IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: Results from Meta-analysis and Regression

Sujan K Dhar¹, Vishnupriyan K², Sharat Damodar³, Shashi Gujar⁴* and Manjula Das²*

¹Beyond Antibody, InCite Lab, MSMF, 8th Floor MSMC, Bommasandra, Bangalore, India
²Tumor Immunology, MSMF, 8th Floor MSMC, Bommasandra, Bangalore, India
³Department of Hematology, 7th Floor MSMC, Bommasandra, Bangalore, India
⁴Room, 11J, 5850 College Street, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5

Sujan K Dhar: sujan@beyondantibody.com
Vishnupriyan K: vishnupriyantgp@gmail.com
Sharat Damodar: drsharat.damodar@gmail.com
Shahshi Gujar: shashi.gujar@dal.ca
Manjula Das: manjula.msmf@gmail.com

*Corresponding authors:
Dr Manjula Das (manjula.msmf@gmail.com)
Tumour Immunology, Mazumdar Shaw Medical Foundation
8th Floor MSMC, Bommasandra, Bangalore, India
Email: manjula.msmf@gmail.com

Dr Shashi Gujar (shashi.gujar@dal.ca)
Room, 11J, 5850 College Street, Sir Charles Tupper Medical Building, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
Email: shashi.gujar@dal.ca

Keywords: COVID-19, Meta-Analysis, Cytokines, Logistic Models
Abstract

Objectives: SARS-CoV-2, an infectious agent behind the ongoing COVID-19 pandemic, induces high levels of cytokines in patients contributing to the disease patho-physiology. Nonetheless, exact association and contribution of particular cytokines towards COVID-19 pathology remains poorly understood. This study performed a comprehensive meta-analysis to establish association between induced cytokines and COVID-19 disease severity to help in prognosis and clinical management.

Methods: Scientific literature was searched to identify 18 clinical studies. Standardized mean difference (SMD) for cytokines IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ between severe and non-severe COVID-19 patient groups were summarized using random effects model. A classifier was built using logistic regression model with cytokines having significant SMD as covariates.

Results: Out of the 6 cytokines, IL-6 and IL-10 showed statistically significant SMD across the studies synthesized. Classifier with mean values of both IL-6 and IL-10 as covariates performed well with accuracy of ~ 92% that was significantly higher than accuracy reported in literature with IL-6 and IL-10 as individual covariates.

Conclusions: Simple panel proposed by us with only two cytokine markers can be used as predictors for fast diagnosis of patients with higher risk of COVID-19 disease deterioration and thus can be managed well for a favourable prognosis.
Introduction

COVID-19 pandemic caused by SARS-CoV-2 has emerged as a major threat to mankind affecting 18+ million people resulting in over 700,000 deaths worldwide. Exuberant inflammation manifested as hypercytokinemia with elevated levels of cytokines such as IL-2, IL-6, IL-7, IL-10, IFN-γ, and TNF-α is a hallmark of the SARS-CoV-2 infection often leading to critical conditions like ARDS (acute respiratory distress syndrome) and multi-organ failure.

Innate immune response is the first step of defense mechanism against viral infection. Pattern recognition receptors in host dendritic cells recognize viral genomic DNA or RNA present in infected cells and initiate a battery of immune and inflammatory responses including production of cytokines and chemokines which in turn recruits immune cells such as macrophages, neutrophils and T-cells to the site of infection to further combat the virus. Nature of cytokines determine the type of immune response as individual cytokines play specific roles based on their source and target cells. Pro-inflammatory cytokines including type I/II interferons, IL-1, IL-6 and TNF-α play major role in initial response, whereas anti-inflammatory molecules such as IL-10 are produced during sustained infection to keep a check on inflammation and maintain immune homeostasis.

