Full Title: 12 Novel Clonal Groups of *Leptospira* Infecting Humans in Multiple Contrasting Epidemiological Contexts in Sri Lanka

Jayasundara JMDD1,2, Senavirathna RMISK1,3, Warnasekara YPJN1, Gamage CD4, Siribaddana S5, Kularatne SAM6, Matthias M7, Mariet JF8, Picardeau M8, Agampodi SB1,7, Vinetz JM7

1 Leptospirosis Research Laboratory, Department of Community Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka

2 Department of Microbiology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka

3 Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka

4 Department of Microbiology, Faculty of Medicine, University of Peradeniya, Sri Lanka

5 Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka

6 Department of Medicine, Faculty of Medicine, University of Peradeniya, Sri Lanka

7 Yale University School of Medicine, New Haven, Connecticut, USA

8 Institut Pasteur, Biology of Spirochetes unit, Paris, France
Abstract

Leptospirosis is a ubiquitous disease and a major clinical challenge owing to the multitude of clinical presentations and manifestations that are possibly attributable to the diversity of *Leptospira*, the understanding of which is key to study the epidemiology of this emerging global disease threat. Sri Lanka is a hotspot for leptospirosis with high levels of endemic disease as well as annual epidemics. We carried out a prospective study of *Leptospira* diversity in Sri Lanka, covering the full range of climatic zones, geography, and clinical severity. Samples were collected for leptospiral culture from 1192 patients from 15 of 25 districts in Sri Lanka over two and half years period. Twenty-five isolates belonging to four pathogenic *Leptospira* species were identified: *L. interrogans*, *L. borgpetersenii*, *L. weilii*, and *L. kirschneri*. At least six serogroups were identified among the isolates: Autumnalis (6), Pyrogenes (4), Icterohaemorrhagiae (2), Celledoni (1), Grippotyphosa (2) and Bataviae (1). Seven isolates did not agglutinate using available antisera panels, suggesting new serogroups. Isolates were sequenced by Illumina. These data add 25 new core genome sequence types and were clustered in 15 clonal groups, including 12 new clonal groups. *L. borgpetersenii* was found only in the dry zone and *L. weilii* only in the wet zone. Acute kidney injury and cardiovascular involvement were seen only with *L. interrogans* infections. Thrombocytopenia and liver impairment were seen in both *L. interrogans* and *L. borgpetersenii* infections. The inadequate sensitivity of culture isolation to identify infecting *Leptospira* species underscores the need for culture-independent typing methods for *Leptospira*.
Author Summary

There is a huge diversity in pathogenic Leptospira species worldwide, and our knowledge of the currently circulating species is deficient owing to limited isolation and identification of Leptospira species from endemic countries. This prospective study reveals the wide pathogen diversity that causes human leptospirosis in Sri Lanka, representing four species, more than eight serogroups, and fifteen clonal groups. Further, the different geographic and climatic zone distributions and clinical manifestations observed underscores the need for prospective studies to expand the molecular epidemiological approaches to combat leptospirosis.
Introduction

Leptospirosis is caused by a group of pathogenic *Leptospira* species of the phylum Spirochetes and is considered one of the commonest zoonotic diseases worldwide [1][2]. *Leptospira* spp. have the ability to colonize proximal convoluted tubules of kidney tissue of various mammals (including rodents), birds and marsupials, and the hosts excrete the bacteria to the environment via urine [3][4]. Humans are incidental hosts who acquire the disease by direct contact with urine or tissues of reservoir animals or, more frequently by indirect contact with contaminated water sources [5][6]. The incidence of leptospirosis is estimated to be 1.03 million annually worldwide, with 58,900 deaths [1]. The majority of tropical countries in Oceania, Southeast Asia, the Caribbean region, central and eastern sub-Saharan Africa, and South Asia are estimated to have substantial morbidity and mortality that is attributable to leptospirosis.[7]

