Acquired decrease of the C3b/C4b receptor (CR1, CD35) and C4d deposits on Erythrocytes from ICU COVID-19 Patients

Aymric Kisserli,1,2 Nathalie Schneider,3 Sandra Audonnet,4 Thierry Tabary,2,5 Antoine Goury,6 Joel Cousson,6 Rachid Mahmoudi,7,8 Firouze Bani-Sadr,6 Lukshe Kanagaratnam,8,9 Damien Jolly,8,9 and Jacques HM Cohen2

1Oncogeriatric Coordination Unit, Rheims University Hospital, Rheims, France; 2Nanosciences Research Laboratory LRN EA 4682, University of Rheims Champagne-Ardenne, Rheims, France; 3Biochemistry, Pharmacology and Toxicology Unit, Rheims University Hospital, Rheims, France; 4URCACyt, Flow Cytometry Technical Platform, University of Rheims Champagne-Ardenne, Rheims, France; 5Immunology Laboratory, Rheims University Hospital, Rheims, France; 6Medical-Surgical ICU, Rheims University Hospital, Rheims, France; 7Department of Internal Medicine and Geriatrics, Rheims University Hospital, Rheims, France; 8Aging and Fragility Unit EA 3797, University of Rheims Champagne-Ardenne, Rheims, France; 9Research Promotion and Support Unit, Rheims University Hospital, Rheims, France.

ABSTRACT:
We determined CR1, CD35 the C3b, C4b receptor density, C3b/C3bi and C4d deposits densities on Erythrocytes (E) in 51 COVID-19 patients undergoing O2 therapy or assisted ventilation in ICU units in Rheims France. A clear acquired decrease of CR1 density of E from COVID-19 patients was observed, particularly among fatal cases, and paralleling several severity parameters. Deposits of C4d largely above values observed in normal individuals, mostly without C3 deposits, have been observed in more than 80% of the patients, reminiscent of the sub endothelial pericapillary deposits in organ transplant rejection, already observed on E in parallel, as well as also observed on E in clinical SLE flares. Conversely, significant C3 deposits were only observed among ¼ of the patients. The decrease of CR1/E density, and the detection of virus spike, C3 or C4 fragment on E, among COVID-19 patients, are likely to be two aspects of the same phenomenon of immune complexes or complement fragment coated cell debris handling and clearance.
Measurement of C4d deposit on E might represent a way for assessing inflammation and complement activation occurring in organ capillaries. CR1/E decrease might represent a cumulative index of complement activation in COVID-19 patients. Taken together, these original findings stress on the participation of the complement regulatory proteins in that disease and evidence that E matter in immune mechanisms in COVID-19 patients. The use of CR1, or CR1-like molecules with the aim of down regulating complement activation and inflammation for therapy should also be considered.

Keywords: COVID-19; Complement; CR1; CD35; C3; C4; Erythrocytes

Abbreviations:
CR1 complement receptor one
C3 complement fragment 3
C4 complement fragment 4
DAT direct antiglobulin test
E Erythrocytes
FITC fluorescein Iso-thio-Cyanate
ICU intensive care unit
PE Phyco-Erythrin
Sa02 Oxygen Saturation
SLE systemic lupus erythematosus
HIGHLIGHTS

- Acquired decrease of CR1 on E in COVID-19 patients, particularly among fatal cases, and paralleling several severity parameters.

- Large C4d deposits on E in most patients, reminiscent of the pericapillary deposits in organ transplant rejection, already observed on E in parallel, as well as on E from SLE flares.

- C4d deposit on E, a possible way for assessing inflammation and complement activation in organ capillaries.

- Decreased CR1/E, a possible cumulative index of complement activation in COVID-19 patients.

- The use of CR1 or CR1-like molecules for down regulating complement activation for therapy should also be considered.
1. Introduction

