Changes in back pain scores after bariatric surgery in obese patients: A systematic review and meta-analysis

Froukje W. Koremans, MD1,2, Xiaolong Chen, MD2, Abhirup Das, PhD2,3,*, Ashish D. Diwan, PhD2,3

1Amsterdam UMC, Vrije Universiteit Amsterdam, Surgery, Amsterdam trauma surgery, De Boelelaan 1117, Amsterdam, Netherlands
2Spine Labs, St. George and Sutherland Clinical School, University of New South Wales, New South Wales, Sydney, Australia
3Spine Service, Department of Orthopaedic Surgery St. George Hospital Campus, New South Wales, Sydney, Australia

*Corresponding author: Abhirup Das, PhD
Level 3, WR Pitney Building, St. George & Sutherland Clinical School
The University of New South Wales, Kogarah, Sydney, NSW 2217
Phone: + 61 402077967
Fax number: +61 2 8566 7177
E-mail address: abhirupdas@unsw.edu.au

Acknowledgement: The authors would like to thank Dr Nancy Briggs (Stats Central, Mark Wainwright Analytical Centre, UNSW) for her help with developing the database search strategy and analysing the data.

Conflicts of Interest: The authors declare that they have no conflict of interest related to this work.

Funding: This work was supported by a Research Training Program scholarship and a University Postgraduate Award from the Australian Government and UNSW to XLC.

Running head: Changes in back pain after bariatric surgery
STRUCTURED ABSTRACT

Objective: To evaluate if back pain scores in morbidly obese patients change after bariatric surgery.

Summary Background Data: Obese patients often complain of low back pain (LBP), however the underlying mechanism is not fully understood. Recent research shows that, next to mechanical loading, the chronic low-grade inflammation that arises in obese patients is contributing to LBP due to intervertebral disc degeneration. Therefore, it is hypothesized that bariatric surgery will have an effect on the LBP in obese patients.

Methods: We searched four online databases for randomized controlled trials and observational studies. In obese patients, eligible for bariatric surgery, the changes in pre- and postoperative pain scores, assessed by Numeric Rating Pain Scale (NPS) or Visual Analogue Scale (VAS), were considered as primary outcomes. Effect size (ES) and their 95% confidence intervals (CI) were evaluated.

Results: Eight observational studies met the eligibility criteria. All studies showed a reduction of LBP following bariatric surgery, with a mean change of -2.9 points in NPS and of -3.8 cm in VAS. Among the patients undergoing bariatric surgery, based on a fixed effect estimated by pain assessment, the pain score decreased significantly in both groups; in NPS (ES -3.49, 95%CI [-3.86, -3.12]) and in VAS (ES -3.975, 95%CI [-4.45, -3.50]).

Conclusions: From this meta-analysis, the data of back pain improvement following bariatric surgery seems encouraging. Substantial weight loss following bariatric surgery might be associated with a reduction in back pain intensity.

Key words: Back pain; Bariatric surgery; Quality of life; Visual analogue score; Numeric Rating Pain Scale.
INTRODUCTION

Obesity is a growing health problem worldwide. The WHO reported that about 1.9 billion adults were overweight and 600 million adults were obese in 2016, the numbers which continue to rise over the years.\(^1\) Obesity is defined as an excessive or abnormal fat accumulation and is calculated by the body mass index (BMI). It is a complex and multifactorial condition, with a great risk for the patients’ health. A BMI above 25 mg/kg\(^2\) is defined as overweight and a BMI of 30 or more as obese. Obesity is associated with an increased risk for diabetes mellitus type 2, hypertension, cardiovascular diseases, cancer and musculoskeletal diseases, including low back pain (LBP).\(^2\)\(^-\)\(^4\) Among the obese patients the prevalence of LBP ranges from 22% to 68.1%.\(^5\)\(^,\)\(^6\) According to the American Obesity Association (AOA) back pain is prevalent in nearly one-third of the classified obese Americans. Similar to obesity, LBP is a major pressing health problem worldwide.\(^7\) During their lifetime approximately 80% of the adults experience at least one episode of LBP.\(^8\) Patients with symptomatic LBP often report major disability and a decrease in quality of life. LBP imposes a high individual and social economic burden that is similar to or even greater than that of other major health problems, such as coronary heart or Alzheimer’s diseases.\(^9\)\(^-\)\(^11\)

An important cause of LBP is intervertebral disc degeneration (IDD). IDD has traditionally been considered as an age-related process of decreasing proteoglycan content.\(^9\)\(^,\)\(^10\)\(^,\)\(^12\) However, recent studies suggest additional contributing factors, such as genetic factors, injuries and smoking, that can expedite IDD.\(^9\)\(^,\)\(^10\)\(^,\)\(^13\)\(^,\)\(^14\) Another major contributing factor is obesity.\(^15\)\(^-\)\(^18\) A large MRI study showed an intricate relationship between obesity and disc degeneration.\(^16\) Similar studies showed that a greater fat mass is associated with increased back pain and reduced disc height.\(^17\)\(^,\)\(^18\) Interestingly, obesity was previously thought to be a mechanical risk factor for causing back pain, but recent evidence suggests that the inflammatory factors of obesity also contribute to LBP in patients.\(^19\)\(^-\)\(^22\) In the last two decennia it has become more
evident that many of the comorbidities that arise in obese patients involve a chronic low-grade inflammation. Adipose tissue is recognized as an active endocrine organ, secreting cytokine-like hormones. It is hypothesized that these biochemical factor(s) in obese patients act as mediators for IDD too and this might explain the negative effect of obesity on the homeostasis of the intervertebral discs.23-25

