Revisiting a null hypothesis: exploring the parameters of oligometastasis treatment

Jessica A. Scaborough1,2, Martin C. Tom3, and Jacob G. Scott1,2,64

1Translational Hematology and Oncology Research, Cleveland Clinic
2Systems Biology and Bioinformatics Program, Department of Nutrition, Case Western Reserve School of Medicine
3Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
4Radiation Oncology, Cleveland Clinic

In the treatment of patients with metastatic cancer, the current paradigm states that metastasis-directed therapy does not prolong life. This paradigm forms the basis of clinical trial null hypotheses, where trials are built to test the null hypothesis: patients garner no overall survival benefit from targeting metastatic lesions. However, with advancing imaging technology and increasingly precise techniques for targeting lesions, a much larger proportion of metastatic disease can be treated. As a result, the life-extending benefit of targeting metastatic disease is becoming increasingly clear. In this work, we suggest shifting this qualitative null hypothesis, and describe a mathematical model which can be used to frame a new, quantitative null. We begin with a very simple formulation of tumor growth, an exponential function, and use it to show that while any amount of cell kill will extend survival, in many cases the extent is so small as to be unnoticeable in a clinical context or out-weighed by factors related to toxicity and treatment time. Recasting the null in these quantitative terms will allow trialists to design trials specifically to increase understanding of what circumstances (patient selection, disease burden, tumor growth kinetics) can lead to improved OS when targeting metastatic lesions, rather than whether or not targeting metastases extends survival for patients with (oligo-)metastatic disease.

In the treatment of patients with metastatic cancer, the current paradigm states that targeted treatment of metastatic lesions does not prolong life. This paradigm forms the basis of clinical trial null hypotheses, where trials are built to test the null hypothesis: patients garner no overall survival (OS) benefit from targeting metastatic lesions.

The development of distant metastases is the forerunner of cancer-related death (1–3). A Hallmark of Cancer, the dissemination of cancer cells from their origin to distant sites results from a complex cascade of biological events, which may subsequently allow for even more efficient tumor propagation (4–6). Eradicating the body of as much metastatic disease as feasibly possible to halt said process is a natural inclination. Yet, historically, a guiding principle in treating cancer has been that targeting metastatic lesions leads to poor outcomes, because the treatment is either too late or too morbid. However, with advancing imaging technology and increasingly precise techniques for targeting lesions, a much larger proportion of metastatic disease can be treated. As a result, the life-extending benefit of targeting metastatic disease is becoming increasingly clear.

Metastatic stage is typically described as a binary variable in a clinical setting, either present or not (M0 or M1), although certain cancer subtypes (e.g. colon, prostate) now have more gradation in classifying a patient’s metastatic stage (7). The term “oligometastatic state” was first described in 1995 as an intermediary between localized and widespread metastatic disease where metastasis-directed treatment has the potential to be curative (8). Since then, results from several exploratory studies and randomized controlled trials using metastasis-directed therapy in such patients have accumulated to support its existence (9, 10).

Consensus definitions have since been proposed to further refine subgroups of oligometastasis (11–13). For example, the distinction between oligometastatic disease at presentation versus the development of oligometastatic disease following definitive treatment of non-metastatic cancer have been designated “synchronous oligometastases” and “metachronous oligorecurrence,” respectively. “Oligoprogression” describes growth of few metastases in the setting of otherwise stable (or responsive) disease whilst undergoing systemic therapy, and “oligopersistence” is characterized by having several lesions which have a poorer response to systemic therapy than others. Intra-patient heterogeneity often complicates diagnostics even further, where some lesions respond to therapeutics while others persist. These designations (and many more not listed) underscore the complexity with which researchers and clinicians are coming to understand this disease state.

