Strong gene dose dependent protective effect of Mediterranean type glucose-6-phosphate dehydrogenase deficiency against *Plasmodium vivax* malaria

Running title: G6PD deficiency and vivax malaria

Ghulam R. Awab1,2, Fahima Aaram3, Natsuda Jamornthanyawat4, Kanokon Suwannasiri4, Watcharee Pagornrat4, James A Watson1,5, Charles J Woodrow1,5, Arjen Dondorp1,5, Nicholas PJ Day1,5, Mallika Imwong4, Nicholas J. White1,5

1. Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
2. Nangarhar Medical Faculty, Jalalabad, Afghanistan
3. Kabul Medical University, Kabul, Afghanistan
4. Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
5. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
Background

X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. The severe Mediterranean variant (G6PDd Med) is common across Europe and Asia. Epidemiological studies investigating the potential protective effect of G6PD deficiency against malaria have yielded conflicting results.

Methods

G6PDd Med genotyping was performed in Pashtun patients in Afghanistan with acute *Plasmodium vivax* malaria and Pashtun subjects attending the same study centres with unrelated conditions or for routine vaccinations. A Bayesian statistical model assuming Hardy-Weinberg equilibrium was used to estimate the potential protective effects of G6PDd Med on vivax malaria, and was fitted to all available data from this and previous studies.

Findings

In patients with vivax malaria 1.6% (5 of 308) of males were G6PD Med hemizygotes compared with 8.2% (28 of 342) of controls (risk ratio; 95% confidence interval: 0.198 [0.078 to 0.507]), and 6.8% (31 of 458) of female patients were heterozygotes compared with 11.2% (40 of 358) of controls (RR 0.606 [0.387 to 0.948]). From all available data, the estimated allele frequency of G6PDd Med in the Pashtun is 8.8% (95% credible interval, 7.5-10.2). In hemizygous males and homozygous females, G6PDd Med confers a strong protective effect against symptomatic *P. vivax* malaria reducing the incidence by 73% (95% CI. 53-87). In heterozygous females the estimated protective effect was 56% (95% CI. 40-69). The protective effect in heterozygous females is 0.78 (95% CI, 1.09-0.53) of that observed in hemizygous males and homozygous females.

Interpretation

The G6PD Mediterranean genotype confers a very large and gene dose proportional protective effect against vivax malaria. The proportion of patients with vivax malaria at risk of haemolysis following 8-aminoquinoline radical cure is substantially overestimated by epidemiological studies in healthy subjects.
Keywords: glucose-6-phosphate dehydrogenase deficiency, G6PD, *Plasmodium vivax*, malaria, primaquine, enzymopathy.

The authors have no conflicts of interest

Financial support: Wellcome Trust: Major Overseas Programme-Thailand Unit Core Grant: 106698/B/14/Z

Correspondence: Professor NJ White, Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Rd, Bangkok, 10400, Thailand. nickw@tropmedres.ac
Introduction

