Management Strategies for People Experiencing Sheltered Homelessness during the COVID-19 Pandemic: Clinical Outcomes and Costs

Travis P. Baggett, MD, MPH 1, 2, 3
Justine A. Scott, MPH 4
Mylinh H. Le, BA 4
Fatma M. Shebl, MD, PhD 4
Christopher Panella, BA 4
Elena Losina, PhD 8, 9, 10
Clare Flanagan, MPH 4
Jessie M. Gaeta, MD 3, 7
Anne Neilan, MD, MPH 2, 4, 5, 11
Emily P. Hyle, MD, MSc 2, 4, 5, 6
Amir Mohareb, MD 4, 5
Krishna P. Reddy, MD, MS 2, 4, 12
Mark J. Siedner, MD, MPH 2, 4, 5, 13
Guy Harling, ScD, MPH 14, 15, 16, 17
Milton C. Weinstein, PhD 19
Andrea Ciaranello, MD, MPH 2, 4, 5, 6
Pooyan Kazemian, PhD** 18
Kenneth A. Freedberg, MD, MSc** 1, 2, 4, 5, 6, 19

**These two authors contributed equally to this work
1. Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
2. Harvard Medical School, Boston, MA
3. Institute for Research, Quality, and Policy in Homeless Health Care, Boston Health Care for the Homeless Program, Boston, MA
4. Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA
5. Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
6. Harvard University Center for AIDS Research, Boston, MA
7. Section of General Internal Medicine, Boston University School of Medicine
8. Department of Biostatistics, Boston University School of Public Health, Boston, MA
9. Orthopedic and Arthritis Center for Outcomes Research (OrACORe), Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA.
10. Policy and Innovation eValuation in Orthopedic Treatments (PIVOT) Center, Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA.
11. Division of General Academic Pediatrics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA
12. Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA
13. Africa Health Research Institute, KwaZulu-Natal, South Africa
15. Africa Health Research Institute, KwaZulu-Natal, South Africa
16. Institute for Global Health, University College London, London, UK
17. MRC/Wits Rural Public Health & Health Transitions Research Unit (Agincourt), University of Witwatersrand, South Africa
18. Department of Operations, Weatherhead School of Management, Case Western Reserve University, Cleveland, OH

Corresponding author:
Kenneth A. Freedberg, MD MSc
Medical Practice Evaluation Center
Massachusetts General Hospital
100 Cambridge Street, Suite 1600
Boston, MA 02114
Phone: (617) 724-3341
Fax: (617) 726-4120
Email: kfreedberg@mgh.harvard.edu

Word count (Abstract): 350/350 words
Word count (Text): 3,000/3,000 words
Tables: 2
Figures: 3

Target journal: JAMA Network Open
**Key Points**

**Question:** What are the projected clinical outcomes and costs of strategies for reducing COVID-19 infections among people experiencing sheltered homelessness?

**Findings:** In this microsimulation modeling study, daily symptom screening with polymerase chain reaction (PCR) testing of screen-positive individuals, paired with non-hospital care site management of people with mild to moderate COVID-19, substantially reduces infections and lowers costs over 4 months compared to no intervention, across a wide range of epidemic scenarios. In a surging epidemic, adding periodic universal PCR testing to symptom screening and non-hospital care site management improves clinical outcomes at modestly increased costs. Periodic universal PCR testing paired with temporary housing further reduces infections but at much higher cost.

**Meaning:** Daily symptom screening with PCR testing of screen-positive individuals and use of alternate care sites for COVID-19 management among sheltered homeless people will substantially prevent new cases and reduce costs compared to other strategies.
ABSTRACT

Importance: Approximately 356,000 people stay in homeless shelters nightly in the US. These individuals are at high risk for COVID-19.

Objective: To assess clinical outcomes, costs, and cost-effectiveness of strategies for COVID-19 prevention and management among sheltered homeless adults.

Design: We developed a dynamic microsimulation model of COVID-19. We modeled sheltered homeless adults in Boston, Massachusetts, using cohort characteristics and costs from Boston Health Care for the Homeless Program. Disease progression, transmission, and clinical outcomes data were from published literature and national databases. We examined surging, growing, and slowing epidemics (effective reproduction numbers $[R_e]$ 2.6, 1.3, and 0.9). Costs were from a health care sector perspective; time horizon was 4 months.

Setting & Participants: Simulated cohort of 2,258 adults residing in homeless shelters in Boston.

Interventions: We assessed combinations of daily symptom screening with same-day polymerase chain reaction (PCR) testing of screen-positive individuals, universal PCR testing every 2 weeks, hospital-based COVID-19 care, alternate care sites [ACSs] for mild/moderate COVID-19 management, and moving people from shelters to temporary housing, compared to no intervention.

Main Outcomes: Infections, hospital-days, costs, and cost-effectiveness.

Results: Compared to no intervention, daily symptom screening with ACSs for those with pending tests or confirmed COVID-19 and mild/moderate disease leads to 37% fewer infections and 46% lower costs when $R_e=2.6$, 75% fewer infections and 72% lower costs when $R_e=1.3$, and 51% fewer infections and 51% lower costs when $R_e=0.9$. Adding universal PCR testing every 2 weeks further decreases infections in all epidemic scenarios, with incremental cost per case prevented of $1,000 (R_e=2.6), $27,000 (R_e=1.3), and $71,000 (R_e=0.9). In all scenarios, moving shelter residents to temporary housing with universal PCR testing every 2 weeks is
most effective but substantially more costly than other options. Results are most sensitive to the cost and sensitivity of PCR testing and the efficacy of ACSs in preventing transmission.

