past experiences in the Spanish Influenza and SARS\(^15,16\). Our research provides several sets of important insight on how to improve mental well-being and reduce suicide mortality during the pandemic, and even after the normal life resumes.

To begin with, we argued that reduced working hours might have led to a substantial decline in the suicide rate, particularly among male adults, who constitute most of the workforce. Because male adults account for about half of total suicide, protecting them is inevitable. Our results suggest that reforming the non-desired working system could lead to massive improvement in mental health of working population. Optimistically, the COVID-19 crisis can bring about some beneficial changes to societies. During this crisis, people may realize the benefits of working from home or reduced working hours as they could enhance their productivities\(^35\), work flexibilities\(^36\), and life satisfaction\(^37\). For our communities to gain further mental-health benefits, profitable working cultures should not discontinue even after the pandemic is manageable.

Moreover, we found that the suicide rate among those aged below 20 years also declined, and this is mostly driven by students during the school closure period. Consistent with the previous works reporting that schooling could be a risk factor of violence\(^38\) and suicide\(^39\), our findings highlight the need to reduce the possible psychological burden on children from schooling activities.

In contrast, our findings also raise a concerning scenario that the suicide trend in Japan could increase in the long term. Existing studies often find an initial drop and a delayed increase in suicide rates after natural disasters (such as Hurricane Katrina)\(^34\). Such patterns could also appear during this ongoing crisis, although this epidemic might not be comparable to past disasters. Particularly, during the COVID-19
pandemic, the national government has provided massive subsidies and benefits that might have prevented people from committing suicide. In the absence of effective pharmaceutical interventions (e.g., a vaccine or antiviral treatments)40, pandemic-related suicidal risk factors (e.g., disease recurrence, social distancing, and economic downturns) would continue41,42, while the government’s generous financial support might not sustain for long. Under such circumstances, alarmingly, the suicide trend could eventually increase. Hence, continuous monitoring of the overall suicide trends is necessary.

Our findings on heterogeneity also help us to identify the vulnerable populations during the pandemic. First, there are apparent male-female differences in drops in suicide rates: its decline among females is only half of that among males. This is consistent with recent studies that find that this crisis disproportionately affects the female-dominant industry28, and stay-home-order intensifies the working mother’s burden43. Our study suggests that pandemic could enhance gender inequality not only in the labor market but also in psychological and even suicidal consequences.

Additionally, we find that the decline in the suicide rate among the elderly is much lesser than that among adults. As expected, this might be because older adults are vulnerable to virus transmission and its effects, which might exaggerate their fears and apprehension2,3. Moreover, a more concerning issue is that older adults are more likely to be in isolation, which may elevate risks of negative health including frailty and dementia in the long run. Therefore, our society needs a practical and feasible strategy to prevent these fragile populations from suicide afterward.

We conclude by discussing the noteworthy limitations of our study and suggesting some directions for future research. First, while we have argued potential mechanisms on the linkage between the pandemic and suicides, it is challenging to detangle the contributions of each factor. To do so, one needs variation in the timing and intensity of each contributor (e.g., disease prevalence, government’s interventions, financial supports, and working conditions). However, the COVID-19 epidemic affects almost every community and citizen concurrently, and our analyses could not fully utilize such variation. To gain psychological health
benefits, pinning down the mechanism should be warranted for further research.

Moreover, we could not investigate the effect among specific subgroups of interest. For example, mental health consequences among healthcare professionals have been of great concern as they are taking extraordinary burdens during the pandemic.44,45 Similarly, suicide effects among those with a high risk of case fatalities (those with the presence of comorbidities)2,3, financial strain (low skilled or low-income workers)28, or social isolation (those who need mental healthcare or those with cognitive disorders) should be carefully monitored. Such efforts are required to protect the most fragile and vulnerable populations.

