The effect of public health policies in the transmission of COVID-19 for South American countries

AUTHORS

Bryan Valcarcela, Jose L. Avilezb, J. Smith Torres-Romanc, Julio A. Poterico, Janina Bazalar-Palacios, Carlo La Vecchiad

AFFILIATIONS

a) Facultad de Ciencias de la Salud, Medicina Humana, Universidad Científica del Sur, Lima, Perú

b) Faculty of Mathematics, University of Waterloo, Ontario, Canada

c) Unidad de Investigación Básica y Traslacional, Oncosalud-AUNA, Lima, Perú.

d) Instituto Nacional de Salud del Niño San Borja (INSN-SB), Lima, Perú

e) Instituto de Investigación, Universidad Católica Los Angeles de Chimbote, Chimbote, Perú.

f) Department of Clinical Sciences and Community Health, Università degli Studi di Milano 20133, Milan, Italy
ABSTRACT

Objectives: The analysis of transmission dynamics is crucial to determine whether mitigation or suppression measures reduce the spread of Coronavirus disease 2019 (COVID-19). This study sought to estimate the basic (R_0) and time-dependent (R_t) reproduction number of COVID-19 and contrast the public health measures for ten South American countries.

Methods: Data was obtained from the European Centre for Disease Prevention and Control. Country-specific R_0 estimates during the first two weeks of the outbreak and R_t estimates after 90 days were estimated.

Results: Countries used a combination of isolation, social distancing, quarantine, and community-wide containment measures to contain the spread of COVID-19 at different points in time. R_0 ranged from 1.52 (95% confidence interval: 1.13-1.99) in Venezuela, to 3.83 (3.04-4.75) in Chile, whereas R_t, after 90 days, ranged from 0.71 (95% credible interval: 0.39-1.05) in Uruguay to 1.20 (1.19-1.20) in Brazil. Different R_0 and R_t values may be related to the testing capacity of each country.

Conclusion: R_0 in the early phase of the outbreak varied across the South American countries. The adopted public health measures in the initial period of the pandemic appear to have reduced R_t over time in each country.

Key words: severe acute respiratory syndrome coronavirus 2; Basic Reproduction Number; South America; Communicable Diseases, Emerging; Epidemics; Epidemiology
1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an emerging respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1). COVID-19 was first detected in December 2019 in Wuhan, China (2) and have caused serious public health concern in over 213 countries (3). Several public health measures—social isolation, temporary closure of borders, temporary closure of academic institutions and public places, and quarantine—have been used to reduce the impact of the COVID-19 outbreak. South American (SA) countries have fragile public health systems, thus, COVID-19 has a detrimental impact on their population health (4).

Since the first reported COVID-19 patient on March 26 in Brazil (5), few SA modeling studies are available in the COVID-19 literature (6). Given the rapid spread of SARS-CoV-2 in this region, understanding transmissibility is key to guide the implementation of priority prevention and control measures. For this purpose, the basic reproduction number (R_0) represents a parameter to determine the transmission of a disease. R_0 estimates the number of secondary cases arising from exposure to an infected person in the absence of epidemic containment measures and depends on several biological and sociocultural factors (7). Another metric, the time-dependent reproduction number (R_t) is useful to monitor the transmissibility of SARS-CoV-2 over time and assessing whether current control efforts are adequate. R_t estimates the expected number of secondary infections from an infected individual at time t (8, 9). A variable that appears in models used to estimate R_0 and R_t is the serial interval, which measures the time elapsed between symptomatic cases in a chain of transmission. Determining the probability
distribution of the serial interval of SARS-CoV-2 and then estimating R_0 and R_t is crucial in assessing the rate at which the COVID-19 epidemic expands. Knowing the person-to-person transmission rate identifies whether mitigation and suppression measures are effective and when to adopt more or less stringent measures (10-12).

Given the importance of assessing the public health interventions to monitor their effectiveness, we estimated both reproduction numbers (R_0 and R_t) to identify the impact of the initial public health interventions in South America.

2. MATERIAL AND METHODS

2.1 Data sources

We used the data of the European Centre for Disease Prevention and Control (13). The database is publicly available and contains the worldwide geographic distribution of COVID-19. The database is updated daily and provide new cases and deaths by country and date of notification. We extracted the data from ten South America countries: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. Containment and mitigation decrees issued by each country against COVID-19 were found in government’s official webpages. (Appendix 1).
2.2 Variables

The following binary variables were recorded for each country for qualitative analysis: *Isolation*, separation of confirmed cases with COVID-19 in a healthcare facility or their home; *Quarantine*, social restriction and home containment of persons with suspected or known contact with a patient with COVID-19, or individuals with a travel history to Europe or Asia; *Social distancing*, group of measures related to the prevention of mass gathering, closure of academic institutions, and cancellation of social and public events; *Community-wide containment*, mandatory isolation of every citizen of the country in their home, with only permission to acquire life supplies (i.e., food or water) in restricted hours of the day (14).