In red blood cells glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) is the only source of reduced nicotinamide adenine dinucleotide phosphate (NADPH) [1,2]. G6PD deficiency reflects instability, not absence, of the enzyme which is essential for normal cellular function. Mammalian erythrocytes lack nuclei and the necessary protein synthetic pathway and so, unlike nucleated cells, they cannot replenish degraded G6PD. As a result, in G6PD deficiency, older red cells become increasingly deficient. NADPH is essential for maintenance of oxidant defences. Thus, as G6PD deficient red cells age they become increasingly susceptible to oxidant haemolysis. G6PD deficiency is the most common enzyme abnormality in humans. It is found across the malaria endemic world with mutant gene prevalences up to 35% (average 8-10%) [3]. There are over 180 different polymorphic variants, most of which result in enzyme deficiency, but the degree of deficiency (from accelerated enzyme degradation) and thus vulnerability to oxidant haemolysis varies substantially among the different genotypes. G6PD deficiency is X-linked so males are either normal or fully deficient. Women display these two phenotypes (normal or homozygous deficiency) as well as intermediate deficiency (heterozygotes). Such females are genetic mosaics as a result of early embryonic random X-chromosome inactivation (Lyonisation). Their blood contains a mixture of G6PD normal and G6PD deficient erythrocytes. Overall, at a population level, the proportion averages 50:50 of each cell type, but there is inter-individual variation so in some heterozygotes the large majority of erythrocytes are G6PD deficient. The high prevalences of G6PD deficiency in tropical areas, particularly in Africa, and in areas where malaria was once endemic, suggest that G6PD deficiency confers protection either against malaria or its adverse effects. But the mechanism of protection is unclear and this has been a subject of controversy and divergent opinion, with no clear conclusion. Claims have been made that there is no malaria protective effect provided by G6PD deficiency, or that protective effects are seen in female heterozygotes only, or in male hemizygotes only, or in both [4-11]. Most of the studies addressing this question have focussed on falciparum malaria in Africa where the majority of evidence supports a protective effect against severe malaria,
particularly in female heterozygotes [10,11]. Whether male hemizygotes and female homozygotes are protected is unclear with evidence both for and against. A recent meta-analysis of 28 studies concluded that there was no significant protection from uncomplicated falciparum malaria overall (OR: 0.77; 95% CI 0.59 to 1.02) [4].

In 2002 Richard Carter and Kamini Mendis suggested that the evolutionary force selecting G6PD deficiency could have been either *Plasmodium falciparum* or *Plasmodium vivax* [12]. Historically *P. vivax* had a wider geographic distribution, although it has now been eradicated from North America, Europe and Russia. Elsewhere in the Americas, the horn of Africa, Asia and Oceania *P. vivax* has become the predominant cause of malaria in recent years. In general the variants of G6PD deficiency that are prevalent in these areas where *P. vivax* infections occur, or once occurred, are more severe than the common (“A−”) variant prevalent in the sub-Saharan African populations (in whom *P. vivax* malaria is rare and *P. falciparum* comprises the large majority of malaria infections), and in peoples with their genetic origin there. The most severe of the commonly found G6PD variants is the “Mediterranean” variant (“G6PD Med”). This results from a single C-T transition at nucleotide position 563, causing a serine phenylalanine replacement at amino acid position 188. G6PD Med is the predominant genotype in the Pashtun who live in Afghanistan, Pakistan and India [13-15]. To characterise the possible protective effects of G6PDd Med against *P. vivax* malaria, we conducted a retrospective analysis of case-control data from clinical studies on vivax malaria, and epidemiological studies of G6PD deficiency that we have conducted in Afghanistan over the past ten years. These data were then combined in a meta-analysis using all previously published data on G6PD deficiency in people of Pashtun ethnicity living in malaria endemic areas.

Methods

Study Area and Participants

In Afghanistan, malaria is confined to the northern plains, the Jalalabad basin and river valleys which fringe the central mountains to the west and south (Figure 1). Malaria cases begin presenting in
May, peak in July and August, and then decline with few cases seen after November. These studies were conducted over 10 years between 2009 and 2019.

The initial epidemiological study to assess the prevalence and genotypes of G6PD deficiency in Afghanistan was undertaken in one urban centre in each of nine provinces: Jalalabad (Nangarhar province), Mehterlam (Laghman), Asadabad (Kunar), Maimana (Faryab), Taloqan (Takhar), Imam sahib (Kunduz), Pulikhumri (Baghlan), Puli alam (Lowgar) and the capital, Kabul (Kabul province) [15]. Provinces were chosen on the basis of practical accessibility combined with having a high risk of vivax malaria (>1 case/1000 population/year), the exceptions being Kabul and Lowgar which have low malaria transmission. This analysis is restricted to the Pashtun ethnic group who live in the higher P. vivax transmission areas for two main reasons; the Pashtun comprise the majority of people in the Eastern provinces where malaria incidence is highest, and G6PD variants other than G6PD Med are rare in this ethnic group [13,14].