Finally, we want to emphasize that the results from our study may not apply to other communities or countries because our study is founded on the unique Japanese public health, economic, cultural, and social contexts. Societies around the world are on different epidemiological stages and are implementing customized health interventions by weighing their benefits and costs. To protect global psychological health by preventing escalated suicide rates, continuous assessment of the effect of the pandemic in each society is crucial.
Methods

Data

We use city-by-month data on suicide records from July 2016 to June 2020, covering the entire population in Japan (126 million). The data are derived from suicide statistics published by the Ministry of Health, Labour, and Welfare; and they include information such as the number of suicides across age, gender, employment status, sites, and day of the week39,46. The dataset includes 77,367 (monthly average at 1,612) suicides in 1,861 cities (N = 89,328) with average monthly suicide rate at 15.2 per million population (Supplementary Table 1). Males account for 68.6% of total suicide, and, in particular, male adults (males aged between 20 and 69 years) contribute to nearly half of its mortality (50.8%). Using these data, we assess how suicide rates vary before and during the pandemic.

Besides, we use the various dataset to supplement our analysis, including the number of COVID-19 infections, weather conditions, and macroeconomic conditions (i.e., bankruptcy, unemployment rates, consumption index, and diffusion index). Details for these data are available in the Supplementary Note 1.

Difference-in-differences model

We adopt the DID estimation to examine the effect of the COVID-19 pandemic on suicide rates. We compared the difference in suicide rates before and after the virus outbreak with the difference in the corresponding period in the previous years (July 2016 to June 2019). Particularly, in our analysis, we estimate that

\[
\log Y_{ym} = \alpha Post_m * Treat_y + \mu_{im} + \gamma_{iy} + \epsilon_{ym} \quad (1)
\]

where \(Y \) denotes suicide rates in city \(i \) in month \(m \) in year \(y \) (a year includes 12 months from July to June), and \(\alpha \) is a parameter of interest that denotes the impacts of the COVID-19 pandemic on suicide rates. Suicide rates are log-transformed after adding 1 to the number of suicides to avoid taking a logarithm of
zero. $Post_m$ is a binary variable that takes 1 if periods of observations corresponded to months between February (when the COVID-19 outbreak became salient and the national government launched the nationwide anti-contagion policies) and June. It takes 0 if periods correspond to months from July to January regarded as “pre-treatment” period by the COVID-19 pandemic. $Treat_y$ takes 1 if the year is 2020 (July 2019 to June 2020) and 0 otherwise (July 2016 to June 2019). In this model, suicide rates between February and June from 2016 to 2019 serve as a control group, with the assumption that we encounter only common shocks between the control and the treatment periods (during the pandemic).

We include city-by-month fixed effect and city-by-year fixed effect denoted by μ_{im} and γ_{iy}. The former flexibly controls for month-specific shocks in each city, such as seasonality in the suicide rate, monthly local events, or climatic conditions47,48. The latter controls for year-specific shocks in each city, such as macroeconomic trends, industrial or population structural changes, or suicide trends.

The assumption for the DID estimator to be valid is that the pandemic period (February to June) in 2020 and the same periods in 2016-2019 would have parallel trends in suicide rates in the absence of the pandemic. With this assumption dissatisfied, the estimated parameter would be biased because the results could be driven by systematic differences between the treatment and control group rather than the interest of the event. To assess if the parallel trends assumption would be reasonable, we adopt the event study approach by fitting the following equation29,49:

$$\log Y_{it} = \sum_{k=-6,k\neq-1}^{5} \alpha_k (Month_{m,k} \ast Treat_y) + \mu_{im} + \gamma_{iy} + \varepsilon_{iym} \quad (2)$$

where $Month_{m}$ takes 1 if the month corresponds to k, where $k = -1$ is set to be a month before the pandemic period (January). Intuitively, this casts the difference in suicide rates between 2020 season and 2016-2019 season in each month relative to $k = -1$: we expect the treatment group and control group to have similar suicide rate before the disease outbreak becomes salient ($k < 0$), while we expect it to diverge after the outbreak ($k \geq 0$).

We also re-estimate equation (1) by using suicide rate across gender and age groups (children aged
below 20 years, the working-age population aged 20-69 years, and older adults aged 70 years or over) to assess heterogeneity effects of the pandemic on suicide rates.

Lastly, we cluster standard errors at the city level to allow arbitrary correlation over time within the same city. Besides, all the regressions are weighted by population in 2016 so that cities with larger populations are given greater weights. Intuitively, these weights help to estimate the impact of the event on an average person instead of on an average city.