**Conclusions & Relevance:** Daily symptom screening and ACSs for sheltered homeless adults will substantially decrease COVID-19 cases and reduce costs compared to no intervention. In a surging epidemic, adding universal PCR testing every 2 weeks further decreases cases at modest incremental cost and should be considered.

**Keywords:** Homelessness, COVID-19, cost-effectiveness analysis, simulation model
INTRODUCTION

Over 1.4 million people experience sheltered homelessness annually in the US, including approximately 356,000 on any given night. The crowded circumstances of homeless shelters place this population at increased risk for coronavirus disease 2019 (COVID-19). The United States (US) Centers for Disease Control and Prevention (CDC) issued comprehensive guidance for preventing and mitigating COVID-19 among people experiencing sheltered homelessness, including recommendations for infection control practices in shelters, symptom screening of shelter guests, and dedicated settings for isolation and management of individuals with symptoms or confirmed illness. The high burden of COVID-19 among sheltered homeless populations highlights an urgent need to understand the clinical outcomes and costs of CDC-recommended and other prevention and treatment strategies so that municipalities can make informed decisions. After a cluster of COVID-19 cases at a single large shelter in Boston, universal polymerase chain reaction (PCR) testing of 408 shelter residents found that 36% had SARS-CoV-2 infection. Eighty-eight percent of these individuals reported no symptoms at the time of testing, raising questions about how to identify COVID-19 disease in this population and the role of non-hospital alternate care sites (ACSs) to isolate those who do not require hospitalization. Our objective was to project the clinical and economic impact of COVID-19 management approaches for adults experiencing sheltered homelessness.

METHODS

Analytic Overview

We developed the Clinical and Economic Analysis of COVID-19 interventions (CEACOV) model, a dynamic microsimulation of the natural history of COVID-19 disease and the impact of prevention, testing, and treatment interventions. We used CEACOV to project the clinical impact, costs, and cost-effectiveness of various COVID-19 management strategies for people experiencing sheltered homelessness, including different combinations of symptom screening,
PCR testing, alternate care sites, and relocating all shelter residents to temporary housing. Using data from the early stage of an outbreak among homeless adults in Boston, Massachusetts, we modeled a cohort of sheltered homeless adults and examined management strategies under various epidemic scenarios, given evolving and heterogenous epidemic dynamics across the US.\textsuperscript{4,8} We evaluated 3 scenarios over a 4-month time horizon, with different effective reproduction numbers ($R_e$) representing surging ($R_e=2.6$), growing ($R_e=1.3$), and slowing ($R_e=0.9$) epidemics. Outcomes included number of infections, utilization of hospital and intensive care unit (ICU) beds, costs from the health care sector perspective, and cost per COVID-19 case prevented.

**Model Structure**

*Disease states and progression*

CEACOV is a dynamic microsimulation model of COVID-19 based on an SEIR framework, including susceptible, exposed, infectious, recovered, and death states.\textsuperscript{9} Infected individuals face daily probabilities of disease progression through 6 COVID-19 states: pre-infectious latency, asymptomatic, mild/moderate, severe, critical, and recuperation (eFigure 1). With mild/moderate disease, individuals have mild symptoms, such as cough or fever, that generally do not require inpatient management in a stably housed population. With severe disease, symptoms warrant regular inpatient management; with critical disease, patients require ICU care. Recovered individuals cannot transmit and are assumed immune from repeat infection.\textsuperscript{10} Model validation is described in the Supplemental Methods.

*Transmission*

Individuals with COVID-19 transmit to susceptible individuals at health state-stratified rates. We model a closed cohort, with transmissions occurring between people experiencing sheltered homelessness. All susceptible people face equal probabilities of contacting infected individuals
and becoming infected (homogenous mixing). The number of projected infections depends on COVID-19 prevalence, proportion of the population susceptible, transmission rates, and interventions that affect transmission by changing contact rates or infectivity per contact. Transmission rates are calibrated to achieve the desired $R_e$, which captures the average number of transmissions per case.

Testing and care interventions

Symptom screens or PCR tests are offered at intervals defined in each strategy; test sensitivities and specificities depend on COVID-19 health state. Care interventions include hospital care, ACSs, and temporary housing. Since adequate isolation for COVID-19 is not possible within congregate homeless shelters, care of homeless individuals with mild/moderate COVID-19 occurs either in hospitals or ACSs, such as large tents or non-hospital facilities with on-site medical staff. ACSs reduce transmission from and hospital use for people with mild/moderate illness. Temporary housing reduces transmission by preemptively moving everyone from shelters to individual living units (e.g., hotel or dormitory rooms) for the entire simulation period. Anyone who develops mild/moderate COVID-19 remains in temporary housing, which offers health monitoring and space for isolation but less intensive staffing and infection control than ACSs.

Resource use, costs, cost-effectiveness, and budget impact

The model tallies resource utilization, including tests and days in hospital, ICU, ACS, or temporary housing, and the daily cost of each, including medical supplies and personnel. We included a budget impact analysis to determine total costs for each strategy over the 4-month simulation. To understand the tradeoffs between cost and infections prevented and highlight the relative “return on investment” for each strategy, we present efficiency frontiers, plotting the number of infections prevented against total cost for each strategy. Since we focus on a cohort
relevant to an individual city, and since overall COVID-19 mortality is low, we report incremental cost per COVID-19 case prevented as an outcome; $1,000/case prevented is approximately equivalent to $61,000/quality-adjusted life year (QALY) gained at current case fatality levels (Table 2, notes).

**Strategies**

We assessed 8 strategies:

1) **NoIntervention**: Only basic infection control practices are implemented in shelters.