The current management of symptomatic IDD is conservative or surgical. Conservative interventions are preferred, but surgical procedures will be chosen for patients who are nonresponsive to conservative interventions or had a progressive neurological impairment or both. Spinal surgery is highly invasive with a great risk of relapse, loss of mechanical properties and degeneration of adjacent segments. On top that, there is no guarantee of resolution of symptoms after surgery.26 Beside this, obese patients have a greater pre- and postoperative risks. The complication rate for obese patients is estimated to be 2.5 times greater, mostly due to a longer required surgical time.27-29 A positive correlation has been observed between obesity rate and complication rates.30 Furthermore, obese patients have a ten-time greater risk for wound complications postoperatively. Considering all of the above, spine surgeons often recommend morbidly obese patients to lose weight prior to elective spine surgery. The majority of those patients eventually seek specialized medical help for weight reduction, which often results in bariatric surgery. Normally, one year after bariatric surgery patients show a total weight loss around 18-30%, depending on the bariatric procedure.31 Besides weight reduction, bariatric surgery decreases inflammatory responses and reduces the obesity-associated comorbidities, such as diabetes mellitus type II and the patients increased cardiovascular risk.32, 33 Because chronic low-grade inflammation in obese patients contribute to the IDD and LBP, we were wondering if bariatric surgery might also have an influence on the back pain of obese patients. Secondly, we were wondering whether bariatric surgery should be considered prior to spinal
surgery in obese patients with non-specific back pain. This meta-analysis aimed to address if back pain scores in morbidly obese patients change after bariatric surgery.

METHODS

Search strategies

The literature was searched in accordance with preferred reporting information for systematic reviews and meta-analyses (PRISMA) guidelines. In November to December 2019 the online databases EMBASE, MEDLINE, PubMed and Cochrane Central Register of Controlled Trials were searched to identify all relevant studies published in English between 1966 and December 2019. The search included the following terms: “bariatrics”, “obesity” “‘gastric bypass’, ‘gastric sleeve’, ‘Roux-en-Y’, ‘RYGB’, ‘sleeve gastrectomy’ and ‘adjustable gastric band’ and ‘back pain’, with appropriate combinations of operators “AND”, “OR”, and “NOT” as described in the Supplemental Digital Content 1. Additional references were assessed using the reference lists of relevant studies. The review protocols are registered on PROSPERO (International Prospective Register of Systematic Reviews number, registration number: pending).

Inclusion criteria

The included studies were:

1. Randomized controlled trials (RCT) and observational studies.
2. Enrolled adult obese patients with a BMI > 40 kg/m², or a BMI ≥ 35kg/m² with comorbidities, undergoing primary bariatric surgery.
3. Assessed the pain intensity change of the low back with Numeric Rating Pain Scale (NPS) or Visual Analogue Scale (VAS) before and after bariatric surgery.
4. Conducted a follow-up of at least 3 months.
Exclusion criteria

Meta-analysis, systematic review, editorials, in vitro biomechanical studies and studies looking into LBP caused by pathological entities were excluded.

Types of outcomes measures

The following outcomes measures were assessed in this review:

Primary outcome: The change in pain intensity score of the LBP, before and after bariatric surgery, measured in VAS or NPS.

Secondary outcomes: Radiology (disc space height), back-specific disability questionnaires (Rolland-Morris score, Oswestry Disability Index (ODI) and Waddell Disability Index and pain pressure threshold (PPT).

Selection of studies

Two reviewers (FWK and XLC) screened the titles and abstracts following the inclusion and exclusion criteria. Of all the potential eligible studies the full text was reviewed. All the remaining potential eligible studies were discussed with a third researcher (AD). Disagreements were resolved by consensus. If no consensus was reached the collective advise of our research team was the overriding factor.

Data collection

Each article was independently abstracted by one reviewer. An overview of the study characteristics was systematically provided. The included data were preoperative and postoperative pain intensity scores, study and patients’ characteristics, type of intervention, pre- and postoperative BMI, follow-up time and the secondary outcomes.
Risk bias assessment

All the included articles were independently assessed for risk of bias using the Oxford Centre for Evidence-Based Medicine tools (CEBM).\(^{35}\) Using the CEBM-tool a level was allocated to each of the eligible studies. Depending on study characteristics this level could range from 1 to 5.

To assess the methodological quality of the included observational studies the Newcastle-Ottawa Scale (NOS) was used.\(^{36}\) The NOS-tool judges an article on three domains: (1) selection of the group, (2) comparability and (3) assessment of the outcomes. The score of a study can range from 0-9, where a study with score of 7 or higher will be categorized as low risk. The assessments were discussed with a second researcher, disagreements were resolved by the third reviewer (AD).

Data synthesis and analysis

We performed two meta-analyses (with and without a fixed effect estimate) to examine the changes in back pain score following bariatric surgery. In this meta-analysis the outcomes were sorted by NPS and VAS scores.

Mean differences and standard errors were calculated to compensate for the great amount of prospective studies without control groups. The mean differences were calculated by subtracting the mean postoperative pain intensity score from the mean pre-operative pain intensity score. Since there is a decrease, the changes were made negative. The standard errors were generated by dividing the standard deviations by the square root of the study population. For the standard deviation the following equation was used:

\[
\sqrt{(\text{SD}_{\text{preop}}^2 + \text{SD}_{\text{postop}}^2) - (2 \times 0.6 \times \text{SD}_{\text{preop}} \times \text{SD}_{\text{postop}})}
\]

For this meta-analysis STATA software (Release 16, StataCorp LLC, TX) was used for the statistical analyses. Chi-squared \((I^2)\) statistic was used to measure heterogeneity among the
trials. $I^2 < 50\%$ implied homogeneity and the analysis included a random-effects model by the DerSimonian-Laird method. $I^2 > 50\%$ indicated heterogeneity and, consequently, a fixed-effects model was used according to the Mantel-Haenszel method. We conducted subgroup analysis and sensitivity analysis to assess the impact of heterogeneity. Mean difference and 95\% confidence intervals (CI) were reported. A forest plot was used to calculate the effect size (ES). Publication bias was assessed by funnel plot symmetry using the Begg–Mazumdar test. The statistical significance was set at 5\% ($\alpha = 0.05$).

Finally, to calculate the association of mean pain change with BMI change, we included BMI change as a predictor in an meta regression. For this meta-regression proportion of between-study variance was explained with Knapp-Hartung modification.