Placebo test

We perform a placebo test\(^{29,50}\) to ascertain that impacts of the pandemic on suicide rates are not driven by either common time trends or common shocks across different periods as the following procedure. Using the data from July 2016 to June 2019, we randomly allocate treatment status to a year in the same period (February to June) in each city and estimate the treatment effects analogously to equations (1) and (2). Then, we compare the placebo results to the real estimates. We repeat these procedures 1,000 times. If there is an event causing higher suicide incidence in a specific region in a pre-pandemic period (e.g., cities in Tokyo prefecture in 2019 has unusually high suicide rates), our placebo results would include the spike in the estimated parameters, implicating that our main estimate is not driven by the disease outbreak, but a random shock (or time trend) in some cities. We expect the placebo results not to be statistically different from zero.

Back-of-the-envelope calculation

To estimate the averted deaths from suicide during the pandemic, we estimate the following equation:

\[
\text{Saved suicide}_{i,\text{treat,post}} = \text{suicide}_{i,\text{treat,pre}} \ast \hat{\beta} \ast \text{months}_{post} \tag{3}
\]

where \(\text{Saved suicide}\) denotes the averted suicides in city \(i\) in treatment year (the year 2020) during the post-period (after the February). This is computed by multiplying the average suicides in city \(i\) in treatment year before the pandemic, the estimated the effects of the epidemic on suicide from equation (1), and the
pandemic durations represented by $m_o_n_t_h_s_{p_o_s_t}$ (five months). We then sum the averted suicides in each city to compute the averted suicides on the national scale.

References

17

Acknowledgment

TT thanks the Bai Xian Asia Institute for the scholarship support as a Bai Xian Scholar. SO is supported by the postdoctoral fellowship of the Japan Society for the Promotion of Science and the Murata Science Foundation.

Author Contributions

SO and TT conceptualized the study and carried out initial planning. TT retrieved and constructed the data set. TT carried out the statistical analysis, which was refined by SO for the final version. SO prepared the first draft of the report, which was revised by TT. All authors reviewed and contributed to the final draft and approved the final version for publication.

Competing Interests statement

The authors declare no competing interests.

Correspondence and Requests for Materials:

Shohei Okamoto, PhD: Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan

(shohei@z2.keio.jp)
Figures

Fig. 1. Distribution of suicide rate, COVID-19, and health interventions in Japan: Panel a describes the average number of suicides in a month in each city during the period of our study. Panel b shows the number of confirmed COVID-19 cases on June 30 in each prefecture. Panel c presents the length of the state of emergency. It was implemented and lifted depending on the severity of the disease outbreak.
Fig. 2. The effects of COVID-19 pandemic on suicide across gender and age groups using DID and event-study approaches: Panel a describes the results of the event study using all the pooled samples. Panels b and c show the results using log suicide rates among males and females. Panels d, e, and f present the results on different age groups. In all graphs, the blue line represents the point estimates in each period, while the blue range represents the 95% confidence interval. The red circle and line denote the DID result and its 95% confidence interval. The full results are described in Supplementary Table 2. All regressions include city-by-year fixed effects and city-by-month fixed effects and are weighted by the population, and standard errors are clustered at the city level.
Fig. 3. Results of placebo test: Panel a represents the results of the placebo test. Using samples from 2016 to 2019, we first randomly allocate treatment dummies within the city across the years. We then regress the log suicide rate on the placebo treatment 1,000 times. The average effects using the placebo sample is around zero, and the estimates from real samples are much smaller than 95% CI of the placebo results. Panel b repeats event study regression using the placebo samples analogously. The estimated coefficient is close to zero in all periods. All regressions include city-by-year fixed effects and city-by-month fixed effects and are weighted by the population, and standard errors are clustered at the city level.
Fig. 4. Heterogeneous effects of the COVID-19 pandemic among age groups and gender, before and after the stage of emergency, and the school closure: Baseline is a result when all samples are pooled. Panels a and b represent the heterogeneous effects among age groups and gender during the state of emergency (SOE) and other periods. Here, we assign April and May as the period of SOE. Panel c shows the effects on students during the school closure (March and April) and other periods. The full results are represented in Supplementary Table 3. All regressions include city-by-year fixed effects and city-by-month fixed effects and are weighted by the population, and standard errors are clustered at the city level.
Fig. 5. Mechanisms of the pandemic affecting suicide rate, and international comparison on the COVID-19 cases, health interventions, and fiscal policies: Panel a represents the average household income, which can be divided into ordinary income and special income. Special income includes a subsidy from the national government. Panel b depicts the trend of several bankruptcies and the claims for business subsidy. Panel c displays the average working hours for full-time workers and part-time workers before and after the pandemic. Panels d, e, and f document the confirmed COVID-19 cases per population among different countries, the stringency index of the virus containment health intervention, and fiscal support as a percentage share of GDP (on budget and off-budget). The data sources are described in Supplementary Note 1.
Supplementary Materials for