2) **SxScreen/PCR/Hospital**: CDC-recommended symptom screening daily in shelters. Screen-negative individuals remain in shelters. Screen-positive individuals are sent to the hospital for PCR testing. PCR-positive individuals remain in hospital; PCR-negative individuals return to shelter.

3) **SxScreen/PCR/ACS**: CDC-recommended symptom screening daily in shelters. Screen-negative individuals remain in shelters. Screen-positive individuals are sent to an ACS for people under investigation, where they undergo PCR testing and await results. PCR-positive individuals with mild/moderate illness are transferred to ACSs for confirmed COVID-19 cases. PCR-negative individuals return to shelter.

4) **UniversalPCR/Hospital**: Universal PCR testing every 2 weeks in shelters. Those with symptoms at the time of testing await results at the hospital; individuals without symptoms await results in shelters. PCR-negative individuals return to or stay in shelters. PCR-positive individuals, regardless of illness severity, remain in or are sent to the hospital.

5) **UniversalPCR/ACS**: Universal PCR testing every 2 weeks in shelters. Those with symptoms at the time of testing are sent to an ACS for people under investigation while awaiting results; individuals without symptoms await results in shelters. PCR-negative individuals return to or stay in shelters. PCR-positive individuals with mild/moderate illness are transferred to ACSs for confirmed COVID-19 cases.
6) *UniversalPCR/TempHousing*: All shelter residents are moved to temporary housing for the duration of the simulation. Universal PCR testing occurs every 2 weeks. PCR-positive individuals with mild/moderate illness remain in temporary housing and are transferred to the hospital if they progress to severe or critical disease.

7) *Hybrid/Hospital*: This includes the *SxScreen/PCR/Hospital* strategy, and adds universal PCR testing every 2 weeks in the shelter for those without symptoms.

8) *Hybrid/ACS*: This includes the *SxScreen/PCR/ACS* strategy, and adds universal PCR testing every 2 weeks in the shelter for those without symptoms.

In all 8 strategies, people with severe or critical illness are sent to the hospital. Individuals are eligible for repeat PCR testing after 5 days since their most recent negative test. See eFigure 2 for details.

**Input Parameters**

*Cohort characteristics*

The simulated cohort represents 2,258 adults living in Boston homeless shelters. Of those, 83% are aged 18-59 years, and 17% are ≥60 years (Table 1). Initial prevalence of active or past COVID-19 is assumed to be 2.2%. To reflect symptoms similar to but not due to COVID-19 (e.g., from other respiratory viruses or seasonal rhinitis), susceptible and recovered individuals in the model have a 0.01% daily probability of exhibiting mild/moderate COVID-like symptoms.\(^\text{15-17}\)

*Progression of COVID-19 and transmission*

Average duration of each COVID-19 state varies by severity (eTable 1). The probability of developing severe or critical disease, as well as mortality, increases with age.\(^\text{18,19}\) Transmission
rates are highest for individuals in asymptomatic and mild/moderate states; individuals in severe and critical states have fewer infectious contacts due to hospitalization.\textsuperscript{19–22}

\textit{Testing}

We assumed a symptom screen sensitivity of 0\% for asymptomatic infection, 62\% for mild/moderate COVID-19, and 100\% for severe or critical COVID-19\textsuperscript{.4} The PCR test is a nasopharyngeal sample with one-day result delay, 70\% sensitivity\textsuperscript{23,24} for people with no symptoms or mild/moderate symptoms, 100\% sensitivity for severe or critical illness, and 100\% specificity.

\textit{Hospitalization, alternate care sites, and temporary housing}

Hospitalization reduces mortality for those with critical illness.\textsuperscript{18,19} We assumed hospitalization reduces transmission within the modeled cohort by 100\%, while ACSs reduce transmission by 80\% and temporary housing by 60\%. Temporary housing was assumed less effective at reducing transmission compared to ACSs due to less stringent infection control measures in temporary housing and potential mixing of uninfected and infected individuals. Length-of-stay or hospitals and ACSs depends on severity and duration of illness.\textsuperscript{18–21,25–28}

\textit{Resource use and costs}

There is no additional cost for daily symptom screens, assuming these would be conducted by existing shelter staff. The nasopharyngeal PCR test costs $51.\textsuperscript{29} Hospitalization costs $1,641/day; ICU costs $2,683/day (Table 1; Technical Appendix).\textsuperscript{30–32} ACS costs $304/day; temporary housing costs $141/day (data from BHCHP).
Sensitivity Analyses

In one-way sensitivity analyses, we examined: 1) PCR sensitivity, PCR frequency, and symptom screen sensitivity (eTables 2-4); 2) efficacy of ACS and temporary housing in reducing transmission (eTables 5-6); and 3) costs of PCR test, symptom screen, hospital care, ACS, and temporary housing (eTables 7-10). In two-way sensitivity analyses, we varied influential parameters simultaneously (eTables 11-12). We also show outcomes per 1,000 homeless adults so that policymakers can apply the findings to sheltered homeless populations of differing sizes (eTable 13).

RESULTS

Base Case

Surging epidemic ($R_e=2.6$)

With $R_e=2.6$, the number of projected COVID-19 cases is highest with NoIntervention (1,954) and lowest with UniversalPCR/TempHousing (159) (Table 2; Figure 1). Other than the temporary housing strategy, strategies that rely on daily symptom screening are more effective in preventing infections (1,133 to 1,239 cumulative infections) than those with universal PCR testing every two weeks alone (1,679 to 1,681 cumulative infections), while hybrid screening strategies including daily symptom screening plus universal PCR testing every two weeks have the best clinical outcomes (967 to 985 cumulative infections).

