Abstract
The novel coronavirus (COVID-19) pandemic is pressurizing the healthcare systems across the globe and few of them are on the verge of failing. The detection of this virus as early as possible will help in contaminating the spread of it as the virus is mutating itself as fast as possible and currently there are about 4,300 strains of the virus according to the reports. Clinical studies have shown that most of the COVID-19 patients suffer from a lung infection similar to influenza. So, it is possible to diagnose lung infection using imaging techniques. Although a chest computed tomography (CT) scan has been shown to be an effective imaging technique for lung-related disease diagnosis, chest X-ray is more widely available across the hospitals due to its considerably lower cost and faster imaging time than CT scan. The advancements in the area of machine learning and pattern recognition has resulted in intelligent systems that analyze CT Scans or X-ray images and classify between pneumonia and normal patients. This paper proposes KE Sieve Neural Network architecture, which helps in the rapid diagnosis of COVID-19 using chest X-ray images. This architecture is achieving an accuracy of 98.49%. This noninvasive prediction method can assist the doctors in this pandemic and reduce the stress on health care systems.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No external funding was received for this research work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
Hyderabad, India. ssai.thejeshwar.in{at}ieee.org
Hyderabad, India. chaitanya.chokkareddy{at}gmail.com
Hyderabad, India. kumar.e{at}gmail.com
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.