Understanding the diversity of infecting *Leptospira* has been a major global focus, especially in recent years. The phenomenal changes in *Leptospira* classification backed by next-generation sequencing methods and whole-genome sequencing have led to the identification of 43 new *Leptospira* species during the period 2018 to 2020 [8–11]. The more robust classification of *Leptospira* strains beyond the species level using core-genome multi-locus sequence typing (cgMLST) [9] and single nucleotide polymorphism typing methods has rapidly expanded our knowledge of the molecular epidemiology of *Leptospira*. However, the goal of reducing the global burden of this deadly disease will require an enhanced understanding of pathogen types and applications and linkage to disease distribution, transmission, clinical presentations, and outcomes.
The global leptospirosis disease burden study [1] has highlighted Sri Lanka as a hyperendemic country with an estimated morbidity of 300.6 and mortality of 17.98 per 100,000 population. The disease incidence tends to be higher during the rainy seasons, i.e., the southwest and northeast monsoons. Cases, however, are not confined exclusively to the wet zone and are reported in the dry zone as well, where the majority of residents are engaged in farming activities. Outbreaks have also occurred in the dry zone following extreme weather events like flooding [12].

As in many other endemic countries, understanding Leptospira diversity in Sri Lanka is limited because of a lack of knowledge of the circulating pathogenic species and serovars. Studies that utilized culture-based isolation of Leptospira species were carried out in Sri Lanka during the period from 1950 to 1970 in the wet zone only. Several pathogenic strains of the species L. interrogans [13][14][15], L. borgpetersenii [16], L. kirschneri [17], and L. santarosai were detected during that time [18][19][20]. Since the 1970s, no culture-based isolation studies were reported until 2018, when two human isolates belonging to L. interrogans were recovered from the wet zone [21]. Despite the availability of next-generation sequencing methods for many years, whole-genome sequencing data for Sri Lankan isolates were not available until recently [22].

A systematic review published in 2016 revealed the large diversity of Leptospira strains in Sri Lanka based on historical data [20]. Being an island with a high leptospirosis disease burden makes Sri Lanka an ideal location to study pathogen diversity linked with epidemiological and clinical patterns of the disease. Low-passage isolates from human sources with high-resolution genetic typing in a place with high pathogen diversity would enhance our global knowledge of leptospirosis. This study was designed to provide a
comprehensive understanding of the circulating pathogenic *Leptospira* species and types

responsible for human leptospirosis in Sri Lanka, covering different clinical presentations

and geographical locations as well as an epidemic and endemic disease over 3 years.

Methods

The present study was embedded in a larger clinical-epidemiological study on leptospirosis,
in Sri Lanka and the study protocol was published elsewhere [23]. Specific details related
to *Leptospira* diversity and methods, in brief, are given here.

Study setting

This study was carried out at several locations in Sri Lanka that differed in mean
temperature, rainfall, elevation, ecology, human activities, and leptospirosis endemicity.
The main data collection sites were the Teaching Hospital Anuradhapura (THA) and
Teaching Hospital Peradeniya (THP). THA is in the dry zone located at a low elevation
with low humidity, high temperature, large rice paddy fields, water reservoir-based
irrigation systems, and low endemicity for the disease. THP is in the wet zone located at
high elevation, low temperature, rainfall-based farming activities, and high endemicity.
Samples for *Leptospira* diversity assessment were collected through two approaches. First,
as a part of the main study described in Agampodi et al. 2019, prospective data and sample
collection was done in THA and THP. Also, during an outbreak of leptospirosis in 2017,
we set up the same procedure at Base Hospital Awissawella and Provincial General
Hospital Rathnapura. These two wet-zone areas have high endemicity, representing low
and intermediate elevations. As a part of the service component of this study, we offered
diagnostic services to all requesting physicians and also collected additional culture
samples. This resulted in sample collection from District General Hospital Kegalle, Base
Hospital Karawanella, Sri Jayawardanapura General Hospital, and General Hospital Polonnaruwa (GHP)—again representing different [locations OR geographical locations].

These study sites (Fig 1) represent seven districts belonging to four provinces of the country, and the patients who visited these hospitals came from all nine provinces.