Sustained elevated levels of the cytokines due to viral infections often lead to hypercytokinemia, commonly referred as “cytokine storm” (CS) in which the homeostasis of immune response is disturbed leading to acute inflammation at systemic level. Acute lung damage is a common clinical manifestation of CS often leading to fatality. Such heightened immune response is a signature of coronavirus family as reported earlier for MERS-CoV and SARS-CoV infections. In COVID-19, elevated levels of both pro-inflammatory (IL-1, IL-6, TNF-α) and anti-inflammatory (IL-10, IL-1RA) cytokines are observed. IL-6 is a major actor in CS, with increased serum levels leading to induction of acute phase response proteins including C-reactive protein (CRP) and serum amyloid A (SAA). Recently published meta-analysis studies on the levels of cytokines in COVID-19 patients have focussed mostly on IL-6 due to potential repurposing of tocilizumab to suppress the inflammatory condition. Coomes et al inferred IL-6 ratio of means in severe versus mild condition as 3.63 (95% CI: 0.65 – 20.37) over three studies, whereas other meta-analyses reported difference of IL-6 level in terms of standardized mean difference (SMD) as 1.54 (95% CI: 0.71 – 2.38) and mean difference as 38.6 pg/mL (95% CI: 24.3
All these meta-analysis summary results were associated with high level of heterogeneity ($I^2 \approx 98 - 100\%$). In a limited size meta-analysis over three studies, Rangel et al found the ratio IL-6/IFN-γ significantly elevated in severe patients14 with SMD 0.74 (95% CI: 0.13 – 1.38) with substantial heterogeneity ($I^2 = 79\%$). IL-10, on the other hand is an anti-inflammatory cytokine which inhibits its pro-inflammatory counterparts. Multiple clinical studies have reported elevated levels of IL-10 in COVID-19 patients2,15,16. Levels of IL-6, IL-10 and TNF-α were also found to be indicators of T-cell exhaustion in COVID-19 patients17. Though the levels of cytokines are increased in severe COVID-19 patients, it’s implication in a therapeutic perspective remains unclear. Corticosteroids that can potentially suppress cytokines by inhibiting NF-κB transcription factor have been used on COVID-19 patients. However, a meta-analysis across studies involving infection of SARS-CoV, SARS-CoV-2 and MERS-CoV showed increased mortality risk ratio (RR 2.11, 95% CI: 1.13 – 3.94) for patients treated with corticosteroids18. There are also a couple of case reports on anti-TNF-α agents etanercept19 and infliximab20 therapy used successfully for COVID-19 patients with pre-existing auto-immune conditions. However, results of wider application of such therapy is still awaited. On the other hand, there have been several studies targeting IL-6 levels using siltuximab, an IL-6 inhibitor or tocilizumab, an IL-6 receptor inhibitor in severe COVID-19 patients. A review by Jamilloux et al21 on few such studies did not reveal any conclusive benefits due to lack of appropriate control groups in design or inadequate statistical significance. Further, the timing for anti-IL-6 agent administration remains critical since an early administration may negatively affect the innate response, while the late administration may not yield desired benefits. Some of the ongoing clinical results using anti-IL-6 therapy will shed more light in near future.

Nonetheless, the use of the cytokines as a prognostic marker for severity of COVID-19 symptoms looked promising. One of the earliest clinical studies showed significant difference in levels of IL-6 and IL-10 along with CD4$^+$ and CD8$^+$ T-cell population between mild and severe groups22 but did not carry out further analysis on prognostic value of these markers. Results of the meta-analysis studies described before$^{11-14}$ concluded elevated levels of cytokines in severe COVID-19 patients but did not proceed to establish significance of the markers as a classifier of patient groups. A more recent study23 presented univariate classifiers for severe and non-severe patient groups using levels of
IL-6, IL-10 and IFN-γ individually as covariates and failed to capture the possible interdependence of the markers which perhaps was the cause for lesser-than-optimal classifier performance. In this study, we present a comprehensive meta-analysis to establish difference in levels of commonly used cytokine markers between severe and non-severe patient groups and build a classifier using markers that present significant differences. This generalized and comprehensive approach can lead to a prognostic system to aid clinical management of COVID-19.

Methods

Literature Search

We performed the meta-analysis following PRISMA guidelines. Literature search was performed in the LitCovid portal of Pubmed, in Google Scholar as well as in preprint archives such as medRxiv, bioRxiv and SSRN library for articles in English published in year 2020 with COVID-19-specific terms along with terms such as “cytokine level” and combinations of common cytokine names and gene symbols. Search strategy was reviewed by all authors and it was decided to retain non-peer reviewed articles in selection in view of the present emerging situation. Identified articles were screened and shortlisted to clinical studies that contained data for multiple cytokines including IL-6 for the 'severe' and 'non-severe' COVID-19 patient groups. Exclusion criteria for shortlisting included review articles, opinions and commentaries and studies that include other pathological conditions or complications associated with COVID-19.