Quality assessment

The Grading of Recommendations Assessment, Development and Evaluation (GRADE)-system was used to evaluate the levels of evidence, the quality of assessment and the results from data extraction.\(^{37}\) The quality was rated as “very low”, “low”, “moderate” or “high” (Supplemental Digital Content 2).

RESULTS

The literature search is illustrated in the PRISMA flow diagram (Fig. 1). A total of eight studies that assessed the effect of bariatric surgery on the intensity of back pain in obese patients, measured in NPS or VAS, were included.

Study characteristics

Among a total of 318 patients in the eligible studies, the median of the mean age was 44.1 years, of which 76.4\% were female. Sample sizes ranged from 20 to 72 patients and follow-up times from 3 months to 2 years.
All the eight studies were observational studies, including 3 cohort studies38-40 and 5 case series.41-45 One progressive study recruited a non-randomized control group,40 and seven had no control groups. The bariatric interventions in these studies included Roux-en-Y gastric bypass, sleeve gastrectomy, gastric banding and duodenal switch. Most surgical interventions were performed laparoscopically, some open. Two studies recruited patients with a history of pre-existing back pain,39,45 and six recruited patients with or without back pain.38,40-44 The study characteristics of all included studies are presented in Table 1.

Risk of bias

According the CEBM-tool all studies were classified as a level 3 study. The results of the bias assessment are shown in Table 1. The methodological quality of the cohort studies was further assessed using the NOS-tools in Table 2. According the NOS only one cohort study was categorized as low risk, with a score of 7, while the other seven observational studies were raided with scores less than seven.

Outcomes for Back Pain Intensity

All the studies show a favourable improvement of back pain intensity scores, NPS and VAS, after bariatric surgery. Three uncontrolled studies, without pre-existing back pain in their inclusion criteria, showed that back pain was prevalent in 40 to 86.7\% of the patients.38,42,44 Four studies38,41,44,45 showed that the pain intensity scores were reduced by 70\% and the other four studies39,40,42,43 around 50\%. Individual results are presented in Table 1. A funnel plot of the results of these 7 trials appeared to be asymmetrical (see Supplemental Digital Content 3 _Figure 1, no publication bias).

Random effect model by Test
Four studies measured pain intensity using NPS38, 40, 42, 43 Among all patients (with or without back pain), the mean back pain intensity score was 2.9 points lower after bariatric surgery compared to before. In our meta-analysis the change in NPS-score after bariatric surgery showed a significant change (ES -2.96, 95%CI [-4.78, -1.15], p=0.000) (Fig. 2).

Four studies measured pain intensity using VAS39, 41, 44 however one study45 divided the VAS scale in 3 groups: (1) immediately, (2) at its worst, (3) at its best pattern. Therefore, this study was not included in the meta-analysis. Among all patients (with or without back pain) in the three studies, back pain intensity was 3.8 cm lower postoperatively compared to preoperatively.

In our meta-analysis the change in VAS-score after bariatric surgery showed a significant change (ES -3.81, 95%CI [-5.24, -2.38], p=0.000) (Fig. 2).

Subgroup analysis and sensitivity analysis

As there was significant heterogeneity ($I^2 = 95.1\%$) of NPS, we obtained subgroup analysis based on publication date, number of patients and follow-up period. It showed no effect on the heterogeneity. A sensitivity analysis of the results showed the heterogeneity was caused by Bhandari et al.38 A re-analysis of the NPS data, resulted in a new forest plot, $I^2 = 9.2\%$ (Supplemental Digital Content 3_Figure 2 to Supplemental Digital Content 3_Figure 5).

Random effect model (fixed effect estimate)

As there was significant heterogeneity, but a small included study amount, we obtained the fixed effect estimate for the aggregated mean. Both methods showed significant decreases in pain score.

In our meta-analysis using the fixed estimate, the changes in NPS-score and VAS-score after bariatric surgery showed a significant change (NPS: (ES -3.49, 95%CI [-3.86, -3.12], p=0.001), VAS: (ES -3.98, 95%CI [-4.45, -3.50], p=0.000)) (Fig. 3).
Pain intensity score changes compared with a non-surgical control group

One controlled prospective study of 45 morbidly obese patients wanted to examine if patients (n = 25) undergoing laparoscopic Roux-en-Y gastric bypass or laparoscopic adjustable gastric banding demonstrated changes in joint pain, gait, mobility and quality of life after 3 months compared with a nonsurgical group (n = 20). The researchers found a 16.8% BMI change in the bariatric group, no changes in the control group. The NPS score within the surgery group decreased significantly with 54%, with no change within the control group. The NPS change between the surgical and control group was significant as well. Furthermore, gait parameters, walking speed and quality of life significantly improved by 3 months after bariatric surgery.

The association of mean pain change with BMI change

In a total of 318 patients the mean initial BMI was 47.4 kg/m² and the reduction in BMI ranged from 16.8% to 30.5%. As shown in Table 1, four studies calculated the correlation between BMI changes and pain intensity improvement. In this meta-analysis to evaluate the association of mean pain change with BMI change, BMI change was included as predictor in a meta-regression. BMI change was available for 5 of the 8 studies. In our meta-analysis no significant relationship between BMI change and decrease in pain score could be established (r = 0.034, 95%CI [-0.52, 0.589], p = 0.19). The results are shown in Figure 4.

Other back pain outcomes

Five of the eight studies investigated other outcomes for back pain: (a) Rolland-Morris disability questionnaire (RMD), (b) ODI, (c) Waddell disability index, (d) Intervertebral disc space height, and (e) PPT. Most of these measures showed favourable improvement in back pain.
The RMD was examined by two uncontrolled prospective studies. Melissas et al. examined 29 obese patients with back pain symptoms undergoing vertical banded gastroplasty with a follow-up of 2 years, to quantify the disability caused by back pain in obese patients and to examine the improvements from weight loss after surgery. The Rolland-Morris score decreased from 7.9 to 2.0 (p<0.001) postoperatively. Researchers found that after 2-years of follow-up, 34% (n = 10) continued to have back pain symptoms. Bhandari et al. examined 45 nonambulatory patients with functional disabilities (walker-dependent, wheelchair-bound, or bedridden) undergoing bariatric surgery to assess functional ability and to determine correlation between BMI, sex, age, comorbidities and functional abilities 12 months postoperatively. The RMD significantly improved after 12 months, with a p = 0.001.

