Overexpression of HIF-2α in Protected Regions of Alzheimer’s disease Resilient Cases

Vivianne Mitri

California State Polytechnic University, Pomona, CA

ABSTRACT

Alzheimer’s disease (AD) Resilient individuals are characterized by having a degree of amyloid plaques at level with that of demented individuals, but a reduced amount of abnormal neurofibrillary protein “tangles” (NFTs). NFTs, also known to be upregulated under hypoxic conditions, become clinically relevant when involved in the stratum radiatum. In this paper, we show this region and more to have significant increases of hypoxic adaptive protein, HIF-2α, within AD resilient cases. Pericyte staining was present in the stratum lacunosum and radiatum of all cases affected by AD pathology (n = 4) but in AD resilient cases were increased by 12-fold (n=3) p<.0001. No staining was detected in normal cases (n=2). HIF-2α was also only present in hippocampal neuronal nuclei of AD resilient cases, including the dentate gyrus and CA1. Cytoplasmic staining of pyramidal neurons within the subiculum was seen in all cases affected by AD pathology. The intensity of HIF-2α appears to be specific to known regions of protection in AD resilience and to increase on a gradient that corresponds to protection against dementia. These results also highlight the stratum lacunosum and radiatum as regions critically impacted by hypoxic insult among AD cases.

Significance

HIF-2α directly regulates expression of erythropoietin (EPO), a neuroprotective glycoprotein that in brain pericytes is completely dependent upon activation of HIF-2α. To date, only indirect evidence exists that shows that brain pericyte-derived EPO can reach the bloodstream via HIF-2α expression (Urrutia et al, 2016). In this study, we provide novel preliminary findings that directly show HIF-2α expression in pericytes of human brains. Additionally, its localization is specific to the CA1 of the hippocampus, a region critical for hypoxic adaptation and the progression of Alzheimer’s disease. Finally, we present evidence of neuronal expression of HIF-2α in other critical regions of protection within AD resilient cases.
Introduction

In clinical trials, patients diagnosed with “Alzheimer’s disease (AD)” typically exhibit dementia and brain histopathology consisting of amyloid “plaques” and neurofibrillary protein “tangles” (NFTs). However, non-demented control subjects may exhibit the same degree of histopathology, which is with the same degree of amyloid plaques but around half the amount of NFTs. The latter AD resilient patients, collectively referred to here as Non-Demented with Alzheimer’s (NDAN), deserve a more detailed investigation.

Increasing evidence suggests that hypoxia facilitates the pathogenesis of AD by increasing the hyperphosphorylation of tau and promoting the degeneration of neurons and impairing the normal functions of the blood-brain barrier (Morris, et. al 2011). Under normoxic conditions, tau is enriched in axons where it stabilizes and binds to microtubules. In AD and exposure to hypoxia, the hyperphosphorylation of tau at several serine and threonine residues reduces its ability to bind to microtubules (Morris et. al 2011). The result of this hyperphosphorylation includes destabilized microtubules and accumulation of NFTs (Schettini, 2010; Tala, 2014). This accumulation induces impaired cell division, shape changes, motility, and cell differentiation such as the formation of neuronal outgrowths. For such reasons, these features have been long regarded as the main captains in AD.

As a result of such findings, the role of hypoxia in AD is of increasing interest. However, oxygen deprivation and its relationship to NDAN has not been sufficiently investigated. Considering that NDAN individuals do not demonstrate the cognitive deficits associated with hypoxia/Alzheimer’s, it is laudable that they have managed an appropriate cellular response to hypoxic damage. This response may be responsible for reducing the NFTs in NDAN brains despite the increase in Aβ. In this paper, we show that NDAN individuals demonstrate a region-specific increase in HIF-2α, a hypoxia sensitive protein with neuroprotective factors. A further understanding of NDAN etiology guided by hypoxic adaptive mechanisms could help narrow the crucial determinants for permitting preserved cognition despite elevated levels of AD pathology.
Materials and Methods

Paraffin-embedded human subjects of hippocampal tissue were obtained from the Sun Health Banner Research Institute in Arizona, CA. Sections were cut from 10% formalin-fixed cryoprotected tissue slabs. IHC staining and whole slide scanning were performed by NDB Bio, LLC (Baltimore, MD USA, www.ndbbio.com). A positive control for HIF-2α was confirmed using human kidney tissue, and a negative control using a section of one of the 6 human subjects (no primary antibody) was run. FFPE sections were deparaffinized and hydrated and heat-induced antigen retrieval was performed using citrate EDTA buffer. Primary Antibody used: HIF2 (Novus, cat# NB100-122SS) (dil 1:500). The reaction was developed using a biotin-free detection system and visualized using DAB. Slides were counterstained with Gill's II hematoxylin, then dehydrated and cover slipped. All original microscope images were taken using whole slide scanning information: 20x objective (Olympus Plan N NA 0.40). File format: "SVS". Image J version 2.0-rc-69/1.52 p was used to analyze and compare images.