Meta-analysis and Meta-Regression

Selected articles were reviewed independently by two authors (VK and SKD). Data was extracted from articles using standardized forms and was cross-validated. Cytokine levels reported as median (IQR) was converted to mean and standard deviation using standard methods\(^2\). To assess the effect of each marker, we used the standardized mean difference (SMD) of measured cytokine level (in pg/mL) between severe and non-severe groups including Hedges’ correction for positive bias. All calculations were carried out using the metafor library\(^2\) on R statistical software platform. Meta-regression of SMD of a marker was carried out using mixed-effects model with differences in age and sex (measured as percentage of male patients) and also with differences in neutrophil-to-lymphocyte ratio and CD4+/CD8+ T-cell count ratio across groups as modulators.
Publication bias in the studies was analyzed using Funnel Plot and Egger's regression test. Sensitivity of meta-analysis results was assessed by repeating the analysis with leaving out one study at a time and observing significant changes in heterogeneity and summary effect.

Classifier Development

We built a classifier using logistic regression model for categorization of patient groups into severe and non-severe categories based on mean values of cytokines in the groups. Classifier performance using individual cytokine values or combination of multiple cytokine values are assessed from the Receiver Operating Characteristics (ROC) curve analysis and the area under the curve (AUC).

Results

Study Details

The search yielded a total of 99 "hits" which were screened to select 18 articles containing cytokine levels of severe and non-severe patients reported from clinical studies (Fig. 1). All 18 selected studies were conducted in China and included 1,242 non-severe and 915 severe COVID-19 patients (Table 1). Out of the 18 studies, 7 were non-peer reviewed studies\(^{26-32}\) published online in preprint archives.

Table 1: Details of selected studies

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Non-severe patients</th>
<th>Severe Patients</th>
<th>Clinical Definitions of Severe Patients</th>
<th>Cytokines Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Age</td>
<td>Male %</td>
<td>n</td>
<td>Age</td>
</tr>
<tr>
<td>Chen, 2020(^{15})</td>
<td>10</td>
<td>50.3 (10.1)</td>
<td>70.0</td>
<td>11</td>
</tr>
<tr>
<td>Feng, 2020(^{26})</td>
<td>94</td>
<td>62.9 (13.7)</td>
<td>61.7</td>
<td>20</td>
</tr>
<tr>
<td>He, 2020(^{33})</td>
<td>12</td>
<td>42.3 (16.8)</td>
<td>31.1</td>
<td>16</td>
</tr>
<tr>
<td>Lv, 2020(^{34})</td>
<td>115</td>
<td>54.3 (41.5)</td>
<td>50.4</td>
<td>155</td>
</tr>
<tr>
<td>Author (year)</td>
<td>Non-severe patients</td>
<td>Severe Patients</td>
<td>Clinical Definitions of Severe Patients</td>
<td>Cytokines Measured</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>n</td>
<td>Age</td>
<td>Male</td>
<td>n</td>
</tr>
<tr>
<td>Nie, 202027</td>
<td>72</td>
<td>40.3</td>
<td>29.1</td>
<td>25</td>
</tr>
<tr>
<td>Qin, 202016</td>
<td>166</td>
<td>52.1</td>
<td>48.2</td>
<td>286</td>
</tr>
<tr>
<td>Shi, 202028</td>
<td>22</td>
<td>49.7</td>
<td>59.7</td>
<td>21</td>
</tr>
<tr>
<td>Song, 202029</td>
<td>31</td>
<td>48</td>
<td>51.6</td>
<td>42</td>
</tr>
<tr>
<td>Wan, 202022</td>
<td>102</td>
<td>43.1</td>
<td>53.9</td>
<td>21</td>
</tr>
<tr>
<td>Wang, 202035</td>
<td>55</td>
<td>40</td>
<td>45.0</td>
<td>14</td>
</tr>
<tr>
<td>Wei, Su, 202036</td>
<td>131</td>
<td>60.1</td>
<td>45.0</td>
<td>98</td>
</tr>
<tr>
<td>Xu, 202037</td>
<td>80</td>
<td>55.7</td>
<td>37.5</td>
<td>45</td>
</tr>
<tr>
<td>Zhang, Zhou, 202030</td>
<td>44</td>
<td>53.5</td>
<td>47.7</td>
<td>21</td>
</tr>
<tr>
<td>Zhang, Wang, 202031</td>
<td>29</td>
<td>44.3</td>
<td>58.6</td>
<td>14</td>
</tr>
<tr>
<td>Zhang, Yu, 202038</td>
<td>93</td>
<td>38.2</td>
<td>34.4</td>
<td>18</td>
</tr>
<tr>
<td>Zhao, 202032</td>
<td>53</td>
<td>44.8</td>
<td>43.4</td>
<td>18</td>
</tr>
<tr>
<td>Zheng, 202039</td>
<td>22</td>
<td>46.9</td>
<td>40.9</td>
<td>74</td>
</tr>
<tr>
<td>Zhu, 202040</td>
<td>111</td>
<td>50</td>
<td>65.8</td>
<td>16</td>
</tr>
</tbody>
</table>