The ODI was assessed by two uncontrolled studies. Melissas et al. showed a decrease in ODI from 21.2 to 5.6 postoperatively (p<0.001). Khouier et al. examined 58 morbidly obese patients with axial back pain (with a history of ≥ 2 years) undergoing bariatric surgery to examine clinically reported changes in axial low back pain symptoms 12 months after surgery. The ODI significantly decreased by 24%, scores changed from 26.8 to 20.4 (p = 0.05). The Waddell Disability Index was examined by Melissas et al., it decreased significantly from 2.8 to 0.6 postoperatively (p<0.001).

The intervertebral disc space height was examined by Lidar et al. in 30 morbidly obese patients undergoing bariatric surgery to determine the effect on axial and radicular pain, intervertebral disc space height, and quality of life one year after surgery. The disc space height were assessed from abdominal CT-scans. One year postoperatively the L4-L5 disc space height on CT-scans improved from 6 mm to 8 mm (p<0.001).

The PPT was measured by Gallart-Aragón et al. in 72 morbidly obese patients undergoing sleeve gastroplasty to investigate the quality of life and pain. No significant changes were seen in PPTs after SG.
DISCUSSION

In this meta-analysis, a total of 318 patients that underwent bariatric surgery for the treatment of obesity have been included. The back pain scores were assessed before surgery and during follow-up. All eight included studies reported a reduction of back pain problems following bariatric surgery. Furthermore, substantial weight loss and/or BMI reduction was reported as well. Our meta-analysis showed a significant decrease in pain scores over the eligible studies. However, the heterogeneity in the random effect model by test was significant, 95.1% and 88.7%, indicating that the statistical validity of the summary estimate of effect is affected.

As there was high heterogeneity, subgroup and sensitivity analyses were performed. The sensitivity analyses showed an impact on the heterogeneity by Bhandari and Khoueir et al. The different results across the sensitivity analyses, indicate that the result may need to be interpreted with caution. Statistical heterogeneity can be a consequence of clinical or methodological diversity. Clinical diversity is present in every study and is hard to avoid. Among our studies the different surgical weight loss procedures that were used, the diversity in the participants and the diversity in outcomes of the studies were all of influence. The methodological diversity was explained by pain assessment. Pain is a highly subjective measurement experienced individually different by patients. Also, pain assessment differs over time; the score strongly depends on the moment and method of assessment. For example: “the score of the pain now”, or “the highest score experienced in that month” or “that week”, or “the score they experienced during exercise”, are all different. This makes pain difficult to objectively assess and could explain why we see a difference in effect size between the different studies. This methodological diversity could suggests that the studies are not all estimating the same pain intensity, but does not necessarily suggest that the true intervention effect varies.

Therefore, we run a random effect model with fixed effect estimate, this showed a significant decrease in pain scores, with a p<0.05 in both NPS and VAS scores.
When heterogeneity is solely associated with methodological diversity, it indicates that the studies suffer from different degrees of bias. All included studies were prospective cohort studies, because no randomized controlled trials have been published. According to the NOS-tool, seven of the eight studies were at high risk for bias. Furthermore, according to the GRADE-approach, all the included cohorts were defined as very low-quality evidence. However, due to the large magnitude of the effect size, more than 2, the quality was upgraded to low quality (Table 3).

Although one can challenge the validity of these outcomes, reduction of back pain outcomes after surgical weight loss interventions have also been reported by other systematic reviews. A systematic review by Vincent et al. looked into back and knee pain improvement after bariatric surgery.\(^47\) It showed significant reduction of back pain symptoms ranging from 10 - 54\%, 1 to 4 years after surgery. Similarly, Joaquim et al. showed a significant reduction in back pain symptoms in 10 eligible studies.\(^48\) Because of the limited number of articles on this subject, there is an overlap between included studies in our meta-analysis. One of the differences with our meta-analysis is that both systematic reviews used multiple back pain assessments as a back pain improvement outcome. To be able to compare the outcomes, we only included NPS and VAS as a primary outcome. Moreover, research has shown that NPS tool is the best tool for neuropathic LBP pain.\(^49\) To our knowledge this meta-analysis was the first to only take NPS and VAS as an outcome. Next to NPS and VAS, five of the included studies looked into the secondary outcomes and showed favourable results after bariatric surgery. Unfortunately, this data was not sufficient for a meta-analysis. More research is needed to measure back pain relieve more holistically.

Furthermore, as mentioned before a moderate difference in base-line pain scores has been observed. The inclusion criteria among the studies were mostly overlapping, but there was a difference regarding back pain history. Six studies, out of eight, included patients with and
without back pain. We observed a higher pain score, if the prevalence of back pain was higher. Unfortunately, three of the six studies failed to report the prevalence of back pain in their study-group, resulting in over- or underestimation of the estimated effect size. The two remaining studies only included obese patients eligible for bariatric surgery with a history of back pain. Both studies did not have a threshold for the pain intensity score for patient inclusion, making overestimation of effect less likely and thus enhancing the value for our analysis. Despite the demonstrated significant pain reduction, the clinical relevance of this reduction remains disputable. Back pain is known to improve in two-third of patients without any interventions.\(^50\) This makes it difficult to distinguish between reduction of back pain intensity as a result of bariatric surgery or as a result of the natural history of back pain.