Suicide during the COVID-19 pandemic in Japan

Takanao Tanaka, MA¹ and Shohei Okamoto, PhD²*

* Corresponding author

¹Division of Social Science, Hong Kong University of Science and Technology, Clear Water Bay, Sai Kung, New Territories, Hong Kong (takanao_tanaka@hotmail.co.jp)
²Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan (shohei@z2.keio.jp)

Supplementary Notes 1-4
Supplementary Figures 1-5
Supplementary Tables 1-3
Supplementary References
Supplementary Notes

Supplementary Note 1. Data sources

Weather Variables: For the robustness check, we include temperature, temperature square, precipitation, and precipitation square as the control variables. The data are obtained from the Meteorological Agency of Japan\(^1\). We use weather data from 909 stations, which do not have any missing value on temperature and precipitation during our study period. Using the six monitoring stations that are the closest from the population center in each city, and the inverse of the distance from the population center as the weights, we aggregate the data from station-level to city-level. The weights are inversely proportional to squared distance so that closer stations are given higher weights.

The COVID-19 Cases in Japan (Fig. 1b): The data are obtained from the web page of the Ministry of Health, Labour and Welfare in Japan\(^2\). The data include confirmed cases, deaths, and recovered at the prefectural level (47 prefectures in Japan).

Household Income (Fig. 5a): The data are derived from the Family Income and Expenditure Survey. The survey is conducted by the Ministry of Internal Affairs and Communications (MIAC)\(^3\), and the data include detailed information about household income, expenditure, and ownership of different facilities and appliances. We use total income, ordinary income, and special income for our analyses.

The Number of Bankruptcy (Fig. 5b): We obtain the data from Nationwide Business Failures from Tokyo Shoko Research\(^4\).

The Claims for Business Subsidy (Fig. 5b): We derive the data from the Ministry of Health, Labour, and Welfare\(^5\). The website reports the claims for a business subsidy, the number of accepted applications, and the total amount of support determined. These are reported on a weekly basis.

Working Hours (Fig. 5c): The data are obtained from the Monthly Labour Survey, Ministry of Health, Labour, and Welfare\(^6\).
The COVID-19 Cases in the World (Fig. 5d): We obtain the data from the European Centre for Disease Prevention and Control7, which is an agency of the European Union. The dataset includes the daily confirmed cases of the COVID-19 from different countries and regions and the population. Using these two variables, we create confirmed cases per population in each country.

The Stringency Index (Fig. 5e): The data are obtained from the Coronavirus Government Response Tracker, provided by the University of Oxford8. We use the variable “Stringency Index” that reflects seven policy responses, including school closing, workplace closing, cancel public events, restrictions on gatherings, close public transport, stay at home requirements, and restrictions on internal movement.

The Fiscal Support (Fig. 5f): We obtain the data from the Database of Fiscal Policy Responses to COVID-19 provided by the International Monetary Fund9. This variable reflects the critical fiscal measures that are announced or taken by each government in response to the COVID-19 outbreak as of June 12, 2020.

Unemployment Rate (Supplementary Fig. 1c): The data are obtained from the Labour Force Survey from the Statistic Bureau of Japan, which is provided by the Ministry of Internal Affairs and Communication10.

Consumption Index (Supplementary Fig. 1c): We obtain the data from the Consumption Activity Index, which is provided by the Bank of Japan11. We use the real value of the consumption index after being adjusted for inflation.

Diffusion Index (Supplementary Fig. 1c): We obtain the data from the Indexes of Business Conditions, which is provided by the Cabinet Office12. We use the CI (Composite Indexes), measured as the Coincident Index.