In the initial prevalence study in healthy subjects conducted in 2009 only males were studied [16]. A convenience approach to sampling was used for reasons related to security. EDTA blood was obtained from healthy male adults and children attending outpatient medical laboratories with non-febrile illnesses or neighbouring vaccine administration who did not have malaria. Samples were transferred to filter-paper blood spots and stored in plastic zip-lock bags with silica gel at room temperature before transport to Bangkok for genotyping [15]. In later prospective studies conducted in 2018 and 2019 subjects (both male and female) attending outpatients and those attending immunisation centres were sampled in the same way from the same sites in Nangarhar province as the clinical malaria studies (Figure 1).

Clinical Studies

Patients with malaria presented to provincial malaria control centres adjacent to the Pakistan border. Jalalabad, the capital city of Nangarhar province, is a referral centre for the whole eastern region. Population movement takes place in both directions across this largely mountainous area
bordering Pakistan. The malaria treatment protocols have been reported previously [16]. Patients (aged >6 months) or older presenting with uncomplicated microscopy confirmed symptomatic vivax malaria were enrolled if they or their carer gave fully informed written informed consent. Inclusion criteria were monoinfection with *P. vivax*, axillary temperature ≥37.5°C or oral/rectal temperature ≥38°C, or history of fever in preceding 24 hours, and able to swallow oral medication and comply with study requirements. Exclusion criteria were any clinical or laboratory feature of severe malaria, significant comorbidity, known hypersensitivity to any study drugs, mixed species *Plasmodium* infection and pregnancy or lactation. In the initial studies patients with haemoglobin concentrations <8g/dl were excluded but in the later observational studies anaemic patients were not excluded.

Laboratory procedures

Capillary blood was collected for haemoglobin measurement (HemoCue®), Giemsa-staining of thick and thin blood films for parasite speciation and counts and G6PD testing. Before 2018 G6PD deficiency screening used the G-6-PD OSMMR 2000 (R&D Diagnostics) and NADPH fluorescent spot test kit (10 minutes incubation). From 2018 the CareStart® rapid test was substituted. Dried blood spots were stored for later genotyping [14,16]. Genomic DNA was extracted using the QIAamp® DNA Mini Kit (QIAGEN, Germany). Eluted genomic DNA samples were frozen at −20°C until PCR amplification. All samples were subjected to PCR-RFLP to assess the G6PD Mediterranean variant in exon 6, based on the protocol of Samilchuk et al [18] with modifications including use of primers F14948 and R15158 at 250 nM, a 2 µl volume of each genomic DNA template, and a final reaction volume of 30 µl containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 1 mM MgCl₂, 125 µM 4-deoxynucleotide triphosphate (dNTPs), and 0.05 units Platinum®Taq DNA polymerase (Invitrogen, Brazil). After pre-denaturation at 95°C for 5 min, 45 PCR cycles were performed involving denaturation at 94°C for 1 min, annealing at 55°C for 1 min and extension at 72°C for 1 min, with post-extension at 72°C for 7 min. 10 µl of each PCR product was digested with 10 units of the restriction enzyme *MboII* (New England Biolabs Inc.) at 37°C for 3 hours and visualized by 2%
agarose gel electrophoresis. A product pattern of 104+98+28 bp indicates the G6PD Med mutation, whereas 202+28 bp indicates wild-type. All PCR products of samples with mutant type and 10% of the wild type samples were purified subsequently and the DNA was sequenced (Macrogen, Korea). Gene sequences of the PCR amplification products of \(g6pd \) (accession number: NM_001042351.2) were confirmed using the NCBI's Blastn and Blastx programmes. Gene polymorphisms were assessed by comparison with the reference sequences using BioEdit v7.2.5.