Another point of discussion would be the relatively short follow-up period of 3 to 24 months. However, despite this short period, even after 3 months the studies showed a significant decrease in back pain intensity. Studies in obese patients with knee problems have shown similar results. Three months after bariatric surgery, an improvement in knee pain was observed. One of those studies even showed a widening of the knee joint space after 3 months.\(^51\) The underlying mechanisms of the joint pain improvement are still not completely understood. This early improvement in the back and knee joint, could be an indication for two mechanisms happening: a chronic low-grade inflammation in obese patients and a mechanical compression of the joint. In animal and human models more evidence of a biochemical link between obesity and inflammatory reactions in the joints has been observed.\(^22\) Another study showed a reduction of inflammatory cytokine levels of interleukin-6 and tumor necrosis factor-\(\alpha\) 6 months after weight loss surgery.\(^32\) However, this study cannot discern between biochemical changes and more research is needed to understand the underlying mechanisms.

Several studies showed a positive association between body weight loss and back pain,\(^6, 52, 53\) however other studies did not show this association.\(^39, 44, 54\) Cakir et al. showed a significant
correlation between pre- and postoperative BMI and rigidity of back pain, with $r = 0.98$ preoperatively and $r = 0.24$ postoperatively.41 Bhandari \textit{et al.} similarly showed a significant correlation of enhancement of specific functional ability scores and change in BMI, with NPS preoperatively $r = -0.29$ ($p = 0.004$) and $r = 0.40$ ($p = 0.002$) postoperatively.38 Although Koueir \textit{et al.} and Lidar \textit{et al.} found an increasing trend, no significant correlation was established between decrease in BMI and improvement in back pain.39, 44 Although not all data in BMI change was available for meta-regression, a meta-regression of five studies showed no significant correlation between BMI change and back pain score changes.

\textit{Limitations}

There are several limitations to this study that should be considered. Firstly, this meta-analysis only included prospective observational studies without control groups. The analysis resulted in too much heterogeneity between the pooled studies. A fix effect model showed a significant reduction. However, with the low-quality of the results a definite conclusion cannot be drawn until more studies become available. Next to that, it would have been interesting to compare surgical groups to nonsurgical groups. Only one prospective study included a nonrandomized control group. This nonsurgical group in Vincent \textit{et al.}, did not receive the same clinical advice or guidance as the surgical group, making exclusion of other contributing factors more difficult. Secondly, the mean follow-up of the studies was short. No conclusion about long-term effects and the durability of the back pain problems can be made. Thirdly, the history of the patients back pain problems is unknown in most studies. Three of the studies failed to report the prevalence of pre-existing back pain. For most of the studies back pain was not an inclusion criterium and the moment of assessment of back pain in most studies is undescribed. Also, not all included studies reported the loss in patients follow up.
Lastly, as spine surgery, bariatric surgery is highly invasive. It can result in serious complications, such as anastomotic leaks, bleedings, venous thromboembolic - and ischemic events.55 Next to that, long term complications as the dumping syndrome, symptomatic cholelithiasis and malnutrition are relevant.55, 56 However, despite the risks, surgical interventions give a better outcome in substantial weight reduction and long term effects and research shows an improved quality of life after bariatric surgery.57, 58 Still considering the limitations, more research is needed to establish if bariatric surgery should be considered prior to spinal surgery in morbidly obese patients with solely back pain.

CONCLUSION

From this meta-analysis, the data of back pain improvement following bariatric surgery are encouraging. Substantial weight loss following bariatric surgery might be associated with a reduction in back pain intensity. However, considering the high heterogeneity the evidence is of low-quality. More research is needed to draw a correct weighted conclusion. Ideally a prospective study including spinal imaging, inflammatory markers, longer follow-up period, larger study groups with a randomized control group needs to be done. The relationship between weight loss and reduction in back pain is complex but remains scientifically unclear. To further understand how and why bariatric surgery could reduce the back pain problems of the obese patients, the mechanical and inflammatory effects of obesity on the spine should be better understood.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Nancy Briggs (Stats Central, Mark Wainwright Analytical Centre, UNSW) for her help with developing the database search strategy and analysing the data.
REFERENCES