In addition to refining the term “oligometastatic,” clinicians have examined the benefit of treating patients with oligometastases (27, 28). The implicit null hypothesis of these investigations, that targeting metastatic disease does not provide a life-extending benefit, stems from the current paradigm of metastatic cancer treatment. Table 1 summarizes the results of some of these recent phase II and III clinical trials, demonstrating that this null hypothesis is frequently (but not always) refuted. Even accounting for known positive publication bias (29, 30), there is substantial evidence that supports a changing paradigm in the treatment of oligometastatic patients. However, despite many studies showing a significant increase in overall survival (OS) when metastatic lesions are targeted, the null hypothesis in ongoing clinical trial planning has not changed.
In the Gomez et al. trial, treating oligometastases (≤ 3 non-primary lesions) demonstrated significant improvement in PFS and OS compared to maintenance therapy alone.

In the trial by Iyengar et al., targeting the primary with radiotherapy and oligometastases with SBRT followed by maintenance chemotherapy provided significantly improved progression-free survival compared to maintenance chemotherapy alone.

In the “SABR-COMET” trial, treating all sites of oligometastatic cancer with SABR demonstrated significantly improved OS compared to standard palliative treatment.

In the “ORIOLE” trial, treating all sites of oligometastases with SABR led to improved outcomes measured by 6-month rate of progression (by PSA, imaging, symptoms, androgen-deprivation therapy initiation, and survival) when comparing to observation alone.

In the “EORTC 40004” trial, treating liver metastases (<10, no extrahepatic disease) with RFA, systemic treatment, and +/- resection led to long-term OS improvement compared to systemic treatment alone.

In the “RTOG 0937” trial, treating oligometastases with PCI and consolidative radiotherapy to both the chest and metastases did not improve OS and did delay progression, compared to PCI alone.

In the “HORIZON” trial, in patients with metachronous oligometastasis, using metastasis-directed therapy (SBRT or surgery) provided longer ADT-free survival compared to surveillance alone.

In Arm H of the “STAMPEDE” trial, radiotherapy to the prostate did not improve OS in unfiltered cohort of patients, compared to lifelong ADT. However, in a pre-specified subgroup analysis, significant OS improvement was observed among those with lower metastatic burden.

In a trial by You et al., the addition of locoregional radiotherapy to the primary improved OS and PFS compared to chemotherapy alone in patients with (oligo- and poly-) metastatic nasopharyngeal carcinoma.

Table 1. A summary of clinical trials that examine the benefit of providing local treatment to patients with oligometastases.

In this work, we suggest shifting this qualitative null hypothesis, and describe a mathematical model which can be used to frame a new, quantitative null. We begin with a very simple formulation of tumor growth, an exponential function, and use it to show that while any amount of cell kill will extend survival, in many cases the extent is so small as to be unnoticeable in a clinical context or out-weighed by factors related to toxicity and treatment time. Recasting the null in these quantitative terms will allow trialists to design trials specifically to increase understanding of what circumstances (patient selection, disease burden, tumor growth kinetics) can lead to improved OS when targeting metastatic
lesions, rather than determining whether targeting metastases can extend survival for patients with (oligo-)metastatic disease. We purposely begin with the most simplistic possible mathematical model, considering only total disease burden and doubling time. We do not consider complexities such as space, metastatic locations/connectedness (31), immune interactions or any heterogeneities— all things which could be considered in future iterations, but which make the model less generalizable.

Due to its breadth, the current qualitative null hypothesis may be incorrectly accepted or rejected without a quantitative model to help design optimal patient and treatment parameters. Numerous qualitative and quantitative prognostic factors exist to help identify patients with metastatic disease which is likely to follow a relatively indolent course. For example, with slower disease progression, patients are more likely to derive greater benefit from aggressively targeting their metastases. Other characteristics include the number of lesions and organs involved, the time course of presentation and progression, tumor histology, patient innate and adaptive immunity, and various biological features (32). It is crucial that we parse through which of these patient characteristics can meaningfully affect treatment outcomes in the setting of oligometastasis. By rethinking the null hypothesis of metastatic cancer treatment, research efforts can better serve our patients by bringing a deeper understanding of how well treatment works, who it works best for, and when it is most efficacious, rather than continually testing the implicit null hypothesis.