With $R_e=2.6$, all ACS-based strategies have lower total costs ($3.27 to $4.14 million) than hospital-based strategies ($12.20 to $12.91 million) and cost less than NoIntervention ($6.10 million; Table 2; Figure 2, eTable 15). The most costly strategy is UniversalPCR/TempHousing ($39.93 million) and the least costly is SxScreen/PCR/ACS ($3.27 million).
Hybrid/ACS has 985 cases, compared to 1,239 with SxScreen/PCR/ACS, at $1,000/case prevented compared to SxScreen/PCR/ACS (Table 2). UniversalPCR/TempHousing, the most clinically effective strategy, has an incremental cost of $44,000 per case prevented compared to Hybrid/ACS. All other strategies are dominated, or less effective and more costly than another strategy or combination of strategies (Table 2; Figure 2, eTable 15). Hybrid/ACS strategy with PCR testing every 7 days decrease infections an additional 15% at $1,000/case prevented compared to Hybrid/ACS strategy with PCR testing every 14 days (eTable 14; Figure 3).

Growing epidemic (Re=1.3)

With Re=1.3, the number of projected cases ranges from 538 with NoIntervention to 73 with UniversalPCR/TempHousing (Table 2; Figure 1). All strategies reduce infections 60% or more compared with NoIntervention. ACS strategies are more effective and less costly than NoIntervention, and decrease total hospital bed days; hospital strategies increase costs compared to NoIntervention (Table 2; Figure 2, eTable 15). SxScreen/PCR/ACS decreases infections 75% compared to NoIntervention and has the lowest cost. Hybrid/ACS decreases infections an additional 6% at $27,000/case prevented compared to SxScreen/PCR/ACS. UniversalPCR/TempHousing further decreases infections at $1,338,000 per case prevented (Table 2; Figure 3).

Slowing epidemic (Re=0.9)

With Re=0.9, cumulative infections are fewer than in the other scenarios, ranging from 174 with NoIntervention to 62 with UniversalPCR/TempHousing (Table 2; Figure 1). All strategies reduce infections by at least 46% compared to NoIntervention. SxScreen/PCR/ACS decreases infections and costs by 51% compared to NoIntervention; it is the only strategy that costs less than NoIntervention (Table 2; Figure 2, eTable 15). Hybrid/ACS decreases infections an
additional 8% at $71,000 per case prevented compared to SxScreen/PCR/ACS (Table 2; Figure 3).

Sensitivity Analyses

One-way sensitivity analysis

Across the 3 epidemic scenarios, changes in PCR sensitivity, PCR cost, PCR frequency, and ACS efficacy would be most impactful on the incremental cost per case prevented. If PCR sensitivity were increased from 70% to 90% with \( R_e = 2.6 \), the number of infections with Hybrid/ACS would decrease from 985 to 668; incremental cost per case prevented would be $100 compared with SxScreen/PCR/ACS (eTable 2). If PCR cost decreased from $51 to $25 in \( R_e = 2.6 \), the Hybrid/ACS strategy would become cost-saving compared with SxScreen/PCR/ACS (eTable 7). If ACS efficacy in preventing transmissions decreases, total cases would increase in all the ACS-based strategies, and Hybrid/ACS becomes relatively less effective compared to SxScreen/PCR/ACS (eTable 5).

With \( R_e = 2.6 \), Hybrid/ACS with universal PCR testing every 7 rather than every 14 days would decrease infections by 29% (incremental cost of $1,000 per case prevented compared with testing every 14 days, eTable 14). Every 3-day testing would further reduce infections, at $2,000 per case prevented. In other \( R_e \) scenarios, the Hybrid/ACS strategy would not result in a cost per case prevented below $20,000 compared with SxScreen/PCR/ACS, regardless of universal testing frequency.

ACS-based management approaches would remain less costly than hospital care unless daily ACS costs begin to approach hospital costs, exceeding $1,600. Although UniversalPCR/TempHousing has the lowest number of cases in all scenarios, with \( R_e = 2.6 \), daily costs of temporary housing would need to be ≤$10/day to have an incremental cost per case
prevented of ≤$1,000 compared to Hybrid/ACS. In the lower $R_e$ scenarios, UniversalPCR/TempHousing has higher costs per case prevented. Other model parameters had no substantive impact on the results when varied across plausible ranges.

Two-way sensitivity analysis
In two-way sensitivity analysis there are a number of combinations where Hybrid/ACS would be cost-saving or have an incremental cost per case prevented compared to SxScreen/PCR/ACS of $1,000-$3,000, when the sensitivity of PCR increases and PCR cost decreases (eTable 11).

DISCUSSION
We developed a microsimulation model to examine the impact of COVID-19 testing and isolation strategies on infections and health care costs among adults experiencing sheltered homelessness. We had 2 major findings. First, ACSs for isolation of symptomatic individuals with pending tests, and those with confirmed mild or moderate COVID-19, substantially decrease costs compared to hospital-based care while achieving similar clinical outcomes. ACSs are especially useful for managing COVID-19 in homeless populations since people with mild to moderate illness cannot be effectively isolated from others in a shelter setting. Given data showing high levels of asymptomatic SARS-CoV-2 infection among people experiencing homelessness in Boston and other cities, ACSs could avert many hospitalizations, preserving beds for severely and critically ill individuals and reducing costs. Boston created several such ACSs, ranging from 16-bed tents to a 500-bed field unit in a downtown convention center. ACSs would reduce overall expenditures compared to hospitalization for mild to moderate illness in any city.