CC-BY-ND 4.0 International license

It is made available under a [CC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).
NHC guideline: (a) Respiratory distress, RR ≥ 30/min, (b) Oxygen saturation level (SpO₂) ≤ 93% at rest and (c) Arterial blood oxygen partial pressure (PaO₂) /oxygen concentration (FiO₂) ≤ 300 mm Hg.

Pulmonary lesion: >50% lesion progression within 24-48h in pulmonary imaging

WHO guideline: Adolescent or adult with clinical signs of pneumonia (fever, cough, dyspnoea, fast breathing) plus one of the following: respiratory rate > 30 breaths/min; severe respiratory distress; or SpO₂ < 90% on room air

Age in mean (SD)

Figure 1: Workflow for selection of studies

In most studies the severe patient group was designated based on National Health Commission of China guidelines that specifies (a) Respiratory distress, RR ≥ 30/min, (b) Oxygen saturation level (SpO₂) ≤ 93% at rest and (c) Arterial blood oxygen partial pressure (PaO₂) /oxygen concentration (FiO₂) ≤ 300 mm Hg. For some studies, pulmonary lesion progression > 50% within 24-48 hours on imaging was used as additional criteria. One study used WHO guideline that categorizes severe patients as adolescent or adult with clinical signs of pneumonia (fever, cough, dyspnoea, fast breathing) plus one of the
following: respiratory rate > 30 breaths/min; severe respiratory distress; or SpO2 < 90% on room air.

Weighted mean of age of patients in severe group (59.7y, range 55.9 – 69.8) was higher than the non-severe group (50.2y, range 38.2 – 62.9). Severe group also had larger percentage of male patients (57.8%, range 35.7 – 90.9) than non-severe group (48.4%, range 29.1 – 70.0). Most commonly measured cytokines in these 18 studies included IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ. However, only 13 studies contained measurement of all six cytokines, and hence the meta-analysis for each cytokine was carried out across these 13 studies.

Meta-analysis of Cytokine Levels

Meta-analysis for SMD value of each marker using a random-effects model showed moderate and statistically significant elevation in severe patients for only two cytokines viz. IL-6 (SMD 0.53, 95% CI: 0.26 – 0.80, p < 0.001) (Fig. 2) and IL-10 (SMD 0.64, 95% CI: 0.38 – 0.91, p < 0.0001) (Fig. 3). Summary effect size of other markers IL-2 (p = 0.281), IL-4 (p = 0.305) and TNF-α (p = 0.258) were not significant. Level of IFN-γ, the type II interferon, showed a weak elevation in severe group (SMD 0.11, 95% CI: -0.01 – 0.23, p = 0.078) with moderate significance (Table 2).

Table 2: Meta-analysis result summary of all six cytokines

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Random Effect Model SMD (95% CI)</th>
<th>SMD p.value</th>
<th>Heterogeneity (I²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-2</td>
<td>0.12 (-0.10 - 0.35)</td>
<td>0.281</td>
<td>66.9%</td>
</tr>
<tr>
<td>IL-4</td>
<td>0.15 (-0.13 – 0.42)</td>
<td>0.305</td>
<td>79.2%</td>
</tr>
<tr>
<td>IL-6</td>
<td>0.53 (0.26 – 0.80)</td>
<td>0.0001</td>
<td>72.0%</td>
</tr>
<tr>
<td>IL-10</td>
<td>0.65 (0.38 – 0.91)</td>
<td><0.0001</td>
<td>73.0%</td>
</tr>
<tr>
<td>TNF-α</td>
<td>0.10 (-0.08 – 0.28)</td>
<td>0.258</td>
<td>50.8%</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>0.11 (-0.01 – 0.23)</td>
<td>0.078</td>
<td>0%</td>
</tr>
</tbody>
</table>
Figure 2: Standardized mean difference of IL-6 between severe and non-severe COVID-19 patients