Basic reproductive number (*R*_0) and *time-dependent reproductive number* (*R*_t)

*R*_0 is used to determine the early-outbreak transmission dynamics of a specific infectious pathogen. This parameter estimates the expected number of newly infected people that arise from effective contact with an ill person (15). We estimated *R*_0 using data for the two weeks after the first laboratory-confirmed case of SARS-CoV-2 in each country. The time frame was selected based on the maximum period to symptoms onset and because the period of exponential growth rate must be used to compute *R*_0 to avoid its underestimation. We specified the prior serial interval distribution using a Gamma distribution with a mean serial time of 3.96 days and a standard deviation of 4.75 days, based on a contact tracing study conducted by the Center for Disease Control and Prevention (CDC) (16). *R*_0 was estimated with the maximum likelihood method described by White and Pagano (17).
The R_t accounts for the expected number of secondary cases that a primary case would produce at time t. We estimated R_t from the time series of daily incidence of SARS-CoV-2 in each country, using the novel methods described by Thompson et al. and specifying the same Gamma distribution specification as we did for R_0 (18). We chose a 5-day moving window to elucidate the time trend exhibited by R_t. A previous study in China used a 10-day moving window to report R_t (19); however, they specified a mean serial time of 7.5 days, a misspecification of the mean by a factor of two with respect to the CDC contact tracing study. We, thus, chose a finer window to account for the faster spreading dynamics we specify in our models and estimate the number after 90 days for each country.

2.3 Data analysis

The statistical analysis was conducted in the software R version 3.6.2. First, we describe the public health measures taken by the SA countries and calculated the cumulative number of cases according to the two periods. Thereafter, the package “R0” was used to compute the basic reproductive number. We employed a Gamma distributed serial interval with mean serial interval (standard deviation) of 3.96 (4.75) days. Estimation of R_0 was carried out via the maximum likelihood method, and 95% confidence intervals (95% CI) were computed for each country’s R_0 value. We used the package “EpiEstim” to compute the time-varying reproductive number; the same serial interval distribution was specified. Country-wise time series for R_t, with 95% credible intervals (95% CrI), were plotted. The code is freely available at

3. RESULTS

Table 1 gives the total number of cases registered to April 14, and public health measures adopted by SA governments against COVID-19. All the countries adopted isolation, quarantine, and social distancing measures. However, the period between the first laboratory-confirmed case and the implementation of public health measures was different in each country. Seven countries, Argentina, Bolivia, Colombia, Paraguay, Peru, Uruguay, and Venezuela issued their mitigations in ≤7 days. Uruguay enacted the public health measures on the same day of the first case report, while Brazil issued them after 19 days.

Likewise, the time to implement a community-wide containment varied among SA countries. Two countries, Bolivia and Venezuela, issued this mitigation in ≤7 days after the first COVID-19 case; Paraguay and Peru between 7-14 days; and Argentina, Chile, Colombia, and Ecuador >14 days (Table 1). Moreover, Colombia (12 days) and Argentina (10 days) had the longest period between the first enacted measure and the community-wide containment. Chile made a stepwise selective community containment, starting with one province at a time. Brazil and Uruguay are the only countries that have not adopted community containment measures as of April 14, 2020.

Table 2 shows R_0 and R_t estimates for each country, and the corresponding cumulative number of cases. During the early phase of the pandemic, R_0 ranged from 1.52 to 3.83. For example, an R_0 of 3.83 means that, on average, each infected person can transmit the virus to roughly 4 different individuals. Brazil, Chile, and Ecuador had the highest R_0; these three countries enacted their first mitigation measures ≥14 days of the first COVID-19 patients in their territory. For the
countries with mitigation measures between 5-7 days, the R_0 ranged from 1.60 to 2.95, while for the countries with ≤3 days, it ranged from 1.52 to 1.74. All SA countries decreased their R_t over time (Figure 1). However, all countries experienced peaks throughout the study period. All nations had R_t at the last assessment ranging from 0.99 to 1.13. Although Bolivia and Uruguay had point estimates for R_t below 1, their 95% credible intervals are compatible with a still growing pandemic (Figure 1 and Table 2).