CR1 is present on various lymphoid populations, including antigen presenting cells and B cells, a few epithelial cells including kidney glomeruli, on erythrocytes (E). In humans, a low density of CR1 ranging from 150-1200 sites/E is expressed, as determined by inherited polymorphisms, with 2 dominant genotypes (Wilson et al., 1986; Birmingham et al., 2003). Despite that low density, the number of E makes CR1/E the major source of CR1 available in the blood. An acquired decrease of CR1/E has been described in AIDS (Jouvin et al., 1987), SLE (Cohen et al., 1992), Malaria (Waitumbi et al., 2004) and Alzheimer disease (Mahmoudi et al, 2015; Mahmoudi et al, 2018). Primates do express CR1 on E (instead of platelets in most mammals) and use it as the main mechanism of immune complex (IC) capture and transportation, as well for the removal of cellular debris, either recognized by natural IgM auto-antibodies or directly activating the alternate pathway of the complement (C) system (Cornacoff et al., 1983; Waxman et al., 1984; Waxman et al.,1986). CR1 not only carries IC or cell remains, but contributes to the inactivation of the C3 loop on CR1, as a co-factor of Factor I (Inactivator). CR1 is thus a major down regulator of C activation (Iida and Nussenzweig, 1981; Fearon, 1980), even outside the peripheral blood as soluble CR1. CR1 from E is not only used on the E surface at the site of cell extravasation, but also through proteolysis of CR1 or exocytosis of CR1 enriched microvesicles (Dervillez et al., 1997).

CR1/E decreases by one third during the 120 day life of E in normal individuals (Cohen et al., 1992), but a larger proportion of CR1/E can be lost in acute situations, making CR1/E measurement a cumulative assessment of what happened during the E lifespan, like HbA1c, but in the opposite direction.

One paper reported on a decrease of CR1/E in patients during the SARS epidemic (Wang et al., 2005). We hypothesized that the major clinical crisis observed in COVID-19 disease might be induced by the immune response and could lead to a major consummation of CR1 on E. Evidence is accumulating on the role of the complement system in SARS (Gralinski et al., 2018) and now in COVID-19 (Risitano et al., 2020; Magro et al., 2020), as well as on immune-adherence on E in that disease (Matthew Lam et al., 2020).

Covalent C4d deposits on E are present at low level in normal individuals. It has known since the 1970s as the biochemical basis of the Chido/Rodgers Blood Group (Jilley et al., 1978). Higher densities of C4d have been found in SLE at the time of flares of the disease (Manzi et al., 2004), as well as in kidney transplant rejections (Golocheikine et al., 2010; Haidar et al., 2012), while sub-endothelial capillary C4d deposits are commonly found in chronic vascular rejection, without C3 of Ig deposits in most cases (Feucht et al., 1991). C4d deposition has also been observed in other organ transplant rejections (Lee et al., 2008). Among COVID-19 patients, C4d deposits in lung capillaries have also been reported (Magro et al., 2020).

2. Material and Methods

2.1 Patients and controls individuals

We determined CR1/E, C3b/C3bi and C4d deposits densities on E in 51 COVID-19 patients undergoing O2 therapy or assisted ventilation in ICU units in Rheims, France in an observational study. The number of longitudinal samples from a given individual was non constant ranging from one to five (supplemental figure 1). The first, the lowest, or longitudinal follow-up CR1/E determination for a given patient was used in order to perform comparisons to different clinical or biological parameters from which the lower or the higher recorded value were considered. (e.g; Lowest SaO2% or Highest D-Dimer value),

Data from historical cohorts of healthy volunteers from 400 Blood Donors under 60 years and 98 healthy individuals above 80 were used as controls populations. In addition, E from 3 healthy indi-
individuals with known values of CR1/E and C4d/E were used to set-up calibration curves for CR1/E and as positive threshold for C3 or C4d/E deposits.

2.2 CR1/E antigenic site, C3 /E and C4d/E deposit measurement

We determined CR1/E density on E using flow cytometry using an biotin-streptavidin, anti streptavidin enhanced method (Cohen et al., 1987; Kisserli et al., 2020). Reference Es of known CR1 densities allowed us to establish a calibration curve and absolute antigenic site number for a given sample. (Reagents used: biotinylated anti-CR1 monoclonal antibody (J3D3) (In lab production of a non-commercial monoclonal antibody, courtesy of Dr J. Cook). Vector anti streptavidin biotin (reference: BA-0500, Eurobio Ingen, Les Ulis, France). PE streptavidin (reference: 554061, BD Biosciences, San Jose, CA, USA) ).

C3b and C3bi deposits were detected by flow cytometry using a FITC conjugated monoclonal antibody (FITC Anti-Human complement component C3b/C3bi mAb (reference: CL7631F, Cedarlane, Hornby, Ontario, Canada).

C4d/E deposits were detected by flow cytometry using a biotin conjugated monoclonal antibody (Biotinylated Anti-Human C4d (reference: A 704, Quidel, San Diego, CA, USA) ).