Second, the optimal testing approach depends on transmission dynamics. Across all epidemic scenarios, daily symptom screening and ACS-based COVID-19 management is highly effective
and cost-saving relative to no intervention. In a surging epidemic, adding universal PCR testing every 7 to 14 days to daily symptom screening yields clinical benefits at an incremental cost of less than $1,000 per case prevented. In sensitivity analyses, we found that this “hybrid” approach of daily symptom screening with additional regular PCR testing of asymptomatic people can be cost-saving relative to daily symptom screening alone if PCR sensitivity were to increase and PCR cost were to decrease. In a growing or slowing epidemic, testing beyond daily symptom screening prevents a small number of new cases at relatively high incremental costs.

Temporary housing with universal PCR testing every 2 weeks is the most effective strategy for reducing COVID-19 in all scenarios but is also the most costly. Unless temporary housing costs were reduced below plausible ranges, temporary housing to address COVID-19 would be very costly. However, this analysis does not account for other potential benefits of temporary housing on physical or mental health. Ultimately, broader policies around temporary or permanent supportive housing measures for people experiencing homelessness should account for more than COVID-19 mitigation, recognizing that the COVID-19 pandemic is one of many health risks of homelessness.

This study complements the findings of a recent study using a dynamic transition model of structural interventions for COVID-19 among people experiencing homelessness in England. In that analysis, single-room accommodations for people with COVID-19 symptoms and people without symptoms but at high risk for COVID-19 complications were projected to reduce infections, hospitalizations, and deaths by 36% to 64%. Our analysis adds to this by examining additional structural interventions (ACSs and temporary housing) in a US context, combined with various COVID-19 diagnostic approaches (e.g., symptom screening, universal PCR testing, and hybrid strategies), and by adding cost-effectiveness to inform policy and practice decisions.
This analysis has several limitations. The findings are specific to individual adults; we excluded adults experiencing homelessness as part of a family, because family shelters are more likely to provide private living quarters.\textsuperscript{15-17} We also excluded unsheltered homeless individuals because disease transmission dynamics and infection control considerations are distinct for this subpopulation.\textsuperscript{38} We assumed homogeneous mixing of sheltered homeless adults; in reality this population is spread over numerous shelters. We did not model variable uptake or acceptability of these interventions. In the base case, we did not assume increased comorbidities among homeless adults compared with the general population.\textsuperscript{39} Finally, the analysis is based on the possibility that ACSs and PCR tests can be made available relatively quickly to homeless adults. This may be difficult in some settings because those responsible for making ACSs and PCR tests available are not those responsible for hospital costs, and record-keeping may be challenging.

In summary, daily symptom screening and use of ACSs for those with pending test results or mild to moderate COVID-19 will reduce infections and lower costs compared to no intervention. In a surging epidemic, adding universal PCR testing every 2 weeks would further reduce infections at a reasonable cost. Routine symptom screening, implementation of ACSs, and selective use of universal PCR testing should be implemented for sheltered homeless populations in the US.
ACKNOWLEDGEMENTS
We thank Elizabeth Lewis and Agnes Leung for their assistance with clinical and cost data from Boston Health Care for the Homeless Program as well as Guner Ege Eskibozkurt and Mary Feser for technical assistance.

AUTHOR ROLES
All authors contributed substantively to this manuscript in the following ways: study and model design (all authors), data analysis (MHL, FMS, EL), interpretation of results (all authors), drafting the manuscript (KAF, TPB), and critical revision of the manuscript (all authors) and final approval of submitted version (all authors).

CONFLICTS OF INTEREST AND FINANCIAL DISCLOSURES
The authors have no conflicts of interest or financial disclosures.

FUNDING
This work was supported by the National Institute of Allergy and Infectious Disease [T32 AI007433 to AM] and the National Institute of Arthritis and Musculoskeletal and Skin Diseases [K24 AR057827 to EL] at the National Institutes of Health, and by the Royal Society and Wellcome Trust [210479/Z/18/Z to GH].

The funding sources had no role in the study design, data collection, data analysis, data interpretation, writing of the manuscript, or in the decision to submit the manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding sources.
REFERENCES


40. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of
coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship,

41. Haridy R. CDC director warns 25 percent of COVID-19 cases may present no symptoms.

42. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid
dissemination of novel coronavirus (SARS-CoV2). *Science*. Published online March 16,
2020:eabb3221. doi:10.1126/science.abb3221


44. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities,
and outcomes among 5700 patients hospitalized with COVID-19 in the New York City

practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness

46. Sullivan PW, Ghushchyan V. Preference-Based EQ-5D index scores for chronic conditions
doi:10.1177/0272989X06290495

Table 1. Input parameters for an analysis of management strategies for people experiencing sheltered homelessness during the COVID-19 pandemic.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort characteristics</td>
<td>Cohort size</td>
<td>2,258</td>
</tr>
<tr>
<td>Age distribution, %&lt;sup&gt;a&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-59y</td>
<td>82.9</td>
<td>BHCHP</td>
</tr>
<tr>
<td>&gt;60y</td>
<td>17.1</td>
<td></td>
</tr>
<tr>
<td>Natural history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probability of COVID-19 severity&lt;sup&gt;a&lt;/sup&gt;, stratified by age</td>
<td>Asymptomatic infection</td>
<td>Mild/moderate illness</td>
</tr>
<tr>
<td>18-59y</td>
<td>0.262</td>
<td>0.720</td>
</tr>
<tr>
<td>&gt;60y</td>
<td>0.180</td>
<td>0.788</td>
</tr>
<tr>
<td>Duration of illness state among hospitalized patients, stratified by COVID-19 severity, mean, days&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-infectious latent to asymptomatic state</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Asymptomatic to mild/moderate state</td>
<td>--</td>
<td>2.0</td>
</tr>
<tr>
<td>Mild/moderate to severe state</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Severe to critical illness state</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Critical illness to recuperation state</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Duration of illness state among non-hospitalized patients, stratified by COVID-19 severity, mean, days&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-infectious latent to asymptomatic state</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Asymptomatic to mild/moderate state</td>
<td>--</td>
<td>2.0</td>
</tr>
<tr>
<td>Mild/moderate to severe state</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Severe to critical illness state</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Duration of viral shedding, stratified by COVID-19 severity, mean, days&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic infection</td>
<td>9.5</td>
<td>12</td>
</tr>
</tbody>
</table>
### Table 1 continued. Input parameters for an analysis of management strategies for people experiencing sheltered homelessness during the COVID-19 pandemic.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Natural history, continued</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily probability of mortality in the critical state, stratified by age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hospital care</td>
<td>0.004</td>
<td>Der. from 18,19</td>
</tr>
<tr>
<td>No hospital care</td>
<td>0.166</td>
<td>Der. from 40,44,45</td>
</tr>
<tr>
<td><strong>Daily probability of onward transmission, stratified by disease state</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic state</td>
<td>0.2394</td>
<td>Der. from 19–22</td>
</tr>
<tr>
<td>Mild/moderate state</td>
<td>0.1948</td>
<td></td>
</tr>
<tr>
<td>Severe state</td>
<td>0.0135</td>
<td></td>
</tr>
<tr>
<td>Critical state</td>
<td>0.0107</td>
<td></td>
</tr>
<tr>
<td>Recuperation state</td>
<td>0.0135</td>
<td></td>
</tr>
<tr>
<td>Persons with other respiratory illnesses exhibiting mild/moderate COVID-like symptoms, daily, %</td>
<td>0.01</td>
<td>15–17</td>
</tr>
<tr>
<td><strong>Duration of mild/moderate COVID-like symptoms, mean, days</strong></td>
<td>5</td>
<td>Asm.</td>
</tr>
<tr>
<td><strong>Intervention</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduction in transmission rates,  c %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS for people with pending PCR test results</td>
<td>80</td>
<td>Asm.</td>
</tr>
<tr>
<td>ACS for people with confirmed COVID-19</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td>Temporary housing</td>
<td>60</td>
<td>Asm.</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td><strong>Intervention cost, 2020 USD</strong></td>
<td>Daily cost</td>
<td>Total daily cost</td>
</tr>
<tr>
<td></td>
<td>Materials</td>
<td>Personnel</td>
</tr>
<tr>
<td>ACS</td>
<td>79</td>
<td>225</td>
</tr>
<tr>
<td>Temporary housing*</td>
<td>85</td>
<td>56</td>
</tr>
<tr>
<td>Hospital (non-ICU) bed*</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ICU bed</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 1 continued. Input parameters for an analysis of management strategies for people experiencing sheltered homelessness during the COVID-19 pandemic.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Testing</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptom screen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity, stratified by disease state, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-infectious latent</td>
<td>0</td>
<td>Asm.</td>
</tr>
<tr>
<td>Asymptomatic state</td>
<td>0</td>
<td>Asm.</td>
</tr>
<tr>
<td>Mild/moderate state</td>
<td>62</td>
<td>Der. from 4, Asm.</td>
</tr>
<tr>
<td>Severe state</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td>Critical state</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td>Result return delay, days</td>
<td>0</td>
<td>Asm.</td>
</tr>
<tr>
<td>Unit cost, 2020 USD</td>
<td>0</td>
<td>Asm.</td>
</tr>
<tr>
<td><strong>PCR, nasopharyngeal specimen</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitivity, stratified by disease state, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-infectious latent</td>
<td>0</td>
<td>Asm.</td>
</tr>
<tr>
<td>Asymptomatic state</td>
<td>70</td>
<td>Asm.</td>
</tr>
<tr>
<td>Mild/moderate state</td>
<td>70</td>
<td>23,24</td>
</tr>
<tr>
<td>Severe state</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td>Critical state</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td>Specificity, %</td>
<td>100</td>
<td>Asm.</td>
</tr>
<tr>
<td>Result return delay, days</td>
<td>1</td>
<td>Asm.</td>
</tr>
<tr>
<td>Unit cost, 2020 USD</td>
<td>51</td>
<td>29</td>
</tr>
</tbody>
</table>

Abbreviations: Asm., assumption; ACS, alternate care sites; BHCHP, Boston Health Care for the Homeless Program; COVID-19, coronavirus disease 2019; Der., derived; ICU, intensive care unit; mod., moderate; PCR, polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; USD, United States dollars.; y, years.

a Severity probability refers to the likelihood that an individual, once infected with SARS-CoV-2, will eventually progress to the specified severity of COVID-19 disease.

b Durations of illness state and of viral shedding were derived from model inputs of transition probabilities. See eTable 1 for more details.

c In ACSs for people with pending PCR test results, there are people without COVID-19 who are susceptible to infection. Transmission in ACSs for people with pending PCR test results is thus not completely reduced. In ACSs for people with confirmed COVID-19, we assumed complete reduction in transmission among sheltered homeless people and did not examine SARS-CoV-2
transmission to healthcare workers. Temporary housing is a less medicalized setting compared to hospitals and ACSs and was assumed to have a lower reduction in SARS-CoV-2 transmission rates.