Fig 1. Locations of the seven hospitals involved in the study

Study samples

Culture collection was done from three types of patients. Acute undifferentiated febrile (temperature >38°C) patients who presented to adult wards (age >13 years) of THA, THP, Provincial General Hospital Rathnapura and Base Hospital Awissawella (both outpatient department and hospitalized patients) were included as possible cases of leptospirosis.

Probable cases of clinical leptospirosis were included from GHP. Culture samples from Provincial General Hospital Rathnapura, Sri Jayawardanapura General Hospital and Base Hospital Karawanella were included only if they came from clinically confirmed cases of leptospirosis. Physician-diagnosed probable or definite acute bacterial meningitis or lower respiratory tract infections (e.g., consolidated lobar pneumonia), traumatic or post-operative fever per physician discretion, fever owing to nosocomial infections, and any patient with confirmed diagnosis as a cause for the fever were excluded.

Sample collection and isolation of Leptospira

Blood (7 ml) was collected from all eligible patients. Bedside inoculation of 2 and 4 drops (100–400 µl) was done into two tubes with 9 ml Ellinghausen-McCullough-Johnson-Harris (EMJH) semisolid medium with added antibiotics (5-fluorouracil and neomycin). These cultures were kept at room temperature (usually 28–32°C) until transfer to the
Leptospirosis Research Laboratory of the Faculty of Medicine and Allied Sciences, Rajarata University, Sri Lanka, and then incubated at 30°C until the cultures become positive or for 6 months.

In brief, EMJH semisolid media were prepared by adding 2.3 g of EMJH base (Difco), 1.5 g bacteriological agar, and 100 mg sodium pyruvate into 785 ml distilled water and adjusting the pH to 7.4. The media were autoclaved, and once cooled to ~50°C, 100 ml *Leptospira* enrichment media and 100 ml fetal bovine serum was added. To suppress the growth of possible contaminating bacteria, 5-fluorouracil (100 µg/ml, final) and neomycin (25 µg/ml) were added. Each inoculated medium was inspected under a dark-field microscope to check for the presence of motile spirochetes; this was done initially after 3 weeks and then every month. However, samples were inspected before 3 weeks if quantitative PCR of the corresponding whole-blood sample indicated a positive reaction. When positive growth was detected, subcultures were made into liquid and semisolid media, and an aliquot was fixed with 5% dimethyl sulfoxide and stored at –80°C. Isolates were subcultured in liquid media 2 weekly and on semisolid media 3 monthly. Certain isolates required weekly subculture into liquid media to maintain viability. None of the isolates became contaminated during the subculture process, although two positive original clinical samples were contaminated with bacilli. For those two samples, subcultures were made into liquid media and subsequently filtered through a 0.2 µm pore-size microfilter to overcome the problem of contamination.

16S rRNA gene-based species identification

Species-level identification for all isolates was first done using nested PCR targeting the 16S rRNA gene [24][25][26]. Amplification was carried out in 50 µl containing 25 µl HotStarTaq® master mix, 0.5 µl each primer (1 µM), 10 µl template DNA, and 15 µl...
molecular-grade water. The thermal cycler conditions were done as reported previously[26]. The 16S rRNA region obtained with the amplified product was sequenced using an ABI 3500 genetic analyzer with an 8-capillary system (Applied Biosystems®). The target gene segment was 292 bp. All amplified 16 rRNA sequences were submitted to the NCBI database under Bio Project number PRJNA528695. The 16S rRNA sequences of the 25 *Leptospira* isolates were aligned using Muscle Mega 7 software [27]. A phylogenetic tree was constructed with Mega 7 using maximum likelihood analysis with the General Time Reversible model. Validation of the statistical confidence of each node was based on 1000 bootstrap replicates.