Additional data included in the meta-analysis assessing the protective effect of G6PD deficiency

A systematic literature review identified two other sources of relevant data in Pashtun subjects. Bouma et al [13] described a phenotyping survey in male Afghan and Pakistani Pashtun refugee schoolchildren (Safi and Mamund tribes, respectively). Leslie et al [14] described a \(P. \) vivax case-control study, with the majority of individuals from the Safi and Mamund tribes. This relied mainly on phenotyping (except for heterozygous females). In the meta-analysis the phenotyping of males was assumed to be 100% sensitive and specific for the G6PD Med genotype.
Statistical analysis

To estimate the degree of protection against vivax malaria and investigate a possible gene-dose effect, we analyzed all the available data under a Bayesian statistical model that estimates the relative risk reduction. We chose this model structure instead of a logistic regression with the allele as the predictive variable and the case-control status as the outcome (the usual model choice for genetic case-control studies) because we can assume that the protective effect in G6PD deficient hemizygous males and homozygous females is the same due to Lyonisation (from a red cell perspective, they are identical). Log-odds estimated from a logistic regression model are not collapsible, therefore this assumption cannot be input into a logistic regression model. Our formulation, in terms of relative reduction, allows for this assumption to be hard-wired into the model.

The model assumed that Hardy-Weinberg equilibrium held in the studied population(s). The unknown overall allele frequency of the Mediterranean variant of G6PD deficiency is denoted p. The total number of healthy males (controls) sampled is denoted $N_{\text{males}}^{\text{healthy}}$; the total number of $P. \text{vivax}$ infected males (cases) is denoted $N_{\text{males}}^{P. \text{vivax}}$, within these groups, the number of hemizygote deficient males are denoted $N_{\text{males}}^{\text{healthy},\text{Hemi}D}$ and $N_{\text{males}}^{\text{vivax},\text{Hemi}D}$, respectively. The same notation is used for the female subjects, except that the superscript $\text{Het}D$ refers to heterozygous deficient, and $\text{Homo}D$ refers to homozygous deficient.

The likelihood of the observed data for the non-malaria controls is given by:

$$N_{\text{males}}^{\text{healthy},\text{Hemi}D} \sim \text{Binomial}(N_{\text{males}}^{\text{healthy}}, p)$$

$$N_{\text{females}}^{\text{healthy},\text{Homo}D} \sim \text{Binomial}(N_{\text{females}}^{\text{healthy}}, p^2)$$

$$N_{\text{females}}^{\text{healthy},\text{Het}D} \sim \text{Binomial}(N_{\text{females}}^{\text{healthy}}, 2p(1-p))$$

The likelihood of the observed data for the vivax malaria cases is given by:
The parameter α, such that $0 \leq \alpha \leq 1$, denotes the vivax malaria protective effect of hemi- and homozygous deficiencies, which are assumed to be identical. A value of $\alpha=1$ implies no protective effect, and $\alpha=0$ implies a complete protective effect. Thus $1-\alpha$ is the relative reduction in prevalence in hemi/homozygous G6PD deficient $P.\ vivax$ malaria cases compared to the controls. The parameter β, such that $0 \leq \beta \leq 1$, denotes the protective effect of heterozygous G6PD deficiency with the same interpretation.

Weakly informative Bayesian priors were subjectively chosen as follows:

\[\alpha \sim \text{Uniform}[0,1] \]
\[\beta \sim \text{Uniform}[0,1] \]
\[p \sim \text{Beta}(2,18) \]

This model allows for an additive effect (i.e. the protective effect in heterozygous females is less than in homo/hemi-zygotes), or an increased effect in heterozygotes (expected under a model of balancing selection driven by heterozygous advantage). The Bayesian model was written in \textit{stan} and a reproducible implementation of the results in \textit{rstan} is provided in the supplemental materials. Four independent chains were run for 10^6 iterations, with the first half discarded for burn-in and second half thinned every 200 iterations, to give a total of 10,000 samples for the posterior distribution.

Effect estimates and uncertainty levels are reported as mean posterior estimates with 95% credible intervals (2.5% and 97.5% quantiles of the posterior distribution).
Ethical approval

The clinical studies were approved by the Institutional Review Board of the Afghan Public Health Institute, Ministry of Public Health, Afghanistan, the Ethics Committee of the Faculty of Tropical Medicine, Mahidol University, Thailand, and the Oxford Tropical Research Ethics Committee, Oxford University, UK. The clinical trial was registered with the clinical trials website http://www.clinicaltrials.gov/ct under the identifier NCT01178021.

