A Phase 3, Randomized, Controlled Trial of Astodrimer 1% Gel for Preventing Recurrent Bacterial Vaginosis

Jane R. SCHWEBKE, MD1, Belvia A. CARTER, MD2, Arthur S. WALDBAUM, MD3, Ms. Kathy J. AGNEW, BS4, Jeremy R.A. PAULL, PhD5, Ms. Clare F. PRICE, BPharm5, Mr. Alex CASTELLARNAU, VMD5, Philip MCCLOUD, PhD6, George R. KINGHORN, MD, FRCP7

1 Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
2 Women’s Physician Group, Memphis, TN, US
3 Downtown Women’s Health Care, Denver, CO, US
4 Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, US
5 Starpharma Pty Ltd, Melbourne, VIC, Australia
6 McCloud Consulting Group, Sydney, NSW, Australia
7 Royal Hallamshire and Sheffield Teaching Hospitals, Sheffield, United Kingdom

Conflict of Interest Statement: JRS is a paid consultant for Starpharma Pty Ltd, Talis One, Toltec, Lupin Pharmaceuticals, and Hologic. ASW received research funding from Gage Development Company.

Financial Disclosure Statement: This study was funded by Starpharma Pty Ltd. Starpharma Pty Ltd was responsible for the study design, the collection, analysis and interpretation of data, the decision to submit the article for publication, and preparation of the manuscript. The funder provided support in the form of research funding for this study to JRS, BAC and ASW. The
funder provided support in the form of salaries for JRAP, CFP and AC, and consulting fees for KJA, PMcC and GRK.

Clinical Trial Registration: Date of Registration: September 12, 2014; First Patient Enrolled: October 13, 2014; Identification No.: NCT02237950; clinicaltrials.gov

Paper Presentation: The 46th Annual Meeting of The Infectious Diseases Society for Obstetrics and Gynecology (IDSOG), Big Sky, Montana, USA, August 8-10, 2019

Author for Correspondence:

Jeremy R.A. Paull, PhD
4-6 Southampton Crescent, Abbotsford, Victoria 3067, Australia
Telephone (Work): +61 3 8532 2736
Email: jeremy.paull@starpharma.com

Word Count: Abstract=496; Main text=2993
This Phase 3 randomized controlled trial demonstrated efficacy and safety of Astodrimer 1% Gel for the prevention of recurrent bacterial vaginosis.

Short Title

Astodrimer Gel for prevention of bacterial vaginosis.

AJOG at a Glance

A. Why was the study conducted?

The study was conducted to confirm the efficacy and safety of Astodrimer 1% Gel, which has a novel, non-antibiotic mechanism of action related to disruption of biofilms, for the prevention of recurrent bacterial vaginosis.

B. What are the key findings?

Astodrimer 1% Gel administered every second day for 16 weeks, was effective and superior to placebo for the prevention of recurrent bacterial vaginosis in women with a history of recurrent BV, and was well-tolerated.

C. What does this study add to what is already known?

These results support the use of Astodrimer 1% Gel, which was previously shown to be effective for the treatment of women with bacterial vaginosis, as a safe and effective product for the prevention of recurrent bacterial vaginosis.
Abstract

Background: Bacterial vaginosis is highly recurrent after antibiotic treatment, and prevention represents an unmet medical need. Astodrimer 1% Gel contains a novel dendrimer that blocks bacterial attachment and has been shown to effectively treat bacterial vaginosis.

Objective: The objective of the study was to confirm the efficacy and safety of Astodrimer 1% Gel to prevent recurrence of bacterial vaginosis.

Study Design: 864 women with a current episode of bacterial vaginosis and a history of recurrent bacterial vaginosis were enrolled in the open-label phase of the study to receive oral metronidazole (500 mg twice daily for 7 days) at 77 centers in North America. 586 women successfully treated with metronidazole were randomly assigned 1:1 to Astodrimer 1% Gel or placebo at a dose of 5 g vaginally every second day for 16 weeks, and followed for a further 12 weeks off-treatment. The primary endpoint was recurrence of bacterial vaginosis (presence of \geq3 Amsel criteria) at or by Week 16. Secondary endpoints of recurrence of bacterial vaginosis at or by Week 16 included time to recurrence, subject-reported symptoms of bacterial vaginosis, individual Amsel criteria, Nugent score 7-10, and the composite of Amsel criteria and Nugent score. Adverse events were monitored throughout the study.