<table>
<thead>
<tr>
<th>Author(s) and Year</th>
<th>n Severe mean</th>
<th>n Non-severe mean</th>
<th>Standardized Mean Difference [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng, 2020</td>
<td>20 105.965</td>
<td>94 25.357</td>
<td>0.84 [0.17, 1.51]</td>
</tr>
<tr>
<td>He, 2020</td>
<td>16 11.233</td>
<td>12 12.167</td>
<td>-0.19 [-0.98, 0.61]</td>
</tr>
<tr>
<td>Lv, 2020</td>
<td>155 29.82</td>
<td>115 17.44</td>
<td>0.19 [0.04, 0.42]</td>
</tr>
<tr>
<td>Nie, 2020</td>
<td>25 10.143</td>
<td>72 6.284</td>
<td>1.76 [1.16, 2.36]</td>
</tr>
<tr>
<td>Shi, 2020</td>
<td>21 46.74</td>
<td>22 29.993</td>
<td>0.27 [-0.34, 0.87]</td>
</tr>
<tr>
<td>Song, 2020</td>
<td>42 27.6</td>
<td>31 29.167</td>
<td>-0.05 [-0.53, 0.43]</td>
</tr>
<tr>
<td>Wei, Su, 2020</td>
<td>98 150.7</td>
<td>131 64.6</td>
<td>0.26 [-0.02, 0.54]</td>
</tr>
<tr>
<td>Zhang, Zhou, 2020</td>
<td>21 35.114</td>
<td>44 6.278</td>
<td>0.67 [0.03, 1.32]</td>
</tr>
<tr>
<td>Zhang, Wang, 2020</td>
<td>14 21.74</td>
<td>29 4.55</td>
<td>0.71 [-0.09, 1.50]</td>
</tr>
<tr>
<td>Zhang, Yu, 2020</td>
<td>18 43.383</td>
<td>93 5.99</td>
<td>0.91 [0.18, 1.64]</td>
</tr>
<tr>
<td>Zhao, 2020</td>
<td>18 63.523</td>
<td>53 29.42</td>
<td>0.85 [0.15, 1.55]</td>
</tr>
<tr>
<td>Zheng, 2020</td>
<td>74 35.167</td>
<td>22 23.67</td>
<td>0.35 [-0.11, 0.81]</td>
</tr>
<tr>
<td>Zhu, 2020</td>
<td>16 26.54</td>
<td>111 5.293</td>
<td>0.73 [-0.02, 1.48]</td>
</tr>
</tbody>
</table>

RE Model (Q = 36.55, df = 12, p = 0.000; \(\chi^2 = 72.0\%\))

0.53 [0.26, 0.80]

p = 0.0001

IL-6 Standardized Mean Difference

Figure 3: Standardized mean difference of IL-10 between severe and non-severe COVID-19 patients