Results

Cytoplasmic HIF-2α staining of the subiculum’s pyramidal neurons was seen only in cases affected by AD pathology, with NDAN having the strongest intensity of cytoplasmic staining, and also appearing to have the healthiest pyramidal cells in that region (Fig.1 a & c). Size of the pyramidal neurons in this region also varied according to the level of HIF-2α expression (Fig. 6). Most notable was that all subjects affected by AD pathology had HIF-2α positive pericyte staining in the stratum lacunosum and radiatum (Fig. 2) (n=4). In AD resilient cases (n=3), staining had a 12-fold more intensity than in AD subjects (n=1) (p < 0.05) P = 0.0381. Blood vessels were also much more disfigured in this region as compared to AD resilient and control cases (Fig.2). No positive blood vessel staining for HIF-2α was detectable in normal cases (n=2). Layer II in the entorhinal cortex was also preserved among AD resilient cases and had specific staining of HIF-2α as well (Fig. 5). Other regions of CA1 in NDAN had scattered positive nuclei surrounding blood vessels but were not as uniform or intense as was staining in the stratum lacunosum (data not shown).
Fig. 1. a-c: Human AD rehrent coronal section of subiculum taken at 20x obj, with Hematoxylin stain and HIF-2α IHC cytoplasmic staining visible by brown reaction product. b: Human coronal section of subiculum also taken at 20x obj, with Hematoxylin stain and HIF-2α IHC but no visible reaction product. d: Human AD subiculum with Hematoxylin stain and HIF-2α IHC taken at 60x obj, and arrows pointing towards gaps where degeneration of pyramidal neurons has occurred.
Fig. 2a: Coronal section of human AD subject with HIF-2α staining and disfigured pericytes with scattered HIF-2α positive nuclei in stratum lacunosum and radiatum. Counterstained with Hematoxylin.

b: Human AD resilient subject with positive HIF-2α pericytes and counterstained with Hematoxylin.

c: Human control subject with lack of HIF-2α positive pericytes in stratum lacunosum and radiatum. Counter stained with Hematoxylin.
HIF-2α Nuclei Staining vs. Dentate Granule Cell size

Fig. 3. Graph depicts how dentate granule cell size varies among human subjects with AD pathology. AD resilient cases had HIF-2α positive nuclei whereas AD cases did not. n = 4. *P value (one tailed) < 0.0001

Pericyte Staining in Stratum Lacunosum Moleculare

Fig. 4. Graph shows varying levels of HIF-2α expression in the pericytes of stratum lacunosum among human AD resilient (NDAN), AD and control subjects with SEM. NDAN cases had an average 12 fold increase in HIF-2α expression in pericytes as compared to AD, whereas control cases had no detectable staining (p < 0.05).
Fig. 5a: Shows coronal section of human subject with HIF-2α positive layer II entorhinal cortex (EC) cells, also known to be protected in NDAN (AD resilient) cases. ImageJ Color Deconvoluter was used to separate DAB from Hematoxylin stain. b: shows coronal section of human subject with AD and no visible staining of HIF-2α. ImageJ Color Deconvoluter was used to separate DAB from Hematoxylin stain.
Area of Pyramidal Neurons in Subiculum vs. HIF-2α Expression

Fig. 6. Shows pyramidal neuron size difference among groups. Intensity of HIF-2α expression was localized to the cytoplasm of pyramidal neurons in the subiculum and level of intensity was confirmed by an objective neuropathologist. Staining was only seen in NDAN (AD resilient) and AD groups and intensity varied from “positive” to “weak/mild”. Only one case showed a strong “positive” result. There was no visible expression in control group.