Model

Beginning with a very simple model of tumor growth, an exponential function, we will explore the effect of treatment in scenarios with different growth rates, treatment effectiveness, and timing of the intervention. While this overlooks many of the realities of real human cancers, such as spatial, intra- and inter-tumoral (33–35) heterogeneity, it captures many of the essential aspects of growth (36). Furthermore, in the absence of other specific knowledge, general arguments can be expounded upon, but additional undetermined complexities can severely limit generalizability. Let us then model a tumor of size (cell number), \(N \), beginning with a single cell, and a growth rate, \(r \), as follows:

\[
N(t) = e^{rt}.
\]

To illustrate how the same intervention (removing \(N_c \) cells from the tumor) at different times effects our measure of survival, we plot several growth curves together in Figure 1. The time when each of these curves reaches \(N_T \) is the time of death \(t_{d,x} \). The difference (\(\Delta t \)) between the unperturbed time of death \(t_{d,1} \) and each subsequent example intervention (e.g., \(\Delta t = t_{d,2} - t_{d,1} \)) is the increase in survival. We note that the earlier the intervention occurs (smaller \(N_d \)), the greater the \(\Delta t \) and, therefore, increase in survival. This is also true if we kill more cells (i.e., \(N_c \) increases).

While Figure 1 considers how a single intervention will effect the “same” tumor, Supplementary Figure 1 explores the effect of altering tumor growth rate, \(r \), on \(\Delta t \) after the same intervention. This figure adds a faster tumor growth curve, in addition to the curve seen in Figure 1. The same intervention (removal of \(N_c \) cells) occurs at the same time points as the slower curve, yet the faster growing tumor has a smaller resulting changes in survival time (\(\Delta t_f \)) compared to the slower growing tumor (\(\Delta t_s \)).

Next, we will examine the analytical relationship between the change in survival (\(\Delta t \)) to the other parameters (\(r, N_c, N_d \)). This requires examining two tumor growth curves, one with unperturbed growth starting at \(N_d \) and the other with perturbed growth beginning at \((N_d - N_c) \). In other words, the perturbed curve will have the same growth characteristics as the unperturbed curve, but it will have \(N_c \) cells removed as “treatment.” Then, we will calculate the offset of time between the two curves when they reach \(N_T \), i.e. \(\Delta t \).

Graphically, we are asking how large the difference on the time axis is between where the treated and untreated curves intersect with \(N_T \) (the black dashed line), denoted by colored circles in Figure 1 and Supplementary Figure 1. Mathematically, we find the difference between \(t_{d,1} \) and \(t_{d,2} \): i.e. \(\Delta t \) when \((N_d)e^{rt_1} = (N_d - N_c)e^{rt_2} = N_T \). This relation is:

\[
\Delta t = \frac{1}{r} \ln \left(\frac{N_d}{(N_d - N_c)} \right). \hspace{1cm} (2)
\]

The observations from before are maintained: slower growing tumors (smaller \(r \)), more effective interventions (increasing \(N_c \)), and lower burden at time of treatment (lower \(N_d \)) make for a larger survival benefit, as we have intuited.

Given the intuitive nature of these results, one may question what the value of such a model is. First, this model allows for the quantitative exploration of what was previously an exclusively qualitatively described phenomenon. This allows for formal interrogation of the individual values of each parameter, a crucial step in quantitative reasoning during clinical trial design. In doing so, a framework for parameter estimation can help trialists perform sensible power calculations. This would require measuring distributions of each of these parameters as it is clear that heterogeneity (and uncertainty) exists in each. Further, this would allow for error propagation in addition to power calculations. With recent work trying to incorporate toxicity into survival analyses in radiation oncology (37), we have the opportunity to formally probe the balance between benefit and harm in this setting. Most importantly however, it will remove the confusion cre-
Fig. 1. Change in OS is modulated by when an oligometastasis-directed intervention occurs and the effectiveness of the intervention. We plot an illustrative exponential growth curve from equation 1 in black. At three different times, we subtract \(N_c \) cells from the curve to simulate an oligometastasis-directed intervention (orange markers), and the tumor continues to grow at the original rate from the new size. These subsequent tumors then grow and eventually intersect an arbitrary threshold cell (a surrogate for maximum tolerated disease burden) number (\(N_T \) - dashed horizontal line), there we can then determine the change in survival (vertical black lines, inset). The change in this time represents the \(\Delta t \) for each intervention. n.b. These are not realistic parameters, but instead serve to illustrate the (qualitatively conserved) phenomenon.