<table>
<thead>
<tr>
<th>Author(s) and Year</th>
<th>n Severe mean</th>
<th>n Non-severe mean</th>
<th>Standardized Mean Difference [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feng, 2020</td>
<td>20 7.983</td>
<td>94 4.823</td>
<td>0.88 [0.24, 1.52]</td>
</tr>
<tr>
<td>He, 2020</td>
<td>16 7.167</td>
<td>12 6.25</td>
<td>0.80 [0.04, 1.55]</td>
</tr>
<tr>
<td>Lv, 2020</td>
<td>155 6.78</td>
<td>115 6.5</td>
<td>0.06 [-0.19, 0.29]</td>
</tr>
<tr>
<td>Nie, 2020</td>
<td>25 6.847</td>
<td>72 4.877</td>
<td>1.71 [1.14, 2.28]</td>
</tr>
<tr>
<td>Shi, 2020</td>
<td>21 10.173</td>
<td>22 5.777</td>
<td>0.61 [-0.01, 1.24]</td>
</tr>
<tr>
<td>Song, 2020</td>
<td>42 6.067</td>
<td>31 5.133</td>
<td>0.25 [-0.22, 0.72]</td>
</tr>
<tr>
<td>Wei, Su, 2020</td>
<td>98 4.3</td>
<td>131 3.9</td>
<td>0.23 [-0.03, 0.49]</td>
</tr>
<tr>
<td>Zhang, Zhou, 2020</td>
<td>21 11.075</td>
<td>44 5.432</td>
<td>0.60 [-0.04, 1.23]</td>
</tr>
<tr>
<td>Zhang, Wang, 2020</td>
<td>14 5.87</td>
<td>29 2.557</td>
<td>1.34 [0.57, 2.12]</td>
</tr>
<tr>
<td>Zhang, Yu, 2020</td>
<td>18 5.89</td>
<td>93 4.033</td>
<td>0.95 [0.27, 1.63]</td>
</tr>
<tr>
<td>Zhao, 2020</td>
<td>18 5.953</td>
<td>53 4.147</td>
<td>0.60 [0.02, 1.18]</td>
</tr>
<tr>
<td>Zheng, 2020</td>
<td>74 5.767</td>
<td>22 4.6</td>
<td>0.30 [-0.17, 0.77]</td>
</tr>
<tr>
<td>Zhu, 2020</td>
<td>16 6.89</td>
<td>111 3.283</td>
<td>0.82 [0.09, 1.56]</td>
</tr>
</tbody>
</table>

RE Model (Q = 44.84, df = 12, p = 0.000; \(\chi^2 = 73.0\%\))

0.64 [0.38, 0.91]

p = 0.0000

IL-10 Standardized Mean Difference
Meta-Regression with Age and Gender Difference

Summary effects of both IL-6 and IL-10 showed substantial heterogeneity ($I^2 \sim 72-73\%$) source of which was explored by carrying out meta-regression of IL-6 and IL-10 using (i) SMD of patient age and (ii) difference in male percentage between severe and non-severe groups as moderators in a mixed-effects model. Results revealed IL-10 levels having a dependence on the age difference (coefficient 0.63, $p = 0.012$), whereas the dependence of IL-6 on age was not significant ($p > 0.05$, Fig. 4). No dependence of IL-6 and IL-10 levels were found on gender expressed as difference of male percentage between the two groups (Supplementary Fig. S1). Above results ascribe some of the observed heterogeneity in IL-6 and IL-10 SMD to difference in average age between severe and non-severe group.

![Meta-regression bubble plots of (a) IL-6 and (b) IL-10 SMD with difference in age between severe and non-severe groups](image)

Figure 4: Meta-regression bubble plots of (a) IL-6 and (b) IL-10 SMD with difference in age between severe and non-severe groups

Relationship with Immune Cells

Neutrophil to Lymphocyte ratio (NLR) has been explored as a prognostic marker for COVID-19, with high level of NLR associated with severity of the disease43,44 or with higher mortality rates45,46. More specific subsets of the Lymphocytes, especially the CD4+ and CD8+ T-cell counts are found to be depleted in severe COVID-19 patients17,47.
However, meta-analysis across multiple studies did not indicate any significant change in the CD4+/CD8+ T-cell count ratio in severe COVID-19 patients. Our synthesis shows similar results with SMD of NLR as 0.71 (95% CI: 0.14 – 1.28, p = 0.014) (Supplementary Fig. S2) indicating significant increase in patients with severe disease, whereas the SMD of CD4+/CD8+ T-cell ratio was not significantly different across the groups (Supplementary Fig. S3).

We performed a meta-regression analysis of the SMD values of IL-6 and IL-10 on NLR and CD4+/CD8+ T-cell count ratio to assess if the observed heterogeneity could be ascribed to the variation of lymphocytes. Results showed IL-10 having a moderate dependence on NLR (p < 0.1) whereas IL-6 SMD was correlated with CD4+/CD8+ T-cell count ratio (p < 0.05). There was no significant dependent of IL-10 on NLR or IL-6 on CD4+/CD8+ T-cell count ratio (Supplementary Figs. S4 and S5).