<table>
<thead>
<tr>
<th>CaseID</th>
<th>expired_age</th>
<th>_nmse_test_sc</th>
<th>PHA</th>
<th>MCI</th>
<th>ApoE</th>
<th>Plaque/Total</th>
<th>Plaque Density</th>
<th>Tangle/Total</th>
<th>Braak Score</th>
<th>Neurological diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD 97-31</td>
<td>81</td>
<td>1.75 ne</td>
<td>3/4</td>
<td></td>
<td>13 frequent</td>
<td></td>
<td></td>
<td>15 VI</td>
<td></td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>Control 03-41</td>
<td>89</td>
<td>29</td>
<td>2.5 ne</td>
<td>3/4</td>
<td>5.25 moderate</td>
<td></td>
<td></td>
<td>1 II</td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Control 03-12</td>
<td>88</td>
<td>29</td>
<td>7 ne</td>
<td>3/4</td>
<td>0 zero</td>
<td></td>
<td></td>
<td>3 III</td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>NDAN 14-05</td>
<td>92</td>
<td>30</td>
<td>2.87 ne</td>
<td>3/3</td>
<td>9 frequent</td>
<td></td>
<td></td>
<td>6 IV</td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>NDAN 09-44</td>
<td>97</td>
<td>28</td>
<td>3.5 ne</td>
<td>3/3</td>
<td>12.5 frequent</td>
<td></td>
<td></td>
<td>5 IV</td>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>NDAN 11-102</td>
<td>93</td>
<td>28</td>
<td>2.01 ne</td>
<td>2/3</td>
<td>10 frequent</td>
<td></td>
<td></td>
<td>6 IV</td>
<td></td>
<td>Control</td>
</tr>
</tbody>
</table>

Table 1. Data Set Table on Cases studied with varying levels of Alzheimer’s pathology and Test Scores
Discussion

AD resilience is a phenomenon that is gaining attention in the research field as one that is more intricate than just “preclinical” AD. In this study, we showed that the level of HIF-2α has region-specific increases only in AD affected human subjects and that the most commonplace for its strong expression is in the pericytes of the stratum lacunosum and radiatum. Based on our results, this area appears to be a losing battle in AD in terms of HIF-2α response when compared to AD resilient cases.

All regions affected by HIF-2α in this study are mostly known to be protected in NDAN but are also critical for the progression of tau hyperphosphorylation, such as the CA1/subiculum border, dentate gyrus and most notably, the stratum lacunosum and radiatum (Thal et al, 2000; Lace et al, 2009). Several other regions affected by HIF-2α did not have a uniform level of expression. For example, some NDAN cases showed neurons with positive nuclei staining in CA1 while the other two NDAN cases had more cytoplasmic staining in that region. That being said, only NDAN cases had positive hippocampal neurons that stained for HIF-2α, and the finding that layer II cells of EC were both preserved and HIF-2α positive may help explain why NDAN cases have been reported to have the protection of layer II cells(Arnold, et al 2013). This has always been a perplexing find, though with these results now made clearer, considering that layer II of the EC is significantly compromised in very early stages of AD pathology (Gomez-Isla T et al, 1996). These findings, namely the expression of HIF-2α in the nuclei CA1 neurons, also help shed light onto why the nuclei in this region have been reported to not only have unique protection but also significant hypertrophy in NDAN cases as compared to both AD and control subjects (Iacono et al, 2009).

Among all three groups, cytoplasmic staining of the pyramidal neurons in the subiculum was only seen in those affected by AD pathology. The size of those cells, namely their dendritic length, appeared to increase in length with HIF-2α cytoplasmic intensity. More studies done with antibodies specific to neurons and dendritic analysis would help us to objectively measure the
difference in dendrite length among groups and to compare results with varying levels of HIF-2α expression.

Conclusion

In this study, the most significant difference in HIF-2α expression was visible in the pericytes of all human subjects affected by AD pathology, with a 12-fold increase in expression of HIF-2α detected in AD resilient cases. Pericytes are known to serve as oxygen sensors in the brain and are responsible for secreting the protective factor and HIF-2α regulated hormone EPO in response to hypoxic insult (Ji, 2016). This study’s most clear finding is that the stratum lacunosum and radiatum appears to be the primary region of hypoxic insult in AD. In spite of the obvious limitations of our study, this is the first report of such significant levels of HIF-2α in brains of human subjects with AD pathology.

56. Oberlander, JG, Schlinger, BA, Clayton, NS, & Saldanha, CJ Neural Aromatization accelerates the acquisition of spatial memory via an influence on songbird hippocampus. Horm Behav. 2004; 45 250-258

67. Tsui AKY, Marsden PA, Mazer CD, et al. (2011) Priming of hypoxia-inducible factor by neuronal nitric oxide synthase is essential for adaptive responses to severe anemia.