C3 or C4d deposits expressed as number of events in an arbitrary windows at the right of the staining distribution were considered as positive and compared to values observed in normal individuals. Reference C3b or C4d coated E for calibrating flow cytometry and standardizing inter-assay repeatability as previously described (Haidar et al., 2012; Kerr and Stroud, 1979) were not available due to the particular circumstances of the study.

Readings were done on a LSRFORTESSA flow cytometer (reference: 647788, BD Biosciences, San Jose, CA, USA).

2.3 CR1/E density genotype

The HindIII polymorphism RS11118133, the main codominant bi-allelic SNP governing CR1 density on E was determined for every patient using PCRFLP (Wilson et al., 1986) with appropriate controls without any ambiguous allele assessment. Allowing to convert the absolute CR1/E antigenic site phenotypes observed to percentages of expected values from their genotype.

3. Results

3.1 CR1/E density from COVID-19 patients is decreased

CR1/E antigenic sites were measured in 51 COVID-19 patients undergoing O₂ therapy or assisted ventilation in ICU units in Rheims, France. A large decrease in CR1/E antigenic sites among patients was observed when compared to an historical cohort of healthy blood donors. We also ruled out an age effect (mean age of the COVID-19 patients was 64) by checking another historical cohort of aged individuals above 80 years, the CR1/E values of that cohort being similar to those of blood donors under 60 (Figure 1).

Among the 10 deceased patients, a trend to even lower CR1/E values was detected (Figure 1). Partial longitudinal data was available for 32 patients and analyzed according to the onset of the disease. Although most patients exhibited low CR1/E values early in the disease, a clear progressive decrease of CR1/E occurred around day 10 of symptoms in some individuals, whereas follow-up later in the disease some individuals displayed a return to normal higher values when recovering (Supplemental Figure 1). Interestingly, 6 patients received blood transfusions before testing, that
didn’t dramatically increase CR1/E in active disease, even after one individual received 8 E packs, suggesting that the CR1/E of transfused E had been rapidly consumed as part of the disease process. The acquired decrease in CR1/E density was correlated with the clinical severity parameters of decreased arterial SaO2 in O2 refractory (SaO2<91% cut off) patients and levels of D-Dimers (Supplemental Figures 2, 3).

3.2 Decrease of CR1/E density among COVID-19 patients is independent of the inherited genetic control by HindIII density polymorphism RS11118133

The HindIII polymorphism RS11118133 was determined for every patient. The global acquired decrease of CR1/E affected E bearing different inherited levels in CR1/E from the three genotypes HH, HL, or LL which were similarly represented in 51 patients and 87 controls (HH 62.7%, HL 31.4%, LL 5.9% and HH 63.2%, HL 32.2%, LL 4.6% respectively).

3.3 Decrease of CR1/E density according to the age of patients

Among all patients, age was a major predictive factor of decreased CR1/E. When using a cut-off of 350 CR1/E level, comparison of age and lower or higher values depicted a highly significant difference of 7.7 years (Mean age 71.24, Days 17966 SD 2319 N 20 / Mean age 63.53, Days 20778 SD 5206 N 31. Student t Test p < 0.001) that can also be visualized when plotting CR1/E versus dates of birth. (Supplemental Figure 4). This is strikingly similar to the now well-known effect of age on the mortality curve of COVID-19 patients (Williamson et al., 2020). (Supplemental Figure 5). The hypothesis can be made that some as yet unknown factor changes with age that determines the magnitude of the deleterious inflammation and complement activation in COVID-19 patients.

3.4 Strong C4d and fewer C3b/C3bi deposits are observed in COVID-19 patients

C3 and C4d have been detected in 114 samples from 51 patients by a flow cytometry sensitive detection reaching the levels found in normal individuals. C3 or C4d staining patterns in patients were quite different one from the other. Although C3 deposits remained in the normal range in ¾ of patients, ¼ exhibited larger deposits. C4d number of positive cells was above values observed in normal individuals in 83% of the tested samples (Figure 2), and trend toward a correlation with low CR1/E for the heaviest E deposits (Figure 3). No increase in C3 deposits were found on the E samples with the highest C4d deposits.

4. Discussion

CR1/E or complement fragment deposits on E can only be accurately determined on fresh E. We conducted an emergency study in the context of the French lock-down with the practical limitations of a limited number of patients with variable follow-up. Correlations to other biological or clinical parameters that can only be considered trends have been given as supplemental materials. But our direct findings on the acquired decrease of CR1/E and large deposits of C4d/E in most patients sound well and stress attention towards the role of complement in COVID-19, the potential use of complement parameters for the follow-up of patients, and the future use of complement regulating molecules in the care of COVID-19 patients.