Results

In total 766 Pashtun patients presenting with acute vivax malaria (308 males, 458 females) and 699 Pashtun controls (342 males, 357 females) were studied; 236 healthy males came from the epidemiology study reported previously [16] and the remaining control subjects came from the same locations as the clinical malaria studies (Table 1; Figure 1). From these data the allele frequency of G6PD Med was estimated to be 7.8% (95% credible interval (C.I.), 6.3 to 9.5) under an assumption of Hardy-Weinberg equilibrium. The proportions of G6PD Med male hemizygotes and female heterozygotes were substantially lower in patients with acute vivax malaria than in people incidentally visiting clinics or vaccination centres who did not have malaria (Table 1). Only 1.6% (5 out of 308) of males with vivax malaria were hemizygotes (risk ratio; 95% confidence interval: 0.12 [0.08 to 0.51]) while in the females with vivax malaria 6.8% (31 of 458) (RR 0.61 [0.39 to 0.95]) and 0.7% (3 of 458) were heterozygotes and homozygotes respectively. Under the Bayesian model, assuming Hardy-Weinberg equilibrium, these results suggest that G6PDd Med hemizygous males and homozygous females have 67% (95% C.I. 40-85) protection (i.e. relative reduction) against acute P. vivax malaria and G6PDd Med heterozygous females have 51% (95% C.I. 30-68) protection.

These results were then combined with data from the two previously reported studies on the prevalence of G6PD deficiency in the Pashtun ethnic group from Afghanistan. One was in healthy subjects only [13] and the other included both vivax malaria patients and healthy control subjects.
The meta-analysis of all three studies gave a slightly higher G6PD Med allele frequency of 8.8% (95% C.I., 7.5-10.2). The overall protective effect in male hemizygotes and female homozygotes was estimated as 73% (95% C.I., 53-87) and in female heterozygotes was 56% (95% C.I., 40-69). The posterior distributions for these estimates from the meta-analysis are shown in Figure 2. The posterior probability that the protective effect observed in female heterozygotes was less than the protective effect observed in male hemizygotes and female homozygotes was 0.93, suggesting that the protective effect is proportional to the gene-dose.

Discussion

The Mediterranean type glucose-6-phosphate dehydrogenase deficiency (G6PDd Med) prevalent in the Pashtun provided a strong and gene-dose related protective effect against *Plasmodium vivax* malaria. This is a much greater protective effect than observed against *P. falciparum* malaria elsewhere [4, 10]. This much larger protective effect against vivax malaria observed in this large study is probably explained by two factors; the degree of enzyme deficiency with G6PD Med is substantially greater than in the common African A- variant, which has been the main genotype studied previously, and *P. vivax* is generally more sensitive to oxidant effects than *P. falciparum*. Compared with *P. falciparum*, asexual stages of *P. vivax* are also more sensitive to oxidant drugs (i.e. artemisinins and synthetic peroxides and 8-aminoquinolines) [19, 20]. *P. vivax* may therefore be more sensitive to the oxidant stresses associated with G6PD deficiency. This large study from Afghanistan confirms earlier findings from a case control study in Afghan Pashtun refugees, based mainly on phenotyping. This earlier study showed clear evidence of protection against vivax malaria in male hemizygotes, but the effect (adjusted odds ratio: 0.4, 95%CI 0.16 to 1.02) in the smaller subgroup of genotyped female heterozygotes was of borderline significance [13]. These earlier studies, and a smaller series from Iran with phenotyping [21], are consistent with the present series. Combined together they show clearly that G6PDd Med provides a substantial gene dose proportionate protection against vivax malaria. In a survey conducted in periurban Manaus, in the
Amazon region of Western Brazil, where *P. vivax* is now the predominant (90%) cause of malaria, there was also a very strong protective effect of G6PD Med against self-reported previous malaria (AOR: 0.010) [22]. In comparison the protective effect of G6PD A- in the same location was much weaker (AOR 0.119). This marked protective benefit is critically important for the assessment of population haemolytic risk associated with giving 8-aminoquinoline antimalarials for the radical cure for vivax malaria. The proportion of patients with vivax malaria at risk of serious haemolysis with G6PD Med is nearly four times lower than would be predicted from gene frequencies in the healthy population.