Supplementary Note 2. Outbreaks of COVID-19 and response of the government in Japan

The number of cases in Japan has been increasing since January 2020 when the first case of the 2019 novel coronavirus infection (COVID-19) was confirmed in the country (Supplementary Fig. 1a). The
Diamond Princess cruise ship, which docked off the Yokohama Bay, was hit by the virus outbreak, where about 20% of passengers and crew were infected, raising the concern about the disease. In response, the national government banned large-scale gatherings and requested nationwide school closure at the end of February.

In March, despite the government’s measures, the virus spread did not slow down. The cases grew rapidly; for example, the total confirmed cases rose from 2,305 on April 1 to 10,283 on April 18. Given this, during these periods, the government escalated anti-contagion policies. It declared the state of emergency that lasted about a month, in seven cities on April 7, 2020, and expanded it to all cities on April 16, 2020, in which citizens were requested to close schools, shops, and enterprises, and to stay home if possible. While it had high compliance, these actions were not mandated but requested (Fig. 1c, Supplementary Fig.1b).

As is the case with many other countries, these measures brought about an economic downturn: OECD estimated Japan’s real GDP growth declined by 6.0% with the single-hit scenario and by 7.3% with the double-hit scenario.13 Unemployment rates have been gradually increasing from 2.4% in February 2020 to 2.9% in May 2020.10 Coincident Index (one of the indexes of business conditions) has been worsening from 93.7 in February 2020 (2015=100) to 74.6 in May 2020 (Supplementary Fig. 1c).12

In response to the financial crisis, the government of Japan has made various subsidies and benefits in cash and kinds available for all citizens and those who have lost their income. These include cash benefits (100,000 yen ≈ 1,000 USD) for all the citizens, those who have lost their income to compensate living funds and housing, and for sick-leaves, increased child allowance and supports for using childcare services, monetary supports including the postponement of payment for social insurance, and loan without interest and security for free-lance workers14. Among those subsidies and benefits, the Short-Time Compensation, provided for vulnerable enterprises to stabilize their employment, plays a significant role to curb a rise in the unemployment rate. The number of claims for business subsidy drastically increased to about 360,000
in late June (Fig. 5).

In our analyses, we define the pandemic period as between February 2020 and June 2020, because we believe the early outbreak in Japan and the cruise Diamond Princess, and the subsequent government measures could have affected the suicidal behaviors among Japanese citizens. Besides, we define the period of the state of emergency, and school closure as April and May 2020, and March and April in 2020.

Supplementary Note 3. The effects of the pandemic on suicide across job status

We estimate the effects of the pandemic on suicide across those with different job status. Although the results have some valuable insights, they should be interpreted with caution. First, the job status may not be based on the information from the subjects committed suicide, making the data less reliable. In fact, 11.5% of overall suicide is explained by those who are classified as job unknown. Second, to protect the privacy, the cities with one or two suicide deaths (in each month) are dropped from the observations. As a result, the observations reduced from 1,861 cities to 773 cities.

We describe the results in Supplementary Fig. 4. While the results with all samples (-15.1%) are comparable to the main estimates (-13.5%), they are mainly driven by those who are unclassified into any job status (-15.1%). Suicide among self-employed, employed, unemployed, and students slightly declined, but they are not statistically significant at 5%. Moreover, the suicide rate among housewives slightly increased, but it is not statistically significant. We observe suicide rates declined among those retired (-6.7%, CI -11.6% ~ -1.8%)

Supplementary Note 4. Psychological response after natural disasters

The existing literature suggests that there are six phases after disaster\(^\text{15}\): (1) a Pre-Disaster phase: feelings of vulnerability, worry about safety, and responsibility for subsequent negative consequences to loved ones or damage to property; (2) the Impact phase: feelings of disbelief, numbness, fear, confusion,
and panic behavior immediately after an event; (3) the Heroic phase: predominant rescue and survival behaviors for adaptation to the environment following assistance from others; (4) the Honeymoon phase: feelings of hopefulness and optimism due to community bonding arising by sharing the catastrophic experience in addition to mutual cooperation; (5) the Disillusionment phase: feelings of disappointment and resentment due to unmet emotional and physical environments because of withdrawn supports; (6) the Reconstruction phase: attempt to revive environments during the process people may become resilient and strong while heterogeneous and intertemporal responses among individuals tend to appear according to a trauma level, available resources, and coping skills.