C4d deposits originate from the classical pathway of complement activation, triggered either by antibody binding on an antigen or mannose-binding lectins (MBL), whereas C3 deposition can oc-
cur either downstream of the classical pathway activation or directly through the C3 amplification loop of complement activation, termed Alternative Pathway.

Most patients exhibited isolated C4d on E deposition only. Using an anti C3d for checking direct antiglobulin test (DAT) positive COVID-19 patients A. Berzuini et al detected C3 in 12% only of their patients' confirming isolated C4d deposits only in many cases (Berzuini et al., 2020), as already observed on E in kidney transplant rejection (Golocheikine et al., 2010; Haidar et al., 2012), and SLE clinical flares (Manzi et al., 2004).
The decrease of CR1/E density presented here, and the detection of virus spike, C3 or C4 fragment on E (Metthew Lam et al., 2020), among COVID-19 patients, are likely to be two aspects of the same phenomenon. Measuring complement fragment deposits gives a snapshot at a given time, whereas measuring CR1/E gives a picture of the patient’s response to infection over a longer duration. C4d/E deposition which was found elevated in most ICU COVID-19 patients might thus be an early signal of vascular damage.

Taken together, these data suggest that in COVID-19 patients, CR1 on E capture complement fragment coated-virus, virus containing immune complexes (IC) or cellular debris, as well as inactivates the C3 loop complement amplification on them. When overwhelmed by the amount of IC they are required to handle and by the magnitude of complement activation at E surface, E are shedding CR1 through exocytosis or proteolysis, resulting in a decrease of CR1 density on E. Complement fragment deposits, mostly C4d, then accumulate more on less efficiently defended E.

C4d deposits might reflect a phenomenon in the peripheral blood that is also occurring in capillaries resulting in end-organ damage seen clinically. CR1/E assessment, when coupled to RS11118133 SNP assessment, and C4d/E deposits should be evaluated as a predictive factor in COVID-19 patients.

The use of CR1, or CR1-like molecules with the aim of down regulating complement activation and inflammation for therapy should also be considered, either in the liquid phase or increasing the CR1 density on E to the higher range observed in other primates (Oudin et al., 2000).

Acknowledgments
Ms B. Reveil for her highly appreciated technical and moral assistance. Dr R. Levinson for helpful advice. This work was partly funded by the “Association pour le Développement de la Microbiologie et de l’Immunologie Rémoises” (ADMIR) non-profit Organization.

Authorship

Conflict-of-interest disclosure: All the Authors have no conflict of interest.
Correspondence: Jacques H. M. Cohen, Laboratoire de Recherche en Nanosciences LRN EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France ; e-mail : jacques.cohen@univ-reims.fr; tel : +33 611936745.

Footnotes

The Rheims University Hospital has obtained the authorization to create plasma and serum libraries from the Human Protection Committee (CPP Est III, national number: 2020-A01093-36) in order to study the soluble Vascular Endothelial Growth Factor (sFlt-1) receptor, in intensive care patients with severe COVID-19 pneumonitis. The patients or their families signed an informed consent form to participate, specifying that other elements, such as the red blood cells that were to be thrown away, could be used for research for other purposes, in the context of the COVID-19 epidemic. Blood donors were healthy unpaid Volunteers who signed the general informed consent from the national Établissement Français du Sang (EFS). Aged patients were from a cohort with individual informed consents approved by the regional ethics committee (CPP Est II), under the protocol number 2011-A00594-37.
References


Legends for Figures:

Fig. 1. Comparison of CR1/E density between COVID-19 patients and healthy individuals. A, CR1/E densities among COVID-19 patients (Mean 418 SD 162 N 51). B, CR1/E densities among deceased COVID-19 patients (Mean 361 SD 165 N 10). C, CR1/E densities among healthy blood donors (Mean 592 SD 287 N 400). D, CR1/E densities among healthy individuals above 80 Years (Mean 606 SD 248 N 98). Patients versus Healthy blood donors p<10^-6 Student t Test.

Fig. 2. C4d deposits on E from COVID-19 patients and healthy individuals. A, Distribution of C4d staining on E from COVID-19 patients. B, Levels of C4d staining on E in 3 healthy individuals indicating the limited range of C4d staining in normal individuals. Y axis: Positive events above the negative control staining.

Fig. 3. CR1/E density according to the C4d deposits. The COVID-19 patients are depicted in black. The healthy controls are depicted in red. X axis: The C4d deposits on E are expressed as positive events above the negative control staining.