G6PD Med is among the most severe of the polymorphic genetic G6PD variants. It is found across the malaria endemic regions of the world, having evolved independently on several occasions [15, 23]. There is also evidence for protection against vivax malaria from the moderate severity G6PD Mahidol variant. A study from western Thailand found that *P. vivax* densities were lower in hemizygote males and also in heterozygote females presenting to clinics with vivax malaria, but there was no corresponding effect in falciparum malaria, and there was no apparent protective effect against malaria illness [24]. However, a study from Northern Myanmar showed G6PD Mahidol did protect against symptomatic vivax malaria, but with similar effects in male hemizygotes and female heterozygotes [25]. In a multi-site survey of G6PD deficiency in malaria patients in Cambodia, where G6PD Viangchan predominates (WHO class 2 but quantitatively similar to G6PD Mahidol), phenotypic severe deficiency (i.e. <10% of population normal) provided stronger protection against *P. vivax* than *P. falciparum* infections (OR: 0.45 95%CI 0.32 to 0.64) [26]. Conversely Dewasurendra *et al* in Sri Lanka reported evidence of hemizygote protection from malaria and lower parasite densities for *P. falciparum* but not *P. vivax* [27].

A recent meta-analysis of 28 studies [4] addressing the question of whether G6PD deficiency protects against malaria concluded that there was no significant protection from uncomplicated falciparum malaria overall (OR: 0.77: 95% CI 0.59 to 1.02), but that in subgroup analyses there was statistically significant evidence for protection in Africa (OR 0.59 95% CI 0.40 to 0.86) but not in Asia.
The degree of protection was similar in female heterozygotes (OR 1.24 95% CI 0.96 to 1.61). The degree of protection was similar in female heterozygotes (OR 0.795% CI 0.57 to 0.87) and in male hemizygotes and female homozygotes (OR 0.7 95% CI 0.46 to 1.07) but did not reach statistical significance in the latter group. There was also evidence for publication bias towards significant findings in the uncomplicated malaria comparisons. The same meta-analysis also concluded that there was no statistically significant protective effect in severe malaria or in Plasmodium vivax malaria, although there were limited data to assess the protective effects in P. vivax infections.

The degree of protection conferred by G6PD Med against P. vivax illness estimated in this study is large; it is similar in magnitude to the well described protection conferred by Hb AS (sickle cell heterozygotes) against falciparum malaria [28]. It is possible that G6PD deficiency confers no significant protection against infection by P. falciparum but protects only against life threatening illness. This may reflect either inhibition of parasite multiplication or a different protective mechanism. One consistent clinical feature of G6PD deficiency is an increased risk of anaemia in acute infections as the deficient cells haemolyse [10,11]. As severe anaemia (Hb <5g/dL) is one of the criteria for defining severe malaria this results in a higher proportion of patients with G6PD deficiency presenting with severe malarial anaemia, and therefore being diagnosed as having severe malaria. This biases genetic association studies [29]. It has been suggested that G6PD deficiency may protect specifically against cerebral malaria, but a simpler explanation is that in the context of severe falciparum malaria, a rapid onset of moderate anaemia may protect against life threatening complications such as cerebral malaria [30,31].