The sensitivity of symptom screening for identifying individuals with mild to moderate COVID-19 was derived from an unpublished reanalysis of data from SARS-CoV-2 testing at a single large shelter in Boston, MA.

Among COVID-positive individuals presenting with mild to moderate symptoms at time of testing, 83% (15/18) would have been identified using symptom screening instrument concordant with CDC guidelines. To account for the underreporting of symptoms among shelter residents due to stigma and/or fear of losing shelter accommodations, we estimated that only 75% of those with mild to moderate COVID-19 would report their symptoms. Thus, we estimated that the symptom screen would identify 62% (0.83*0.75) shelter residents with mild to moderate COVID-19.

Data on cohort characteristics and costs of alternative care sites and temporary housing were derived from unpublished data from the Boston Health Care for the Homeless Program.
Table 2. Results of an analysis of management strategies for people experiencing sheltered homelessness during the COVID-19 pandemic at 4 months (n=2,258).

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cumulative infections, n</th>
<th>Reduction in cases, a %</th>
<th>Peak daily hospital bed use, n</th>
<th>Total hospital days, n</th>
<th>Total cost, b 2020 USD</th>
<th>Cost compared with NoIntervention, b 2020 USD</th>
<th>Incr. cost per case prevented, b, c 2020 USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effective reproduction number (R_e) = 2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SxScreen/PCR/ACS</td>
<td>1,239</td>
<td>36.6</td>
<td>5</td>
<td>394</td>
<td>3,267,000</td>
<td>- 2,831,000</td>
<td>-</td>
</tr>
<tr>
<td>Hybrid/ACS</td>
<td>985</td>
<td>49.6</td>
<td>4</td>
<td>305</td>
<td>3,628,000</td>
<td>- 2,470,000</td>
<td>1,000</td>
</tr>
<tr>
<td>UniversalPCR/ACS</td>
<td>1,681</td>
<td>14.0</td>
<td>9</td>
<td>569</td>
<td>4,143,000</td>
<td>- 1,955,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>NoIntervention</td>
<td>1,954</td>
<td>-</td>
<td>64</td>
<td>3,567</td>
<td>6,098,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid/Hospital</td>
<td>967</td>
<td>50.5</td>
<td>80</td>
<td>6,796</td>
<td>12,202,000</td>
<td>+ 6,104,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>SxScreen/PCR/Hospital</td>
<td>1,133</td>
<td>42.0</td>
<td>93</td>
<td>7,656</td>
<td>12,620,000</td>
<td>+ 6,522,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>UniversalPCR/Hospital</td>
<td>1,679</td>
<td>14.1</td>
<td>112</td>
<td>7,165</td>
<td>12,914,000</td>
<td>+ 6,816,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>UniversalPCR/TempHousing</td>
<td>159</td>
<td>91.9</td>
<td>12</td>
<td>679</td>
<td>39,934,000</td>
<td>+ 33,836,000</td>
<td>44,000</td>
</tr>
<tr>
<td>Effective reproduction number (R_e) = 1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SxScreen/PCR/ACS</td>
<td>137</td>
<td>74.5</td>
<td>1</td>
<td>48</td>
<td>409,000</td>
<td>- 1,052,000</td>
<td>-</td>
</tr>
<tr>
<td>Hybrid/ACS</td>
<td>103</td>
<td>80.8</td>
<td>1</td>
<td>69</td>
<td>1,325,000</td>
<td>- 136,000</td>
<td>27,000</td>
</tr>
<tr>
<td>UniversalPCR/ACS</td>
<td>207</td>
<td>61.5</td>
<td>1</td>
<td>34</td>
<td>1,426,000</td>
<td>- 35,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>NoIntervention</td>
<td>538</td>
<td>-</td>
<td>9</td>
<td>867</td>
<td>1,461,000</td>
<td>-</td>
<td>Dominated</td>
</tr>
<tr>
<td>SxScreen/PCR/Hospital</td>
<td>125</td>
<td>76.7</td>
<td>22</td>
<td>966</td>
<td>1,604,000</td>
<td>+ 143,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>Hybrid/Hospital</td>
<td>100</td>
<td>81.4</td>
<td>23</td>
<td>815</td>
<td>2,368,000</td>
<td>+ 907,000</td>
<td>382,000</td>
</tr>
<tr>
<td>UniversalPCR/Hospital</td>
<td>207</td>
<td>61.4</td>
<td>19</td>
<td>977</td>
<td>2,631,000</td>
<td>+ 1,170,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>UniversalPCR/TempHousing</td>
<td>73</td>
<td>86.5</td>
<td>9</td>
<td>319</td>
<td>39,389,000</td>
<td>+ 37,928,000</td>
<td>1,338,000</td>
</tr>
</tbody>
</table>
Table 2 continued. Results of an analysis of management strategies for people experiencing sheltered homelessness during the COVID-19 pandemic at 4 months (n=2,258).