Next-generation sequencing, cgMLST and phylogenetic tree

DNA was extracted from culture using the PureLink® Genomic DNA Mini kit (Invitrogen, Dublin, Ireland) and Wizard® Genomic DNA Purification Kit (Promega, Southampton, UK) according to manufacturer instructions. NGS was performed using Nextera XT DNA Library Preparation kit and the NextSeq 500 sequencing systems (Illumina, San Diego, CA, USA) at the Mutualized Platform for Microbiology (P2M) at Institut Pasteur. The data were analyzed using the CLC Genomics Workbench 9 software (Qiagen, Hilden, Germany) (S2 Table). cgMLST typing was performed for strain taxonomy using a scheme based on 545 highly conserved genes with BIGSdb (http://bigsdb.pasteur.fr/leptospira), and a phylogenetic tree was generated using cgMLST with Interactive Tree of Life v3, and GrapeTree [28] was used to visualize the core genomic relationships among the isolates and the previously reported Sri Lankan isolates [9][29][30].

Serotyping of new isolates

Serotyping of newly isolated *Leptospira* strains was done at the Pasteur Institute, France, using a standard battery of rabbit antisera raised against 24 reference serovars representing the main serogroups [31][32].
Ethics statement

Written informed consent was obtained from all patients before sample collection. This study is approved by the Ethics Review Committee of the Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka. Protocol No. 2015/EC/98

Results

From June 2016 through January 2019, we acquired blood cultures from 1192 patients. Patients were from 14 districts of Sri Lanka, representing all 9 provinces (Fig 2).

Fig 2. Distribution of probable exposure sites/residence of the patients recruited for the study.

The majority of patients were male (n = 985, 82.6%). The mean age of the sample was 43.4 years (SD 14.7). Most of the cultures (96%) were obtained from hospital inpatients, and the remaining 4% (48 cultures) were from outpatients. Of the 1192 cultures, 80 (6.7%) were received from hospitals where only typical clinical cases of leptospirosis were sampled (from Sri Jayewardenepura General Hospital, Base Hospital Karawanella and Provincial General Hospital Rathnapura). Another 107 (9.0%) were from GHP, where patients represented only probable cases of leptospirosis. The remaining patients (n = 1047) were from THA, THP, Base Hospital Awissawella and Provincial General Hospital Rathnapura, representing patients who presented with acute undifferentiated fever.

Of the 1192 patients, 25 isolates had been identified by January 2019. Among the acute undifferentiated febrile patients, 1.5% (16/1047) had culture-positive leptospirosis; among the probable and clinically confirmed cases of leptospirosis, culture positivity was 4.7% (5/107) and 5.0% (4/80), respectively. The incubation period required to detect positive
growth (assessed with dark-field microscopy) varied between 1 and 17 weeks. For each patient, both 2 drops and 4 drops of blood-inoculated media gave positive results. Fig 3 shows the range of incubation period required for the 25 positive *Leptospira* cultures. The median duration was 15 weeks for the first 9 isolates and was 6 weeks for the remaining 16 isolates.

Fig 3. Distribution of incubation period for culture isolation among 25 Leptospira cultures

Leptospira was isolated from one female and 24 male patients who presented with fever. Only three patients were from outpatient departments, and the rest were inpatients. Of the three outpatients, two were later admitted to a hospital owing to increased disease severity.

Species identification using 16S rRNA led to inconclusive results for certain isolates owing to inadequate length of the PCR product of the target DNA. However, all nucleotides obtained from 16S rRNA sequencing were deposited in GenBank (see Table 2 for accession numbers). cgMLST analysis revealed that the 25 isolates represented four species: *L. interrogans* (15 isolates, 60%), *L. borgpetersenii* (7 isolates, 28%), *L. weilii* (2 isolates, 8%), and *L. kirschneri* (1 isolate, 4%) (Fig 4).

Fig 4 Phylogenetic tree showing the distribution of species and serogroups of the isolates from the present study along with the previously reported Sri Lankan isolates and other species.

Interpretable data for serogroup assay was available for only 19 isolates. Seven samples resulted in no agglutination, probably owing to new, previously unreported
serogroups/serovars. The assay revealed that the 19 seropositive isolates represented at least six serogroups, namely Autumnalis, Pyrogenes, Icterohaemorrhagiae, Grippotyphosa, Celledoni, and Bataviae (Table 2).