There are several limitations to this study. It was not designed prospectively as a case control study. It combines results from a prospective epidemiology study conducted six years ago and prospective clinical trials and sampling of controls from the same centres from 2018. For security reasons careful matching of cases and controls (other than for location) was not possible. However, in the earlier study by Leslie et al [14], conducted in refugee camps in Pakistan, careful matching was done, particularly with reference to tribe (within the Pashtun group) and location, and
that study’s findings are consistent with the present investigation. Nevertheless, it remains possible
that uncharacterised variations between the different investigations and genetic heterogeneity
within the Pashtun group are confounders. As many of the controls had non-malaria febrile illnesses
it is possible, although unlikely, that the prevalence of G6PD deficiency is higher in such patients to
that in the general population. In the initial clinical studies reported here severe anaemia was an
exclusion criterion and this could have reduced the proportion of G6PD deficient patients. This study
was confined to the G6PD Mediterranean genotype, so other G6PD polymorphisms were not
studied, but these are unusual in the Pashtun so this is unlikely to have affected the results
materially. Potential confounders become progressively more relevant as effects become smaller.

Overall this study shows that the G6PD Mediterranean genotype confers a very large and
gene dose proportional protective effect against vivax malaria. This is not therefore a balanced
polymorphism, and assuming the allele frequency is at equilibrium, it must be harmful. The main
risks associated with G6PD deficiency are neonatal hyperbilirubinemia and haemolysis following
oxidant food and drugs while the benefit is protection from malaria. Importantly for malaria
treatment, the population risks associated with 8-aminoquinoline radical cure are greatly
overestimated from G6PD prevalences in the healthy population.
Acknowledgements

The investigators are grateful to the doctors, laboratory technicians, and malaria workers in the sites in Afghanistan, the Afghanistan National Malaria and Leishmania Control Program (NMLCP), the two provincial health directorates, and the senior management of the Ministry of Public Health and WHO-Afghanistan. We are also very grateful to the Molecular Tropical Medicine and Genetics laboratory staff in the Faculty of Tropical Medicine, Mahidol University for their help with genotyping.

Funding

This work was supported by the Wellcome Trust. Dr Ghulam R. Awab was a Wellcome Trust tropical medicine training fellow. The studies were supported by the Wellcome Trust of Great Britain (Major Overseas Programme-Thailand Unit Core Grant: 106698/B/14/Z) and by the Wellcome Trust Principal Fellowship of NJ White.
References

18

infection: A case-control study amongst Afghan refugees in Pakistan. Plos Med. 2010; 7; e1000283.

Table

Table 1 Summary of all case-control data included in the meta-analysis

<table>
<thead>
<tr>
<th></th>
<th>General population (controls)</th>
<th>P. vivax malaria (cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Awab et al [14]</td>
<td>Bouma et al</td>
</tr>
<tr>
<td>males hemizygous</td>
<td>28 15 25</td>
<td>68 5 1 0</td>
</tr>
<tr>
<td>normal</td>
<td>314 109 214</td>
<td>637 303 61 0</td>
</tr>
<tr>
<td>females homozygous</td>
<td>2 2 0</td>
<td>4 3 0 0</td>
</tr>
<tr>
<td>heterozygous</td>
<td>50 26 0</td>
<td>76 31 6 0</td>
</tr>
<tr>
<td>normal</td>
<td>305 126 0</td>
<td>431 424 72 0</td>
</tr>
</tbody>
</table>

- Data from this report; 23 of 236 males from the earlier epidemiological study [15] and 5 of 106 male controls from the later studies were hemizygotes.
Legends to Figures

Figure 1: Afghanistan: malaria stratification risk across all districts (Courtesy: National Malaria Strategic Plan 2013-2017). Blue circle shows area where the clinical malaria studies were performed.

Figure 1: Results from the meta-analysis assessing the protective effect of the Mediterranean variant of G6PD deficiency against *Plasmodium vivax* malaria. The posterior distributions over the percentage of G6PDd Med individuals presenting with clinical *vivax* malaria relative to G6PD normal are shown for hemi/homozygotes (top) and heterozygotes (bottom). The circles show the mean estimates, with the 80% credible intervals shown by the thick blue lines and the 95% credible intervals shown by the thin blue lines.
Figure 2