Figure 2 demonstrates a benefit of using a quantitative model with a sensitivity analysis to help us better understand the areas of the (very simplified) parameter space, a range of possible parameter values, where the greatest opportunities lie. Given that this is a simple exponential relation, the change in survival is monotone (always up or down) in each parameter. However, as the tumor growth curves are non-linear, we chose to plot the sensitivity analysis on a log-log plane to improve the visualization of changes in parameter values.

As we do not currently have known values for these parameters, exploring a large sweep of values can be instructive. We consider a continuous range for \(N_c \) in \([0, N_d]\), where \(N_c = 0 \) represents no intervention and \(N_c = N_d \) represents a cure. In these cases, \(\Delta t = 0 \) and \(\Delta t = \infty \), respectively. In Figure 2, we will consider four discrete examples of values for \(r \), as this parameter’s effect is monotone (where a case with lower \(r \) always derives more benefit from oligometastasis-directed therapy than a case with higher \(r \)). It is also important to note that this parameter is likely modifiable with chemo- or targeted-therapy: something we do not consider here, but would be a straightforward extension. This example will consider growth rates which correspond to tumor doubling times of 100, 200, 300 and 400 days. These could represent tumors such as small cell lung cancer in the fast extreme or prostate cancer in the slow extreme. Figure 2 shows this analysis, with isoclines shown in black to denote lines of equal effect. These curves demonstrate that any increase in \(N_c \) (more cell kill per intervention, “up” on the y-axis) and/or decrease in \(N_d \) (earlier intervention, “down” on the x-axis) increases the OS benefit. It is interesting to note that the movements (i.e. \(N_c \) up and \(N_d \) down) mirror the historical trend: improvements in detection of oligometastasis via anatomic or functional imaging have slowly pushed \(N_d \) lower over the years and the ability to safely (using SBRT...
Fig. 2. The benefit of oligometastasis-directed therapy depends monotonically on the amount of cells killed, the tumor burden, and tumor doubling time. We plot four orders of magnitude of both N_c and N_d on a log scale. The color represents the predicted number of days of OS benefit for each combination of N_c and N_d. Each of the four subplots represents a different "intrinsic" biology, modeled by different tumor doubling times. A t_d of 100, 200, 300, and 400 days corresponds to a growth rate, r, of 0.0069, 0.0035, 0.0023, and 0.0017, respectively. Contour lines are shown for ease of comparison. A selection of trials from Table 1 are represented by red circles based on estimations of N_d, N_c, r, and t_d for each trial.

Clinical correlation

In order to demonstrate how clinical trial design can explore the parameter space of this tumor growth model, we will review some recent clinical trials, which are also listed in Table 1. This discussion reviews illustrative examples, and is not an exhaustive list of all clinical trials which test the benefit of targeting oligometastases. For many trials, we will estimate where design falls in the parameter space of Figure 2, and discuss how trial design can test the effects of altering one or more parameters (i.e. N_d, N_c, or r).

In a phase II trial by Gomez et al., 49 patients with oligometastatic (≤ 3 metastases) non-small cell lung cancer (NSCLC) without progression after first-line systemic therapy were randomized to either maintenance systemic therapy/surveillance or local consolidative therapy (LCT) to all sites of residual disease via surgery or radiotherapy. After interim analysis demonstrated a substantial PFS benefit with LCT, the trial was closed early and allowed for crossover to the LCT arm (14). With additional follow up, and despite crossover, LCT was associated with improved OS of 41.2 months vs 17.0 months (15). We placed this trial in the top right subplot of Figure 2, due to the relatively fast growth rate of NSCLC, minimal tumor burden (≤ 3 metastases), and large N_c using radiotherapy or surgery.
The SABR-COMET study was a screening phase II trial which randomized 99 patients with oligometastatic disease (≤ 5 metastases) of various histologies with a controlled primary site to standard palliative therapy with or without stereotactic ablative radiotherapy (SABR) to all metastatic lesions. The primary endpoint was OS, which was initially improved with the addition of SABR from 28 months to 48 months (18). With additional follow up, results were even more substantial with a median OS of 50 months using SABR versus 28 months in the control arm (38). As this trial includes tumors of many histologies, we cannot combine the results in a single subplot of Figure 2, but doing so post hoc patient by patient would be illustrative.