Table 1: Demographics and results of included studies.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Results</th>
<th>Level of evidence (CEBM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. NPS</td>
<td>Back pain was prevalent in 40% of the bariatric patients, with a mean NPS of 3.95 ± 3.73 preoperatively. One month postoperatively no significant decrease in LBP was observed (mean NPS of 3.12 ± 3.43 points). However, after a follow-up of 6 months a significant difference was observed (mean 1.97 ± 2.95; P= 0.002).</td>
<td>3</td>
</tr>
<tr>
<td>II. PPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Gastrointestinal Quality of life index (GQLD) questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. NPS (0-10)</td>
<td>The severity of LBP in the surgery group decreased with 54%, with no change in the control group. In the surgical group, the mean NPS score decreased significantly after 3 months, changing from 5.5 ± 4.0 to 2.5 ± 3.7 points (p=0.021). No significant change in NPS-score in the control group</td>
<td>3</td>
</tr>
<tr>
<td>II. Mobility related surveys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. SF-36</td>
<td>A significant decrease of the mean NPS-score after 3 months was observed, from 3.5 ± 1.8 to 1.7±2.63 point (p=0.01).</td>
<td>3</td>
</tr>
<tr>
<td>IV. Gait analysis and walking speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. NPS (0-10)</td>
<td>Back pain was prevalent in 73.5% of the patients. In 26.5% of the patients, there was a 100% resolution of LBP postoperatively. A significant decrease in the mean NPS-score after 12 months was observed, from 7.3 ± 1.4 to 2.3 ± 1.4 points (p=0.001). Also, a significant correlation between BMI change and NPS was seen; preoperatively r=-.29 (p=0.004) and postoperatively r=.40 (p=0.002). At 1 year most patients improved in their disability, 82.2% of the patients were ambulating independently, 15.5% improved from the wheelchair-bound or bedridden groups to the walker-independent group. Only 2.2% remained bedridden.</td>
<td>3</td>
</tr>
<tr>
<td>II. 7-d PAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Pedometer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. 6-MWT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V. The Short Physical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI. SF-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. VAS (0-100)</td>
<td>The mean VAS-score decreased significantly 6 months after surgery, from 6.67 ± 2.68 cm to 1.97 ± 2.17 cm (p=<0.001). Furthermore, a significant correlation between BMI and pain parameters was observed, with r=0.98 preoperatively and r=0.24 postoperative.</td>
<td>3</td>
</tr>
<tr>
<td>II. VAS (0-10)</td>
<td>All patients had a LBP history of >2years. The axial back pain VAS scores were statistically significant reduced by 44%, 1-year after surgery. The LBP of the patients, improved in 18%, remained the same in 13% and deteriorated in their VAS-score in 18.4%. A significant decrease in the mean VAS-score after 12 months was observed, from 5.2 ± 3.35 to 2.9 ± 3.1 cm (p=0.006). Furthermore, no statistically significant correlation, between the change in BMI and the change in the mean VAS-score (r=0.10).</td>
<td>3</td>
</tr>
<tr>
<td>III. ODI (0-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. The SF-36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. VAS (0-10)</td>
<td>Back pain was prevalent in 86% of the bariatric patients. The VAS of axial back pain and radicular leg pain decreased significantly after 12 months, from 5.70 ± 3.12 to 1.33 ± 2.13 cm (p=0.001), and 3.46 ± 3.78 to 0.46 ± 1.10 cm (p<0.001). No significant correlation was established between decrease in BMI and improvement in back pain (r=0.231; p=0.22).</td>
<td>3</td>
</tr>
<tr>
<td>II. L4-L5 disc space height</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. SF-36 & MA score questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. VAS (VAS1/VAS2/VAS3)</td>
<td>All patients had pre-existing LBP. The three VAS groups decreased statistically significantly after 24 months, with VAS1 (immediately) from 1.59 ± 2.86 to 0.32 ± 0.64 cm (p=0.001), VAS2 (at its worst) with 5.5 ± 1.97 to 2.14 ± 1.88 cm (p=0.001) and VAS3 (at its best pattern) with 0.77±1.11 to 0.09±0.29 cm, p=0.006. Researchers found that after 2-years of follow-up, 34% (n=10) continued to have back pain symptoms.</td>
<td>3</td>
</tr>
<tr>
<td>II. Roland-Morris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Oswestry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Waddell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study design</td>
<td>Surgical procedure</td>
<td>Number of patients (Female/male)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Case series</td>
<td>SG</td>
<td>72 (47/25)</td>
</tr>
<tr>
<td>Prospective cohort</td>
<td>LRYGB or LAGB or No bariatric surgery</td>
<td>25 surgery (20/5) or 20 controls (17/3)</td>
</tr>
<tr>
<td>Case series</td>
<td>LRYGB</td>
<td>20 (18/2)</td>
</tr>
<tr>
<td>Prospective cohort</td>
<td>SG; One-anastomosis gastric bypass; LRYGB</td>
<td>45 (34/11)</td>
</tr>
<tr>
<td>Case series</td>
<td>SG</td>
<td>39 (39/0)</td>
</tr>
<tr>
<td>Prospective cohort</td>
<td>RYGB; DS; SG</td>
<td>38 (30/8)</td>
</tr>
<tr>
<td>Case series</td>
<td>LAGB; SG; LRYGB; VGB</td>
<td>30 (15/15)</td>
</tr>
<tr>
<td>Case series</td>
<td>VGB</td>
<td>29 (23/6)</td>
</tr>
</tbody>
</table>
Level of evidence according to the CEBM-tool: 5 = Randomized controlled trials of systematic reviews; 4 = supporting evidence using mixed method designs or small randomized controlled trials; 3 = qualitative or quantitative research, nonrandomized, controlled, cohort-based, cross-sectional, survey, or descriptive studies; 2 = expert opinion; 1 = evidence based on author opinion. NPS, Numeric Rating Pain Scale; VAS, Visual Analogue Scale; BMI, body mass index; LBP, low back pain; SF-36, short form 36; DS, duodenal switch gastric bypass; LAGB, laparoscopic adjustable gastric banding; LRYGB, Laparoscopic Roux-en-Y gastric bypass; RYGB, Roux-en-Y gastric bypass (open and laparoscopic); SG, sleeve gastroplasty; VBG, vertical banded gastroplasty
Table 2 Assessment of the methodological quality of the studies according to the Newcastle–Ottawa Scale (NOS).36

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Country</th>
<th>Surgical procedures</th>
<th>Selection (/4)</th>
<th>Comparability (/2)</th>
<th>Outcome (/3)</th>
<th>Total (/9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallart-Aragón</td>
<td>2018</td>
<td>Spain</td>
<td>SG</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Vincent</td>
<td>2012</td>
<td>USA</td>
<td>LRYGB or LAGB</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Josbeno</td>
<td>2010</td>
<td>USA</td>
<td>LRYGB</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Bhandari</td>
<td>2019</td>
<td>India</td>
<td>SG or one-anastomosis gastric bypass or</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>LRYGB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çakır</td>
<td>2015</td>
<td>Turkey</td>
<td>SG</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Khoueir</td>
<td>2009</td>
<td>USA</td>
<td>RYGB or DS or SG</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Lidar</td>
<td>2012</td>
<td>Israel</td>
<td>LAGB or SG or LRYGB or DS</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Melissas</td>
<td>2005</td>
<td>Greece</td>
<td>VBG</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

A study awarded seven or more stars was regarded as a high-quality study.