In cases of natural disasters, a systematic review16 suggests that some studies report that suicide rates dropped in the initial-post disaster period (phase (4) referred to as the Honeymoon phase) while it eventually increased in the later period (phase (6) referred as Reconstruction phase). Although the COVID-19 pandemic and past natural disasters are distinctive in the dimension of the magnitude, our results of the reduction in the suicide rate are consistent with the prevalent patterns in previous literature (phase (4)). The history of natural disasters also gives an alarm that the suicide rate could increase in longer term (phase (6)).
Supplementary Fig. 1. COVID-19, the virus containment measures, and macroeconomic conditions: Panel a describes the confirmed COVID-19 cases, recoveries, and deaths. We also present the outbreak on the cruise of the Diamond Princess because it docked off the Yokohama Bay. Panel b represents the major dates of the pandemic outbreak and the government’s response to the disease outbreak. Panel c shows the macroeconomic conditions, including unemployment rate, consumption index, and the diffusion index. (Jan 2020 = 1.00)
Supplementary Fig. 2. The trend of suicide across gender and age groups: Panels a-f show the trend of suicide from July 2016 to June 2020. The grey line represents the average number of suicides for three years before the pandemic year (July 2016 to June 2019) with a grey circle denoting suicide each year. The light blue line shows the number of suicides from July 2019 to June 2020. We see the suicide declined as the disease outbreak became more salient (February and March in 2020), particularly among males and those aged 20-69 years. We also see a sizable reduction among females and those aged over 70 years, and almost similar pattern among children those aged below 20 years.
Supplementary Fig. 3. Robustness check: Panel a describes the results when including the time-varying controls and city-specific quadratic trend. The time-varying controls include monthly average temperature and, precipitations, and their squares. The results are slightly smaller than the main estimates (10.2%, main estimates are 13.5%), but comparable. Panel b uses the Poisson model instead of OLS. The estimated coefficients show incidence-rate ratios minus one so that it can be comparable to the main estimates. All regressions include city-by-year fixed effects and city-by-month fixed effects and are weighted by the population, and standard errors are clustered at the city level.
Supplementary Fig. 4. Back-of-the-envelope calculation for the averted deaths from suicide: Panel a describes the predicted change in suicide rate with COVID-19 and otherwise. The difference between the grey line (without COVID-19) and the blue line (with COVID-19) represents the effects of the pandemic. Panel b demonstrates the predicted averted deaths by suicide across periods. The blue dash line represents the points estimate, while the light blue area shows the 95% CI. All regressions include city-by-year fixed effects and city-by-month fixed effects and are weighted by the population, and standard errors are clustered at the city level.
Supplementary Fig. 5. Heterogeneous effects among job status: This graph describes the results of the effects of the pandemic on suicide across those with different job status. Each row represents the estimated coefficient and 95% confidence interval. For each regression, we use different outcomes. For example, in a row “Job Classified,” we use the log number of the suicide rate among those whose jobs are classified as either self-employed, employed, unemployed, housewife, retired, or student. All regressions include city-by-year fixed effects and city-by-month fixed effects and are weighted by the population, and standard errors are clustered at the city level.

11
Average number of suicides at city-by-month level

<table>
<thead>
<tr>
<th></th>
<th>All periods (N = 89,328)</th>
<th>Before the pandemic (N = 80,023)</th>
<th>After the pandemic (N = 9,305)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All population</td>
<td>.866 (.183)</td>
<td>.873 (.163)</td>
<td>.804 (3.09)</td>
</tr>
<tr>
<td>Male age below 20</td>
<td>.017 (.135)</td>
<td>.017 (.133)</td>
<td>.016 (.153)</td>
</tr>
<tr>
<td>Male age between 21–69</td>
<td>.440 (.105)</td>
<td>.444 (.957)</td>
<td>.400 (1.6)</td>
</tr>
<tr>
<td>Male age over 70</td>
<td>.137 (.430)</td>
<td>.137 (.416)</td>
<td>.136 (.535)</td>
</tr>
<tr>
<td>Female age below 20</td>
<td>.009 (.098)</td>
<td>.009 (.095)</td>
<td>.011 (.121)</td>
</tr>
<tr>
<td>Female age between 21–69</td>
<td>.177 (.554)</td>
<td>.179 (.523)</td>
<td>.160 (.771)</td>
</tr>
<tr>
<td>Female age over 70</td>
<td>.085 (.318)</td>
<td>.085 (.316)</td>
<td>.078 (.334)</td>
</tr>
</tbody>
</table>

