Abstract
We apply topological data analysis, specifically the Mapper algorithm, to the U.S. COVID-19 data. The resulting Mapper graphs provide visualizations of the pandemic that are more complete than those supplied by other, more standard methods. They encode a variety of geometric features of the data cloud created from geographic information, time progression, and the number of COVID-19 cases. They reflect the development of the pandemic across all of the U.S. and capture the growth rates as well as the regional prominence of hot-spots. The Mapper graphs allow for easy comparisons across time and space and have the potential of becoming a useful predictive tool for the spread of the coronavirus.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding for this research was received.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
There is no need for approval for the research provided here since it only uses data that is publicly available.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
E-mail address: ychen10{at}wellesley.edu
URL: ivolic.wellesley.edu
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.