BMI, body mass index; DS, duodenal switch gastric bypass; LAGB, laparoscopic adjustable gastric banding; LRYGB, Laparoscopic Roux-en-Y gastric bypass; RYGB, Roux-en-Y gastric bypass (open and laparoscopic); SG, sleeve gastroplasty; VBG, vertical banded gastroplasty
Table 3 GRADE level of quality assessment

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Test</th>
<th>Pairwise comparison</th>
<th>Risk of bias</th>
<th>Statistical model</th>
<th>Test of homogeneity</th>
<th>Publication bias</th>
<th>Level of quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ES</td>
<td>95% CI</td>
<td>P</td>
<td>I² (%)</td>
</tr>
<tr>
<td>NPS-score change</td>
<td>Random effect model Test: VL 2,3,5</td>
<td>Preop mean NPS vs postop mean NPS</td>
<td>High²</td>
<td>-2.96</td>
<td>-4.78, -1.15</td>
<td>0.00</td>
<td>93.1</td>
</tr>
<tr>
<td></td>
<td>Subgroup analysis: Number of patients</td>
<td>Pain score change by number of patients</td>
<td>High²</td>
<td>-0.19</td>
<td>0.20</td>
<td>0.990</td>
<td>96.7%</td>
</tr>
<tr>
<td></td>
<td>Subgroup analysis: Follow-up</td>
<td>Pain score change by follow-up period</td>
<td>High²</td>
<td>-0.24</td>
<td>0.86</td>
<td>0.136</td>
<td>76.2%</td>
</tr>
<tr>
<td></td>
<td>Subgroup analysis: Publication year</td>
<td>Pain score change by publication year</td>
<td>High²</td>
<td>-0.68</td>
<td>1.06</td>
<td>0.444</td>
<td>94.8%</td>
</tr>
<tr>
<td></td>
<td>Sensitivity analysis ¹</td>
<td>Auteurs (without Bhandari)</td>
<td>High²</td>
<td>-2.07</td>
<td>-2.59, -1.55</td>
<td>0.332</td>
<td>9.2%</td>
</tr>
<tr>
<td></td>
<td>Fixed effect estimate ¹</td>
<td>Preop mean NPS vs postop mean NPS</td>
<td>High²</td>
<td>-3.49</td>
<td>-3.86, -3.12</td>
<td>0.001</td>
<td>95.1%</td>
</tr>
<tr>
<td>VAS-score change</td>
<td>Random effect model Test: VL 2,3,5</td>
<td>Preop mean VAS vs postop mean VAS</td>
<td>High²</td>
<td>-3.81</td>
<td>-5.24, -2.38</td>
<td>0.000</td>
<td>88.7%</td>
</tr>
<tr>
<td></td>
<td>Subgroup analysis: Number of patients</td>
<td>Pain score change by number of patients</td>
<td>High²</td>
<td>-3.14</td>
<td>3.29</td>
<td>0.818</td>
<td>94.2%</td>
</tr>
<tr>
<td></td>
<td>Subgroup analysis: Follow-up</td>
<td>Pain score change by follow-up period</td>
<td>High²</td>
<td>-3.52</td>
<td>3.97</td>
<td>0.582</td>
<td>90.0%</td>
</tr>
<tr>
<td></td>
<td>Subgroup analysis: Publication year</td>
<td>Pain score change by publication year</td>
<td>High²</td>
<td>-2.46</td>
<td>1.68</td>
<td>0.251</td>
<td>60.8%</td>
</tr>
<tr>
<td></td>
<td>Sensitivity analysis ¹</td>
<td>Auteurs (without Khouier)</td>
<td>High²</td>
<td>-4.58</td>
<td>-5.13, -4.03</td>
<td>0.569</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>Fixed effect estimate ¹</td>
<td>Preop mean VAS vs postop mean VAS</td>
<td>High²</td>
<td>-3.98</td>
<td>-4.45, -3.50</td>
<td>0.000</td>
<td>88.7%</td>
</tr>
</tbody>
</table>

NPS, Numeric Rating Pain Scale; VAS, Visual Analogue Scale; CI, confidence intervals; ES, effect size;

a 95% CI including 1 means no statistical significance, while not including 1 means have statistical significance; b $P < 0.05$ indicated significance; c $I^2 > 50\%$ implied heterogeneity;

Quality of evidence: H high, M moderate, L low, VL very low;
1-rated down for imprecision, 2-rated down for risk of bias (no RCT), 3-rated down for inconsistency, 4-rated down for publication bias, 5-rated up for large magnitude of effect (Strong evidence of association—significant relative risk of > 2 (< 0.5) based on consistent evidence from two or more observational studies, with no plausible confounders (+1); Very strong evidence of association—significant relative risk of > 5 (< 0.2) based on direct evidence with no major threats to validity (+2)).
Figure legends

Fig. 1 Flow chart showing the selection of articles for back pain evaluation after bariatric surgery in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines

Fig. 2 Forest plot of the Random Effect model of pain score changes following bariatric surgery

Fig. 3 Forest plot random effect model with fixed effect estimate of pain score changes following bariatric surgery.

Fig. 4 Association of mean pain change with BMI change (X-axis: BMI-change; Y-axis: mean pain change). No significant correlation between BMI and pain changes, $r = 0.034$.
Identification

Records identified through database searching (n = 739)

Additional records identified through other sources (n = 0)

Records after duplicates removed (n = 385)

Records screened (n = 354)

Records excluded (n = 325)

Screening

Eligibility

Full-text articles excluded (n = 21). No back pain assessed (n = 6); No pain scale (n = 13); No follow up (n = 1); Study included age < 18 years (n = 1)

Studies included in qualitative synthesis (n = 8)

Full-text articles Excluded:
Too many subgroups (n = 1)

Included

Studies included in quantitative synthesis (meta-analysis) (n = 7)
<table>
<thead>
<tr>
<th>Author</th>
<th>ES (95% CI)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bhandari</td>
<td>-5.00 (-5.54, -4.46)</td>
<td>45</td>
</tr>
<tr>
<td>Vincent</td>
<td>-3.00 (-4.35, -1.65)</td>
<td>25</td>
</tr>
<tr>
<td>Gallart-Aragón</td>
<td>-1.98 (-2.69, -1.27)</td>
<td>72</td>
</tr>
<tr>
<td>Josbeno</td>
<td>-1.80 (-2.73, -0.87)</td>
<td>20</td>
</tr>
<tr>
<td>Subtotal</td>
<td>-2.96 (-4.78, -1.15)</td>
<td></td>
</tr>
<tr>
<td>VAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Çakır</td>
<td>-4.70 (-5.40, -4.00)</td>
<td>39</td>
</tr>
<tr>
<td>Lidar</td>
<td>-4.37 (-5.27, -3.47)</td>
<td>30</td>
</tr>
<tr>
<td>Khoueir</td>
<td>-2.30 (-3.22, -1.38)</td>
<td>38</td>
</tr>
<tr>
<td>Subtotal</td>
<td>-3.81 (-5.24, -2.38)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis
Supplemental Digital Content 1