Classifier Performance

Our results indicate that out of the 6 cytokines analyzed, levels of only the pro-inflammatory IL-6 and the immuno-suppressive IL-10 are significantly elevated in the severe group of patients, an observation reported in other studies as well.

This prompted us to assess the prognostic potential of these markers by developing a logistic regression model using IL-6 and IL-10 mean values as covariates to classify the patient groups as severe and non-severe across all 18 studies. Model using both IL-6 and IL-10 as input parameters showed an overall accuracy of 91.7% and area under the corresponding ROC curve as 0.957, which has higher than the corresponding values using only IL-6 (accuracy 77.8%, AUC 0.821) and only-IL-10 (accuracy 80.6%, AUC 0.878) as input parameters (Table 3, Fig. 5). Model with both IL-6 and IL-10 showed nearly 100% specificity and 83.3% sensitivity for classification in severe and non-severe categories.

Table 3: Classifier performance summary using only IL-6, only IL-10 and both IL-6 and IL-10 as input variables

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Accuracy (%)</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>77.8</td>
<td>66.7</td>
<td>88.9</td>
<td>0.821</td>
</tr>
<tr>
<td>IL-10</td>
<td>80.6</td>
<td>61.1</td>
<td>100</td>
<td>0.878</td>
</tr>
<tr>
<td>Both IL-6 and IL-10</td>
<td>91.7</td>
<td>83.3</td>
<td>100</td>
<td>0.957</td>
</tr>
</tbody>
</table>
Figure 5: ROC curve for classifier performance using only IL-6, only-10 and both IL-6 and IL-10 as input parameters

Limitations

Primary limitation of this meta-analysis is that the studies are restricted only to Chinese ethnicity, which was not by design but due to the fact that most initial studies were reported from this geographic region. Also 7 of the 18 studies were non-peer reviewed publications selected as per search strategy. There was some heterogeneity in clinical criteria for severe disease as shown in Table 1.

Publication bias towards higher SMD of IL-10 levels reported in smaller-size studies manifested as asymmetry in Funnel plot and Egger’s regression test ($p < 0.001$), whereas the corresponding bias was not significant ($p = 0.151$) for IL-6 (Fig. 6). Sensitivity analysis of the studies showed a large reduction of heterogeneity in IL-6 (I^2 value from 72% to 25%) and a moderate reduction for IL-10 (73% to 55%) by leaving out one particular study from the analysis (Supplementary Fig. S6).
Discussion

As the spread of COVID-19 becomes prevalent in most societies, a suitable prognostic test that can predict possible progression of patient to a severe state of the disease with reasonable accuracy is the need of the hour. Though NLR is seen as a critical parameter that is elevated in the severe COVID-19 patients, its use as a possible prognostic factor is not yet established. On the other hand, a test based on serum marker can have a wider deployment in varied clinical settings.

A recent proteomics study50 predicted similar classification performance for severe and non-severe COVID19 patients using 22 serum proteins and 7 metabolites as covariates. However, a proteomics infrastructure is not so common in a clinic, limiting clinical utility of this test.

Another study23 presented univariate classifier results between mild and severe patients using each cytokine as a diagnostic factor individually and found good performance with IL-6, IL-10 and IFN-γ as individual covariates. This model used individual patient data and
showed maximal classifier performance using IL-6 as covariate (sensitivity 82.4% and specificity 78.5%). Our analysis, though using mean values of patient groups, shows much improved performance when both IL-6 and IL-10 are used as covariates.

Conclusion

Our findings indicate a possible dysregulation in immune response against COVID-19, characterized by two counter-acting cytokines IL-6 and IL-10, shifts the balance between non-severe to severe category of patients, and hence measurement of both markers is necessary to demarcate the boundary. Availability of individual patient-level IL-6 and IL-10 data of past studies or initiation of future clinical studies will help to validate this model and establish it for routine clinical use.

Declaration of Interest

None

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author Contributions

SKD: Conceptualization, Literature curation, Analysis, Manuscript drafting, VK: Literature collection and curation, SD: Clinical perspective, MD and SG: Manuscript drafting, editing and review

Acknowledgement

SKD acknowledges Prof. Joy Kuri, Chair, Department of Electronic Science and Engineering, Indian Institute of Science, Bangalore for providing the computational resources.

Supplementary Material

Enclosed
References

41. National Health Commission & State Administration of Traditional Chinese