Table 2. Putative species, serogroups, and cgMLST data for the *Leptospira* isolates

<table>
<thead>
<tr>
<th>Strain ID</th>
<th>Species</th>
<th>Serogroup</th>
<th>GenBank accession number of the 16S rrs amplicon</th>
<th>cgMLST Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMAS_KW1</td>
<td>L. interrogans</td>
<td>Pyrogenes</td>
<td>MN250143</td>
<td>784</td>
</tr>
<tr>
<td>FMAS_KW2</td>
<td>L. interrogans</td>
<td>Autumnalis</td>
<td>MN250144</td>
<td>631</td>
</tr>
<tr>
<td>FMAS_AW1</td>
<td>L. interrogans</td>
<td>Autumnalis</td>
<td>MN250145</td>
<td>555</td>
</tr>
<tr>
<td>FMAS_RT1</td>
<td>L. weilii</td>
<td>No agglutination</td>
<td>MN250146</td>
<td>556</td>
</tr>
<tr>
<td>FMAS_AW2</td>
<td>L. interrogans</td>
<td>Autumnalis</td>
<td>MN250147</td>
<td>567</td>
</tr>
<tr>
<td>FMAS_AW3</td>
<td>L. interrogans</td>
<td>Pyrogenes</td>
<td>MN250148</td>
<td>557</td>
</tr>
<tr>
<td>FMAS_RT2</td>
<td>L. interrogans</td>
<td>Autumnalis</td>
<td>MN250149</td>
<td>569</td>
</tr>
<tr>
<td>FMAS_PD1</td>
<td>L. interrogans</td>
<td>Pyrogenes</td>
<td>MN250150</td>
<td>558</td>
</tr>
<tr>
<td>FMAS_PD2</td>
<td>L. weilii</td>
<td>Celledoni</td>
<td>MN250151</td>
<td>559</td>
</tr>
<tr>
<td>FMAS_KG1</td>
<td>L. interrogans</td>
<td>Bataviae</td>
<td>MN250152</td>
<td>560</td>
</tr>
<tr>
<td>FMAS_KG2</td>
<td>L. interrogans</td>
<td>Pyrogenes</td>
<td>MN250153</td>
<td>561</td>
</tr>
<tr>
<td>FMAS_AP1</td>
<td>L. interrogans</td>
<td>Autumnalis</td>
<td>MN250154</td>
<td>562</td>
</tr>
<tr>
<td>FMAS_AP2</td>
<td>L. borgpetersenii</td>
<td>No agglutination</td>
<td>MN250155</td>
<td>563</td>
</tr>
<tr>
<td>FMAS_AP3</td>
<td>L. borgpetersenii</td>
<td>No agglutination</td>
<td>MN250156</td>
<td>575</td>
</tr>
<tr>
<td>FMAS_AP4</td>
<td>L. borgpetersenii</td>
<td>No agglutination</td>
<td>MN250157</td>
<td>564</td>
</tr>
<tr>
<td>FMAS_AP5</td>
<td>L. interrogans</td>
<td>Pyrogenes</td>
<td>MN250158</td>
<td>565</td>
</tr>
<tr>
<td>FMAS_AP6</td>
<td>L. interrogans</td>
<td>Pyrogenes</td>
<td>MN250159</td>
<td>785</td>
</tr>
</tbody>
</table>
The isolates were classified using genome-based taxonomy based on clusters created at the 40-mismatch level. The predominant clonal group (CG) was CG267 (7 *L. borgpetersenii* isolates among the 25 total isolates). This was followed by CG266 (3/25), CG10 (2/25), and CG263 (2/25). The two *L. weilii* isolates clustered in different clonal groups (CG262, CG264). GrapeTree analysis revealed that the seven *L. borgpetersenii* isolates formed a distinct cluster separated from previously reported isolates of the same species. However, *L. interrogans* isolates had a different lineage. The distribution of serogroups closely matched that of the genetic clusters (Fig 5).

