ABSTRACT
Objectives This study aims to develop a machine learning approach for automated severity assessment of COVID-19 patients based on clinical and imaging data.
Materials and Methods Clinical data—demographics, signs, symptoms, comorbidities and blood test results—and chest CT scans of 346 patients from two hospitals in the Hubei province, China, were used to develop machine learning models for automated severity assessment of diagnosed COVID-19 cases. We compared the predictive power of clinical and imaging data by testing multiple machine learning models, and further explored the use of four oversampling methods to address the imbalance distribution issue. Features with the highest predictive power were identified using the SHAP framework.
Results Targeting differentiation between mild and severe cases, logistic regression models achieved the best performance on clinical features (AUC:0.848, sensitivity:0.455, specificity:0.906), imaging features (AUC:0.926, sensitivity:0.818, specificity:0.901) and the combined features (AUC:0.950, sensitivity:0.764, specificity:0.919). The SMOTE oversampling method further improved the performance of the combined features to AUC of 0.960 (sensitivity:0.845, specificity:0.929).
Discussion Imaging features had the strongest impact on the model output, while a combination of clinical and imaging features yielded the best performance overall. The identified predictive features were consistent with findings from previous studies. Oversampling yielded mixed results, although it achieved the best performance in our study.
Conclusions This study indicates that clinical and imaging features can be used for automated severity assessment of COVID-19 patients and have the potential to assist with triaging COVID-19 patients and prioritizing care for patients at higher risk of severe cases.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project was supported by Natural Science Foundation of Guangdong Province, Guangzhou Science, Technology and Innovation Commission, Foundation for Young Talents in Higher Education of Guangdong Province, the NHMRC Centre of Research Excellence in Digital Health and the NHMRC Partnership Centre for Health System Sustainability. We acknowledge Fujitsu Australia Limited for providing the computational resources for this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of the Huang Shi Central Hospital; IRB of the Xiang Yang Central Hospital
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.