In the phase II EORTC 40004 trial, 119 patients with fewer than 10 unresectable colorectal liver metastases and no extrahepatic disease were randomized to systemic therapy with or without local therapy using RFA (with or without resection). Although the primary endpoint of 30 month OS was not met, longer follow up led to improved OS with RFA from 40.5 months to 45.6 months (22). With a relatively slow growing tumor sub-type, a large Nd, and a moderate OS benefit, we estimated this clinical trial to fall in the bottom left subplot of the model’s parameter space found in Figure 2.

The largest study was Arm H of the STAMPEDE trial, which was a phase III trial of 2061 patients with metastatic prostate cancer randomized to androgen deprivation therapy with or without definitive radiotherapy to the prostate. Prespecified subgroup analysis demonstrated no benefit to the addition of prostate radiotherapy among those with a high metastatic burden, defined as either visceral metastases or ≥ 4 bone metastases with ≥ 1 outside of the vertebral bodies or pelvis. However, in the group of 819 patients with a low metastatic burden, radiotherapy to the prostate improved three-year OS from 73 percent to 81 %. (25) In relation to our model, this is equivalent to assuming that the two groups (high and low metastatic burden) have different Nd at the time of treatment, but experience the same Nc. It should be noted that unlike other trials discussed, local therapy was delivered only to the primary site, but not the metastatic sites, suggesting a benefit to cyto reduction. The estimated parameter space position of these two subgroups (high metastatic burden and low metastatic burden) is found in the bottom right subplot of Figure 2.

In the ORIOLE trial, patients with metachronous oligometastatic prostate cancer with ≤ 3 sites as detected by conventional imaging were randomized to surveillance of SABR to all sites (19). The primary endpoint was a composite of disease progression metrics at 6 months, which was improved with SABR at 19% versus 61% in the control arm. Interestingly, a subgroup of patients underwent advanced imaging with PSMA PET, which has demonstrated greater sensitivity in detecting prostate cancer metastases (putatively lowering Nd) (39). Among those patients where all PSMA PET avid sites were treated, the 6 month progression rate was just 5% compared to 38% in those with untreated sites. This subgroup analysis further supports that advanced imaging can better identify metastases and treating all sites improves outcomes. By utilizing a more sensitive technology in detecting (and therefore targeting) metastases, we see that a greater Nc increases OS, even if Nd remains the same. We estimate the parameter space for this subgroup analysis in the bottom right subplot of Figure 2.

Not all trials have demonstrated benefit to the addition of metastasis-directed therapy. For example, RTOG 0937 was a phase II study of 86 patients with extensive stage small cell lung cancer with at least a partial response to chemotherapy and 1-4 extracranial metastases who were randomized to prophylactic cranial irradiation with or without consolidative radiotherapy to the chest and all metastatic sites. The primary endpoint of one-year OS was not significantly different; 60% in the control arm and 51% in the consolidative radiotherapy arm (23). This negative result is estimated to be in the top left subplot of Figure 2, due to the rapid growth of SCLC. Here, this model would have still been useful in predicting the outcome of this trial, as a power calculation could demonstrate that the noise in the data and small predicted effect size would require a much greater sample size to demonstrate a significant change in OS.