Search terms used in databases

<table>
<thead>
<tr>
<th>Database</th>
<th>Bariatric surgery terms</th>
<th>Back pain terms</th>
<th>Search strategy</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>PubMed</td>
<td>((("Gastric Bypass"[Mesh]) OR ("Gastrectomy"[Mesh]) OR ("Bariatrics"[Mesh]) OR ("Biliopancreatic Diversion"[Mesh]) OR ("Gastroplasty"[Mesh]) OR ("Bariatric Surgery"[Mesh]) OR "bariatric surgery" OR "bariatric surgeries" OR "rous-en-y gastric bypass" OR "greenville gastric bypass" OR "gastroileal bypass" OR "gastrojejunostomy" OR "gastrojejunostomies" OR "gastroplasties" OR "collis gastroplasty" OR "vertical-banded gastroplasty" OR "vertical banded gastroplasty") OR "jejunoileal bypass") OR ("Roux-en-Y gastric bypass") OR ("Jejunoileal Bypass"[Mesh]) OR ("Roux-Y gastric bypass") OR ("Jejunoileal Bypass" OR "jejunoileal bypass" OR "jejunoileal bypasses" OR "jejunoileal bypass") AND ("low back pain"[Mesh terms]) OR low back pain[MeSH terms] OR low back pain* OR lumb* pain OR lumbar pain OR lumbar pains OR backache OR back ache OR lower back pain OR "Low-back pain" OR "Low back pain OR "lower back pain OR "back disorder" OR lumbar OR "lumbar pain" OR "sciatica OR "sciatica or "lumbar pain") OR ("Intervertebral Disc Displacement/ OR "Intervertebral disc disease") OR ("Spinal Diseases/ OR "spinal disease") OR ("Musculoskeletal Pain/ OR "musculoskeletal pain") OR ("Sciatica OR "Sciatica") OR ("Vertebrogenic Pain Syndrom* OR "Vertebrogenic Pain Syndrom") OR ("musculoskeletal pain")</td>
<td>#1 AND #2 Sort by: Best Match Filters: English</td>
<td>319 articles</td>
<td></td>
</tr>
<tr>
<td>MEDLINE</td>
<td>Bariatrics/ OR Bariatric Surgery/ OR Biliopancreatic Diversion/ OR Gastrectomy/ OR Gastric Bypass/ OR Gastroplasty/ OR Jejunoileal Bypass/ OR Anastomosis, Roux-en-Y/</td>
<td>Back Pain/ OR Low Back Pain/ OR Intervertebral Disc Displacement/ OR Sciatica/ OR Spinal Diseases/ OR Musculoskeletal Pain/</td>
<td>Filter: English</td>
<td>39 studies</td>
</tr>
<tr>
<td>EMBASE</td>
<td>Bariatric surgery OR bariatric*.mp. OR stomach bypass OR Roux Y anastomosis OR Roux-en-Y gastric bypass OR gastoplasty OR gastric bypass surgery OR jejunoileal bypass OR intestine bypass OR biliopancreatic bypass OR gastric banding OR sleeve gastrectomy OR gastric sleeve OR laparoscopic sleeve gastrectomy</td>
<td>Low back pain OR back pain*.mp. OR backache OR spine disease OR sciatica OR musculoskeletal pain</td>
<td>Filter: English</td>
<td>385 articles in total</td>
</tr>
<tr>
<td>CRCC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>13 abstracts</td>
</tr>
</tbody>
</table>

Other resources (Google scholar and references)

- - - -
Supplemental Digital Content 2 Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach for rating the quality of estimates of treatment effect.

<table>
<thead>
<tr>
<th>GRADE Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratings</td>
</tr>
<tr>
<td>High quality (⊕⊕⊕⊕) — We are very confident that the true effect lies close to that of the estimate of the effect</td>
</tr>
<tr>
<td>Moderate quality (⊕⊕⊕O) — We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different</td>
</tr>
<tr>
<td>Low quality (⊕⊕OO) — Our confidence in the effect estimates is limited: The true effect may be substantially different from the estimate of the effect</td>
</tr>
<tr>
<td>Very low quality (⊕O O) — We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect</td>
</tr>
</tbody>
</table>

Down rating

The quality rating may be rated down by −1 (serious concern) or −2 (very serious concern) for the following reasons

- Risk of bias (such as failure to conceal random allocation or blind participants in randomised controlled trials or failure to adequately control for confounding in observational studies)
- Inconsistency (such as heterogeneity of estimates of effects across trials)
- Indirectness (such as surrogate outcomes, study populations or interventions that differ from those of interest, or intransitivity)
- Imprecision (for example, 95% confidence intervals are wide and include or are close to null effect)
- Publication bias

Up rating

Rating up is typically applied only to observational studies; the most common reason is for a large or very large effect seen over a short period of time and altering a clear downward trajectory
Supplemental Digital Content 3_Figure 1 Funnel plot for publication bias (Inverse-Variance method)
Supplemental Digital Content 3_Figure 2 Sensitivity analysis NPS studies.
Supplemental Digital Content 3 Figure 3 Forest plot NPS score changes after bariatric surgery without Bhandari et al.
Supplemental Digital Content 3_Figure 4 Sensitivity analysis VAS-studies.
Supplemental Digital Content 3_Figure 5 Forest plot VAS score changes after bariatric surgery without Khoueir et al.