4. DISCUSSION

We used two measures to estimate the spread of SARS-CoV-2, R_0 during the early phase of the outbreak, and R_t to measure the changes of transmissibility over time to identify the effectiveness of public health policies in SA countries. The main results identified that R_0 varied across nations, and R_t decreased over time in all countries, which seems to be associated with the expediency of implementation of mitigation measures.

Our results differ from previous estimations of R_0 and R_t. Li et al. (20) reported an R_0 of 2.2 (95% CI: 1.4-3.9) calculated during the first 26 days of the outbreak Wuhan, China. Moreover, Zhao et al. (21) estimated an R_0 between 2.24 (95% CI: 1.96-2.55) and 5.71 (95% CI: 4.24-7.54) in a 15-day period. We used different parameters to estimate R_0. First, we chose 14 days based on the incubation period of the virus, providing a reasonable window in which the transmission can still be considered exponential. This allows our model specification to be consistent with the method of White and Pagano and prevents our R_0 values from being underestimated (17). Second, in the absence of contact tracing data, previous studies used the serial interval of other similar respiratory viruses as a proxy for the serial interval of SARS-CoV-2. Li et al. (20) used a mean
of 8.4 (3.8) days from SARS, while Zhao et al. (21) employed a mean of 7.6 ± 3.4 days from MERS, both studies used a gamma distribution. A study from the CDC identified that the mean serial interval for SARS-Cov-2 was lower, 3.96 ± 4.75 days, and proposed a gamma distribution as a plausible model for the serial interval; hence, we adjusted our analysis to this estimate. R_t values from SA countries are lower than European nations: R_t estimates by Yuan et al. (22) for Italy, France, Germany, and Spain ranged from 3.10 to 6.56 in an overall 20-day period.

The reproduction number - R_0 or R_t - is a measure that depends on the socio-cultural dynamics of a specific population (15). Human behaviors play a critical role in the transmission of SARS-CoV-2, as person-to-person contact exposes a susceptible person through respiratory droplets from an infected individual (23). Therefore, mitigation measures, such as social distancing or case isolation, are necessary to stop the spread of SARS-CoV-2. Ideal policies should be country-specific, and the overall objective is to reduce R_0 (mitigation) or to reach an $R_0 < 1$ (suppression). Regardless of the aim, a combination of measures are the best strategy (12).

Three countries, Brazil, Chile, and Uruguay opted for a mitigation strategy. Ferguson et al. suggest that the best mitigation strategy is the combination of social distancing of high-risk groups (elders and patients at risk of severe disease), case isolation, and quarantine (12). Uruguay implemented these three measures. Brazil and Chile added a stepwise selective population containment, which allows intermittent circulation of SARS-CoV-2, congruent with a mitigation purpose. The remaining SA countries opted for suppression actions. For example, Peru issued a decree to increase the period of the community-wide containment intervention and
to fine citizens if they left their home after a specified hour of the day (24). As a result, all nations managed a reduction of R_t.

Here we highlight several explanations for the change between R_0 and R_t. First, the implementation of public health measures by some countries within the first week of the outbreak could have lowered R_0. These laws aimed to reduce human contact, which, in turn, reduced the spread of the virus in the community. In contrast, the three countries with the highest R_0 in the early phase issued their first mitigation laws ≥ 14 days, which gave SARS-CoV-2 a higher chance of transmissibility among the population. Second, the reproduction number is susceptible to the ability of each country to detect COVID-19 cases (25). A lack of testing impairs the identification of cases within a community and provides limited data to estimate the reproduction number, generating unclear information to analyze the effect of mitigation or suppression interventions in a community. In addition, after notification of the first case, a number of cases tends to emerge in the subsequent days, thus inflating R_0. Despite the international donations of test kits to identify and isolate cases (26, 27), the fragile and fragmented structure of healthcare systems in South America deters a prompt diagnostic of true cases.

Although we used national reports of COVID-19 cases, under reporting is likely, and difficult to quantify. True case identification correlates with the testing capacity of both symptomatic and asymptomatic patients, which is difficult in any country and likely be impaired in SA countries. Second, we did not calculate the case-fatality ratio. During the current course of the pandemic in
the SA countries, the estimation of this metric is biased for underreporting of cases and time lag between the notification of cases and deaths (28, 29). Third, there are issues arising from the model specification for serial interval. For instance, we assumed the same serial interval distribution for all countries at all points in time, even though these should be space and time dependent, as serial interval distributions vary throughout an epidemic (25). Also, the CDC serial interval model only considers positive serial times, and hence censors all serial interval observations in which a secondary cases manifests symptom before a primary case. Per their findings, about 12.6% of secondary cases exhibit clinical symptoms before a primary case (i.e. an infected presenting symptoms before an infector); given how sensitive estimates of R_0 are to the serial interval distribution, our results should be updated as better model specifications of this variable are elucidated.