Conclusions

In this work, we have used a simple exponential model of tumor growth to demonstrate why recent improvements in metastasis detection and treatment may allow us to reconsider the null hypothesis when treating patients with oligometastases. Specifically, more sensitive techniques to localize metastases, as seen with PSMA imaging, allow clinicians to increase how many tumor cells are removed, Nc, when considering patients at similar stages. When used for surveillance, these imaging techniques can decrease the size of the tumor at treatment, Nd, potentially leading to drastically improved OS. Next, advancements in the ability to administer local therapy to all sites of disease with surgical resection, radiotherapy, and/or ablative procedures such as radiofrequency ablation (RFA) has allowed for more effective, precise eradication of metastatic lesions with less associated morbidity. Furthermore, novel immuno- and targeted-therapies can likely decrease the growth rate, r, of tumors. Finally, it is important to note that the model demonstrated in this work is not a perfect representation of tumor growth and treatment, as it fails to consider intratumoral heterogeneity, metastasis location, and the inherent risks of treatment. However, because of its simplicity, this model provides a foundation exploring the current parameter space, while allowing researchers to add complexity as they see fit.

A mathematical model provides the distinct advantage of testing quantitative hypotheses to optimize the treatment of patients with oligometastases. Parameter selection regarding number of oligometastases, measurements of tumor burden, and efficacy of treatment options can be examined with robust hypotheses born from simulated results. Additionally, with increased translation between the bench and bedside, some of model parameters (e.g. r, tumor growth rate) may be inferred using serial tumor biopsies, *in vitro*, or *in silico* modeling. Furthermore, Bayesian adaptive clinical trials can
utilize these results during interim analyses to update the prioritized biomarkers, predicted probability of survival, and power calculations (40, 41).

Imaging and therapeutic advancements have provided us with the opportunity to revisit the implicit null hypothesis when treating patients with oligometastases. This null hypothesis states that targeting oligometastases does not provide life-extending benefit. There are minimal published clinical trial results that demonstrate this null hypothesis not being rejected; however, this is likely due to publication bias where positive results are more likely to be published, not simply because this null hypothesis has always been rejected (29, 30).

The clinical trials we discuss have necessarily sought to examine the fundamental idea that oligometastatic lesions should only be targeted for palliative care. Refuting this null hypothesis was crucial, as the earlier state of cancer imaging and treatment established that targeting oligometastases either occurred too late or caused too much harm. Yet, as quantitative models of tumor growth and the knowledge of how metastatic detection and treatment have evolved, we believe that clinical trials can now provide an even greater benefit by adjusting the implicit null hypothesis. Instead of demonstrating that targeting oligometastases provides benefit compared to surveillance or systemic therapy alone, rigorous hypothesis can be tested surrounding targeted treatment options, treatment timing, the sensitivity of imaging detection, and overall tumor burden.

Code Availability

All manuscripts generated by a computer code are available on GitHub at https://github.com/jessicascarborough/oligo-null.

Acknowledgements

JGS thanks his patients for providing him with motivation to push the boundaries of what we know. He would also like to thank the NIH for their support through NIH (which was not certified by peer review) (425).

Bibliography

Supplementary Information

Supplementary Fig 1. Change in OS is modulated by tumor growth rate, intervention timing, and intervention efficacy. Top: We plot two illustrative exponential growth curves from equation 1 in black, using a faster (dotted line) and slower (solid line) growth rate, \(r \). The slower growth rate is the same curves shown in Figure 1. At three different time points, we subtract \(N_c \) cells from the two curves to simulate an oligometastasis-directed intervention, and the tumor continues to grow at the original rate from the new size. These subsequent tumors then grow and eventually intersect an arbitrary threshold cell (a surrogate for maximum tolerated disease burden) number (\(N_T \) - dashed horizontal line). Bottom: We plot two expanded windows of the above plot, showing greater detail of the faster (left, dotted) and slower (right, solid) growth curves as they reach \(N_T \). In these plots, we can then determine the change in survival (vertical black lines). The change in this time represents the \(\Delta t_f \) and \(\Delta t_s \) for each intervention in the fast and slow curves, respectively. Notably, the x-axis for the faster (left, dotted) growth curves accounts for fewer days, despite having the same relative length as the x-axis for the slower (right, solid) growth curves. This was necessary in order to annotate the smaller \(\Delta t_f \) for the faster growth curves.