Fig 5. Genome GrapeTree showing the core-genome relationship among the 25 new and 9 previously isolated *Leptospira* strains from Sri Lanka

Culture-positive leptospirosis patients were distributed widely in the study areas (Fig 6). *L. borgpetersenii* was exclusively isolated from patients in areas of the dry zone at low...
elevation, with hot and dry conditions. The single isolate of *L. kirschneri* was from the same setting. In contrast, *L. weilii* was isolated from patients in the wet zone, whereas *L. interrogans* was isolated from patients in all geographical areas (Fig 6). The serogroup distribution also revealed a specific pattern for all nonagglutination isolates, which mainly were from the dry zone at low elevation. The most frequent serogroup Autumnalis, was observed in all geographical settings. All *L. borgpetersenii* isolates were in CG267, the majority of which failed to agglutinate with rabbit sera (some slightly agglutinated with serovars Grippotyphosa and Louisiana).

Fig 6. Geographic distribution of *Leptospira* species, serogroups and clonal groups

Clinical profile of culture-positive patients

Supplementary Table 1 presents complete demographic and clinical profiles for culture-positive patients. All culture-positive patients were later contacted to collect additional data. Each patient’s clinical records were also retrieved from the corresponding hospital. No fatalities were reported for patients with culture-positive leptospirosis. Among hospitalized patients, the median duration of hospital stay was 4 days (interquartile range, 3–5 days), and the longest stay was 12 days followed by 9 days (both patients had acute kidney injury and required hemodialysis). Another two had renal involvement with elevated serum creatinine but not acute kidney failure. Twelve patients had elevated serum glutamic-oxaloacetic transaminase and serum glutamic-pyruvic transaminase, and three other patients had elevated serum bilirubin. Thrombocytopenia was common in those 12 patients, with a platelet count <100,000 per microliter. Two patients who underwent hemodialysis also had cardiac involvement with hypotension. Each patient who had a
A severe complication was infected with *L. interrogans*. Infection with *L. interrogans* or *L. borgpetersenii* was associated with thrombocytopenia and liver involvement.

Other diagnostic tests for culture-positive patients

For the 25 *Leptospira*-positive patients, whole-blood and serum samples were acquired for 20 and 15 patients in the hospitals. Sera included 3 paired and 12 single samples, and only three patient samples yielded positive results for the microscopic agglutination test. PCR for whole-blood samples revealed 14 positives, 3 probable (only 1 of 3 replicates was positive), and 3 negatives.

Discussion

This is the first study to report information on the diversity of pathogenic *Leptospira* species in Sri Lanka and probably one of the few prospective studies on *Leptospira* disease diversity in literature representing all geographical regions of an entire country. Also, we report here the first isolation of *L. weilii* in Sri Lanka, the existence of which was suggested based on molecular studies of clinical samples [33]. This study also provides the first evidence of serogroups Celledoni and Bataviae circulating in Sri Lanka. Moreover, except for *L. santarosai*, our study identified all pathogenic *Leptospira* species that were reported to have existed in Sri Lanka during the 1960s and 70s (as reviewed by Naotunna et al. in 2015), confirming the breadth of *Leptospira* diversity in Sri Lanka [20]. Recently reports indicated that *L. interrogans*, *L. borgpetersenii* and *L. kirschneri* are also the most common circulating species in other tropical regions of the world [34][35][36][37][38][39]. However, the geographical distribution of certain *Leptospira* species is limited, such as *L. santarosai*, which has been mainly reported in South America [40][41][42][43], and *L.
weilii in Asia [39][44][45][46]. Only limited reports have described the existence of L. weilii outside Asia, where cattle are the dominant reservoir host [46][47][48][49].

We identified 15 distinct clonal groups of Leptospira, underscoring the diversity of pathogenic Leptospira circulating in Sri Lanka. The distribution of certain clonal groups revealed a geographical demarcation between the dry and wet zones. The presence of diverse clonal groups and the observed demarcation of the limited geographical distribution of certain species suggests that different environmental drivers of leptospirosis operate in distinct ways in these climatic zones. The predominance of L. borgpetersenii and L. kirschneri over L. interrogans has been reported in both humans and cattle in the African continent and nearby islands such as Mayotte, with possible cattle-to-human transmission [50][51][52]. Moreover, certain rat species also excrete serovars of L. borgpetersenii [53][54]. Notably, areas where L. borgpetersenii was found in our study, cattle and buffalo, are commonly used in paddy farming activities.