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Cumulative infections, n</th>
<th>Reduction in cases, %</th>
<th>Peak daily hospital bed use, n</th>
<th>Total hospital days, n</th>
<th>Total cost, 2020 USD</th>
<th>Cost compared with NoIntervention, 2020 USD</th>
<th>Incr. cost per case prevented, 2020 USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SxScreen/PCR/ACS</td>
<td>85</td>
<td>51.2</td>
<td>1</td>
<td>30</td>
<td>264,000</td>
<td>- 276,000</td>
<td>-</td>
</tr>
<tr>
<td>NoIntervention</td>
<td>174</td>
<td>0.0</td>
<td>5</td>
<td>318</td>
<td>540,000</td>
<td>-</td>
<td>Dominated</td>
</tr>
<tr>
<td>SxScreen/PCR/Hospital</td>
<td>82</td>
<td>53.2</td>
<td>20</td>
<td>669</td>
<td>1,113,000</td>
<td>+ 573,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>UniversalPCR/ACS</td>
<td>94</td>
<td>45.7</td>
<td>1</td>
<td>31</td>
<td>1,226,000</td>
<td>+ 686,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>Hybrid/ACS</td>
<td>71</td>
<td>59.1</td>
<td>1</td>
<td>25</td>
<td>1,240,000</td>
<td>+ 700,000</td>
<td>71,000</td>
</tr>
<tr>
<td>UniversalPCR/Hospital</td>
<td>95</td>
<td>45.5</td>
<td>19</td>
<td>534</td>
<td>1,901,000</td>
<td>+ 1,361,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>Hybrid/Hospital</td>
<td>71</td>
<td>59.4</td>
<td>22</td>
<td>595</td>
<td>2,004,000</td>
<td>+ 1,464,000</td>
<td>Dominated</td>
</tr>
<tr>
<td>UniversalPCR/TempHousing</td>
<td>62</td>
<td>64.3</td>
<td>9</td>
<td>277</td>
<td>39,326,000</td>
<td>+ 38,786,000</td>
<td>4,199,000</td>
</tr>
</tbody>
</table>

Abbreviations: ACS, alternate care site; COVID-19, coronavirus disease 2019; Dominated, less clinically effective and more costly than an alternative strategy, or a combination of two alternative strategies; \(^{46}\) Incr., incremental; PCR, polymerase chain reaction; UniversalPCR, universal polymerase chain reaction test for everyone; USD, United States dollars; SxScreen, symptom screen; TempHousing, temporary housing.

\(^{a}\) Reduction in cases are calculated by dividing the number of cases prevented with the use of an alternative strategy by the number of cumulative cases for NoIntervention.

\(^{b}\) All costs are rounded to the nearest thousands.

\(^{c}\) Incremental costs per case prevented are calculated by dividing the difference in total costs by the difference in cumulative infections compared to the next most expensive strategy. All strategies are listed in order of ascending total costs, per convention of cost-effectiveness analysis.

Using 9.50 years of life lost per COVID-19 death from the model, and a mean age-stratified utility of 0.85 for the modeled population,\(^{40,47-49}\) a cost per case prevented of $1,000 is equivalent to an incremental cost-effectiveness ratio (ICER) of $61,000/quality-adjusted life year (QALY) gained. A ratio of $27,000 per case prevented is equivalent to $1,728,000/QALY gained. Any higher cost per case prevented has an even higher ICER.
LEGENDS TO FIGURES

**Figure 1.** Cumulative infections by management strategy for people experiencing sheltered homelessness in Boston during the COVID-19 pandemic over a 4-month period.

These panels depict the projected number of cumulative infections over time by management strategy. Panels A, B, and C show model results for $R_e$ of 2.6, 1.3, and 0.9, respectively. In each panel, time 0 on the horizontal axis represents the start of model simulation, with SARS-CoV-2 infection prevalence of 2.2%. *UniversalPCR/Hospital* and *UniversalPCR/ACS* are overlapping lines since they differ only in costs; they are shown separately for clarity. The same is true for *Hybrid/Hospital* and *Hybrid/ACS*. The insets in Panels B and C magnify the vertical axis for clarity. See Methods for strategy definitions.

Abbreviations: ACS, alternate care site; COVID-19, coronavirus disease 2019; PCR, polymerase chain reaction; UniversalPCR, universal polymerase chain reaction test for everyone; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; SxScreen, symptom screen; TempHousing, temporary housing.

**Figure 2.** Health care sector costs of implementing different management strategies for people experiencing sheltered homelessness in Boston during the COVID-19 pandemic over a 4-month period.

These panels show the total and component COVID-19-related health care costs, from a health care sector perspective, associated with different intervention strategies when applied to the adult sheltered homeless population in Boston. Panels A, B, and C show model results for $R_e$ of 2.6, 1.3, and 0.9, respectively. Costs are derived from model-generated results and are undiscounted. See Methods for strategy definitions.
Abbreviations: ACS, alternate care site; COVID-19, coronavirus disease 2019; ICU, intensive care unit; M, millions; PCR, polymerase chain reaction; UniversalPCR, universal polymerase chain reaction test for everyone; USD, United States dollars; SxScreen, symptom screen; TempHousing, temporary housing.

Figure 3. Infections averted and costs of management strategies for people experiencing sheltered homelessness in Boston during the COVID-19 pandemic over a 4-month period.

Panels A, B, and C show model results for $R_e$ of 2.6, 1.3, and 0.9, respectively. The dashed line represents the efficient frontier; strategies below this line are dominated; less clinically effective and more costly, or with a higher incremental cost per case prevented than an alternative strategy or combination of strategies. Costs are from model-generated results and are undiscounted. Results for the UniversalPCR/TempHousing strategy are not shown for $R_e$ of 1.3 and 0.9. In addition to all base case strategies, Panel A shows the Hybrid/ACS strategy with PCR testing every 7 days. See Methods for strategy definitions.
Figure 1.

(A) $R_0 = 2.6$

(B) $R_0 = 1.3$

(C) $R_0 = 0.9$
Figure 2.

(A) $R_e = 2.6$
(B) \( R_e = 1.3 \)
(C) $R_e = 0.9$
Figure 3.

(A) $R_e = 2.6$
(B) \( R_e = 1.3 \)
$R_e = 0.9$