Our findings reflected a positive impact of the mitigation and suppression measures in SA nations to reduce the spread of SARS-CoV-2. Despite the fragile health system of most of these countries, the use of a combination of isolation, quarantine, social distancing, and community-wide containment has avoided a skyrocketing number of cases. The difference of R_0 in the early phase of the outbreak is probably due to a combination between a shortage of testing and the public health measures adopted by each country. However, the peaks of R_t during the study period suggest that Latin America is still far from containing the spread of COVID.
Bryan Valcarcel and Jose L. Avilez: Conceptualization, Data curation, Formal analysis. Jose L. Avilez: Visualization. Bryan Valcarcel, Jose L. Avilez, J. Smith Torres-Roman, Julio A. Poterico, Janina Bazalar-Palacios: Methodology, Writing - original draft, Writing - review & editing. Carlo La Vecchia: Project administration Supervision, Writing - review & editing

AKNOWLEDGMENTS:

We thank Dr. Sanz-Anquela JM., for the given advice in this work and Lopez-Abente G., for encourage us to perform this research.

Funding:

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Figure 1. Progression of the time-varying reproduction number (Rt) since the first case report in each country
5. REFERENCES

27. Garrison C. With U.S. hit by virus, China courts Latin America with medical diplomacy [Internet]. Reuters; March 26, 2020 [cited 2020 April 14]. Available from:
china-courts-latin-america-with-medical-diplomacy-idUSKBN21D346.

novel Coronavirus (2019-nCoV): estimating the case fatality rate - a word of caution. Swiss Med
Wkly. 2020;150:w20203.

29. Spychalski P, Błażyńska-Spychalska A, Kobiela J. Estimating case fatality rates of
Table 1. Status of the Mitigation and Suppression Measures of South American Countries

<table>
<thead>
<tr>
<th>Countries</th>
<th>Isolation, quarantine, and social distancing</th>
<th>Community-wide containment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Status</td>
<td>Days after 1st case</td>
</tr>
<tr>
<td>Brazil</td>
<td>Yes</td>
<td>19</td>
</tr>
<tr>
<td>Chile</td>
<td>Yes</td>
<td>14</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Yes</td>
<td>14</td>
</tr>
<tr>
<td>Argentina</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Peru</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>Colombia</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>Paraguay</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>Uruguay</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>Venezuela b</td>
<td>Yes</td>
<td>3</td>
</tr>
</tbody>
</table>

a Chile and Brazil developed a selective community-wide containment with different dates for specific provinces

b Venezuela started the mitigation measures (isolation, quarantine, social distancing, and community-wide containment) at the same date
Table 2. The Basic and Time-Varying Reproductive Numbers in South American Countries

<table>
<thead>
<tr>
<th>Countries</th>
<th>R_0 after 14 days</th>
<th>R_t after 90 days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cumulative cases</td>
<td>95% CI</td>
</tr>
<tr>
<td>Argentina</td>
<td>128</td>
<td>2.05, 1.52-2.68</td>
</tr>
<tr>
<td>Bolivia</td>
<td>39</td>
<td>1.60, 0.92-2.55</td>
</tr>
<tr>
<td>Brazil</td>
<td>25</td>
<td>3.40, 1.82-5.70</td>
</tr>
<tr>
<td>Chile</td>
<td>201</td>
<td>3.83, 3.04-4.75</td>
</tr>
<tr>
<td>Colombia</td>
<td>306</td>
<td>2.05, 1.70-2.45</td>
</tr>
<tr>
<td>Ecuador</td>
<td>168</td>
<td>3.72, 2.82-4.80</td>
</tr>
<tr>
<td>Paraguay</td>
<td>37</td>
<td>1.74, 0.96-2.86</td>
</tr>
<tr>
<td>Peru</td>
<td>263</td>
<td>2.94, 2.44-3.51</td>
</tr>
<tr>
<td>Uruguay</td>
<td>238</td>
<td>1.61, 1.34-1.92</td>
</tr>
<tr>
<td>Venezuela</td>
<td>119</td>
<td>1.52, 1.13-1.99</td>
</tr>
</tbody>
</table>

R_0, basic reproduction number; R_t, time-dependent reproduction number; 95% CI, 95% confidence interval; 95% CrI, 95% credible interval.