In our present study, L. interrogans was the predominant species identified in patients residing in the wet zone. The emergence of a single dominant clone that caused an outbreak of leptospirosis following a flood was reported in Thailand] [36]. In contrast with that study, we observed diverse clonal groups of L. interrogans as the cause of human leptospirosis during floods, probably owing to disease transmission from several different reservoir hosts.

The diversity of circulating serogroups in Sri Lanka that has been known since the 1960s has been preserved, and 19 isolates belong to 8 different serogroups, and the non-agglutinated cultures might reflect newly emerged serovars. Serological and molecular
assays done on the veterinary field has already identified the role of rodents, cattle and dogs as reservoir hosts in Sri Lanka[55][56][57]. However, the observed diversity in serogroups offers evidence for a wider range of reservoir hosts even though Sri Lanka is a small island.

Although culture isolation is required for in-depth molecular epidemiological studies, our present study highlights the constraints faced for culture isolation of *Leptospira*, for which both a high level of skill and procedural optimization are required. *Leptospira* spp. are fastidious organisms, and their growth requirements differ from those of many other bacterial genera. *Leptospira* tend to have a relatively long incubation period, as the lag period during *in vitro* culture range from days to several weeks [58]. Other culture-isolation studies have reported an incubation period of ~3 weeks, but with a wide range of duration [50][59][60]. We attribute the relatively lengthy incubation period of 15 weeks required for the first nine cultures in our study mainly to the lack of skills and optimization required for culture procedures during the first phase of the study. Isolation is essential for genomic and vaccine studies on *Leptospira*, and for that purpose a specific skill set is mandatory.

Although culture isolation has a 100% positive predictive value for diagnosing leptospirosis, its sensitivity has been consistently <10% in most studies [36][61][62]. Similarly, our study yielded low sensitivity, which can be attributed to a few possible causes: Because the study population consisted of patients with acute febrile illness, their fever may have been caused by another unrelated illness; Use of antibiotics before culture; also, performing blood cultures during the late phase of illness and infection with fastidious *Leptospira* spp. may account for the low sensitivity during culture isolation.

This large collection of pathogenic *Leptospira* isolates from clinical samples will be a great addition to the global knowledge base for leptospirosis. Whole-genome sequencing and
genomic analysis of this set of isolates will reveal the pathogenic diversity and evolution of *Leptospira* species, in comparison to archived *Leptospira* isolated from Sri Lanka more than 50 years ago. The first three isolates from this study are already published [REFs?], and the isolate FMAS_AW1 is now listed as the reference genome for *L. interrogans* in the NCBI genome database (https://www.ncbi.nlm.nih.gov/genome/?term = *Leptospira-interrogans*).

Whole genome sequencing and comparative genomic analysis of this collection will facilitate ongoing studies on identifying the putative virulent genes, pathogenic mechanisms with specific host adaptations, horizontal gene transfer mechanisms, and microbial resistance as shown in studies on the diversity and epidemiology of other microorganisms [63][64][65][66][67][68].

Acknowledgement

This work was supported by The National Institute of Allergy and Infectious Diseases of the National Institutes of Health, Award Number U19AI115658. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funding body had no role in the design of the study or the collection, analysis, or interpretation of data or in writing the manuscript and publication. We would like to thank the co-applicants of the main study, Prof.Sisira Siribaddana and Prof.S.A.M Kularatne for their support for the clinical study. We would also like to thank Ms. Thilakanjali Gamage, Mr. K.M.R. Premathilaka, Mr. S.K. Seneviratna, and Mr. Milinda Perera for technical assistance, Mr. Shalka Srimantha and Ms. Chamila Kappagoda for culture maintenance and laboratory support, and Dr. Muditha Abeykoon, Dr. Chamida Wickramasinghe, and Dr. Shanika Gamage for additional culture collections. We also thank all the physicians and healthcare staff in the various participating hospitals, the team...
of core facility P2M (Institut Pasteur, Mutualized Platform for Microbiology) for genomic sequencing and members of the National Reference Center for Leptospirosis (Institut Pasteur) for technical assistance with the cultures of *Leptospira*.