Supplementary Table 1. Summary statistics: This table shows the mean and standard deviation (in the brackets) of each variable. We include 1,861 cities.
<table>
<thead>
<tr>
<th></th>
<th>log Suicide rate, (Fig. 2a, 3)</th>
<th>log Suicide rate, Male, (Fig. 2b)</th>
<th>log Suicide rate, Female, (Fig. 2c)</th>
<th>log Suicide rate, Age below 20, (Fig. 2d)</th>
<th>log Suicide rate, Age 21-69, (Fig. 2e)</th>
<th>log Suicide rate, Age above 70, (Fig. 2f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treat * Post</td>
<td>-.135*** (.021)</td>
<td>-.119*** (.020)</td>
<td>-.067*** (.017)</td>
<td>-.016*** (.006)</td>
<td>-.126*** (.020)</td>
<td>-.048*** (.015)</td>
</tr>
<tr>
<td>City-by-year</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>fixed effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City-by-month</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>fixed effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obs.</td>
<td>88176</td>
<td>88176</td>
<td>88176</td>
<td>88128</td>
<td>88176</td>
<td>88176</td>
</tr>
<tr>
<td>R-Square</td>
<td>0.714</td>
<td>0.654</td>
<td>0.552</td>
<td>0.347</td>
<td>0.680</td>
<td>0.485</td>
</tr>
</tbody>
</table>

Supplementary Table 2. Full results of the effects of COVID-19 pandemic on suicide across gender and age groups using DID: Each column represents each regression. All regressions include city-by-year fixed effects and city-by-month fixed effects. The results correspond to Fig. 2 and 3. All regressions are weighted by the population, and standard errors are clustered at the city level. Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1
<table>
<thead>
<tr>
<th></th>
<th>log Suicide rate</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (1)</td>
<td>Male adult (2)</td>
<td>Female adult (3)</td>
<td>Male others (4)</td>
<td>Female others (5)</td>
<td>Student (6)</td>
</tr>
<tr>
<td>Treat * Post</td>
<td>-.135***</td>
<td>-.159***</td>
<td>-.074***</td>
<td>-.053***</td>
<td>-.042***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.021)</td>
<td>(.023)</td>
<td>(.017)</td>
<td>(.018)</td>
<td>(.014)</td>
<td></td>
</tr>
<tr>
<td>During the state of emergency (Fig. 4a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.074***</td>
<td>-.045**</td>
<td>-.045***</td>
<td>-.014</td>
<td></td>
<td>-.074***</td>
</tr>
<tr>
<td></td>
<td>(.020)</td>
<td>(.019)</td>
<td>(.014)</td>
<td>(.012)</td>
<td>(.025)</td>
<td></td>
</tr>
<tr>
<td>Other periods (Fig. 4b)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>During school closure (Fig. 4c)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-.007</td>
<td>.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.015)</td>
<td>(.015)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City-by-year fixed effect</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>City-by-month fixed effect</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Obs.</td>
<td>88176</td>
<td>88176</td>
<td>88176</td>
<td>88176</td>
<td>88176</td>
<td>36960</td>
</tr>
<tr>
<td>R-Square</td>
<td>0.714</td>
<td>0.618</td>
<td>0.521</td>
<td>0.455</td>
<td>0.399</td>
<td>0.577</td>
</tr>
</tbody>
</table>

Supplementary Table 3. Full results of the heterogeneous effects of the COVID-19 pandemic among age groups and gender, before and after the stage of emergency, and the school closure: Each column represents each regression. All regressions include city-by-year fixed effects and city-by-month fixed effects. The results correspond to Fig. 4. All regressions are weighted by the population, and standard errors are clustered at the city level. Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1
Supplementary References