References

evolution to virulence. Microb genomics. 2018;4. doi:10.1099/mgen.0.000144

574 1111
575 52. Mgo de GF, Machang’u RS, Goris MG, Engelbert M, Sondij S, Hartskeerl RA. New
576 Leptospira serovar Sokoine of serogroup Icterohaemorrhagiae from cattle in
579 al. Determination of Leptospira borgpetersenii serovar Javanica and Leptospira
580 interrogans serovar Bataviae as the persistent Leptospira serovars circulating in the
581 urban rat populations in Peninsular Malaysia. Parasites and Vectors. 2016;9: no
582 pagination. doi:10.1186/s13071-016-1400-1
583 54. Eslabão MR, Kremer FS, Ramos RTJ, Da Silva AL da C, Azevedo VA de C, Pinto L
584 da S, et al. Genome of leptospira borgpetersenii strain 4E, a highly virulent isolate
585 obtained from mus musculus in southern Brazil. Mem Inst Oswaldo Cruz. 2018;113:
587 55. Nityananda K, Harvey T. Leptospirosis in Ceylon epidemiological and laboratory
589 https://www.researchgate.net/publication/235020299_Leptospirosis_in_Ceylon-
590 _Epidemiological_and_Laboratory_Investigation
591 56. Gamage CD, Koizumi N, Muto M, Nwafor-Okoli C, Kurukurusuriya S, Rajapakse
594 2011;11: 1041–1047. doi:10.1089/vbz.2010.0153
595 57. Gamage CD, Koizumi N, Perera AKC, Muto M, Nwafor-Okoli C, Ranasinghe S, et
596 al. Carrier status of leptospirosis among cattle in Sri Lanka: A zoonotic threat to
598 58. Cameron CE. Leptospirosis, structure, physiology, and metabolism. Curr Top
599 Wuthiekanun V, Chierakul W, Limmathurotsakul D, Smythe LD, Symonds ML,
601 Dohnt MF, et al. Optimization of Culture of Leptospira from Humans with
603 Girault D, Soupe-Gilbert ME, Geroult S, Colot J, Goarant C. Isolation of Leptospira
605 doi:10.1016/j.diagmicrobio.2017.01.014
607 Characterization of Leptospira isolates from humans and the environment in
609 9946201759079
611 Human leptospirosis caused by a new, antigenically unique Leptospira associated
612 with a Rattus species reservoir in the Peruvian Amazon. PLoS Negl Trop Dis.
613 2008;2. doi:10.1371/journal.pntd.0000213
614 Jorge S, Kremer FS, De Oliveira NR, Navarro GDOSV, Guimarães AM, Sanchez
615 CD, et al. Whole-genome sequencing of leptospira interrogans from southern Brazil:
616 Genetic features of a highly virulent strain. Mem Inst Oswaldo Cruz. 2018;113: 80–
617 86. doi:10.1590/0074-02760170130
619 integrated database of genomics and proteomics resource of Leptospira. Database.
620 2018;2018. doi:10.1093/database/bay057
621 Llanes A, Restrepo CM, Rajeev S. Whole genome sequencing allows better
622 understanding of the evolutionary history of leptospira interrogans serovar hardjo.

Fig 1. Locations of seven hospitals used for the study
Fig 2. Distribution of probable exposure sites/residence of the patients recruited for the study.
Fig 3. Distribution of incubation period for culture isolation among 25 *Leptospira* cultures
Fig 4. Phylogenetic Tree showing the species and serogroup distribution of the isolates from the present study with previously reported Sri Lankan isolates and other species.
Fig. 5. Genome GrapeTree showing the core-genome relationship among 25 new and nine previously isolated *Leptospira* strains from Sri Lanka.
Fig 6. Geographical distribution of *Leptospira* species, serogroups and clonal groups.