Results: Astodrimer 1% Gel was superior to placebo for the primary and many secondary efficacy measures. At or by Week 16, bacterial vaginosis recurred in 44.2% (130/294) of women receiving astodrimer and 54.3% (158/291) receiving placebo ($P = .015$). Time to recurrence of bacterial vaginosis was significantly longer for women receiving astodrimer compared with placebo (Kaplan-Meier survival curves, $P = .007$). Recurrence of subject-reported symptoms at or by Week 16 was also significantly lower in the astodrimer arm compared with placebo.
(vaginal odor and/or discharge, 27.9% [75/269] vs 40.6% [108/266], \(P = .002 \)). A significantly lower proportion of patients receiving astodrimer compared with placebo had recurrence of bacterial vaginosis at or by Week 16 by other secondary measures, including individual Amsel criteria (vaginal discharge and clue cells), Nugent score 7-10, and composite of Nugent score and Amsel criteria. Recurrence of subject-reported bacterial vaginosis symptoms, vaginal odor and/or discharge, was significantly lower in the astodrimer arm compared with placebo up to 8 weeks after cessation of therapy (36.1% [97/269] vs 45.5% [121/266], \(P = .027 \)). During the 12-week follow-up, recurrence of \(\geq 3 \) Amsel criteria after cessation of therapy in women given astodrimer was lower than in those given placebo, but the differences were not statistically significant.

Adverse events were infrequent, and rates were similar between placebo and astodrimer groups, except for vulvovaginal candidiasis and urinary tract infection, which occurred more often in women receiving astodrimer.

Conclusions: Astodrimer 1% Gel, administered every second day for 16 weeks, was effective and superior to placebo for prevention of recurrent bacterial vaginosis in women with a history of recurrent BV, and was well-tolerated. These results support a role for Astodrimer 1% Gel as an effective long-term treatment to prevent recurrent bacterial vaginosis that avoids potential issues associated with conventional antibiotics.

Keywords

Astodrimer Gel; bacterial vaginosis; biofilm; prevention; recurrent bacterial vaginosis; SPL7013; VivaGel
Bacterial vaginosis (BV) is the most common vaginal infection and approximately twice as common as vulvovaginal candidiasis. BV recurrence rates are high at 43% to 52% within 3 to 6 months of treatment. BV is a risk factor for serious medical sequelae, including pre-term birth, and acquisition and transmission of human immunodeficiency virus (HIV) and other sexually transmitted infections. Recurrent BV has particularly significant psychosocial impacts on women, including severely affecting self-esteem and sex life, and carries a high economic burden.

In the US, there are no approved therapies and there have been no other large, adequately powered, well-controlled studies of interventions for prevention of recurrent BV. Antibiotic therapies are used prophylactically off-label over extended periods for reducing recurrence of BV, but are associated with increased risk of side effects and potential for antibiotic resistance development. It is not realistic to expect a one-time therapy to provide long-term cure of BV, given the lifestyle factors associated with recurrence. Therefore, therapies for preventing BV recurrence that are suitable for longer-term use are urgently required.

Astodrimer sodium (VivaGel, Starpharma Pty Ltd, Melbourne, Victoria, Australia) is a highly branched, polyanionic dendrimer that blocks attachment of bacteria to cells, preventing formation of bacterial biofilms, which are central to the pathogenesis of BV and not targeted by existing therapies. Astodrimer Gel was effective for treatment of women with BV, achieving clinical cure at the end of a 7-day treatment course, and was well-tolerated and not systemically absorbed.
Astodrimer Gel offers potential as a non-antibiotic approach suitable for longer-term administration to prevent recurrent BV. This adequately powered, placebo-controlled, phase 3 study assessed the efficacy and safety of Astodrimer 1% Gel for preventing recurrent BV.

Materials and Methods

Study Design

This was a Phase 3, double-blind, multicenter, randomized, placebo-controlled study assessing the efficacy and safety of Astodrimer 1% Gel applied vaginally for 16 weeks compared with placebo (hydroxyethyl cellulose placebo gel) to prevent recurrence of BV.

The study complied with the Declaration of Helsinki, was conducted in accordance with Good Clinical Practice, regulatory guidelines, and relevant local legislation, and was approved by an institutional review board on June 20, 2014 (Quorum Review, Inc.). Patient enrolment commenced October 2014 with last follow-up in February 2017.

All patients provided written informed consent and were screened for eligibility at the Screening visit. Eligible patients with a current symptomatic episode of BV and a history of recurrent BV were enrolled in an open-label treatment phase and received oral metronidazole (500mg), twice daily for 7 days. At the second study visit (Baseline), 3 to 5 days after completion of metronidazole, women with resolution of BV were randomized in a 1:1 ratio to either Astodrimer 1% Gel or placebo using a computer-generated randomization list based upon a permutation block procedure.

The active gel and placebo were colorless, clear gels packaged in identical pre-filled, vaginal applicators. Each applicator contained a single dose (5 g) and was individually overwrapped in a
sealed pouch. Seventeen overwrapped applicators (14 doses and 3 spare) were packed in a tamper-evident carton labelled with a unique study medication number, which was allocated along with a unique patient identification number using an interactive randomization system. One carton, sufficient for 4 weeks’ dosing, was dispensed to each woman at Baseline, and at Week 4, 8 and 12 study visits. Women self-administered a dose vaginally, every second day for 16 consecutive weeks (56 doses total) and attended visits for assessment of BV and adverse events (AEs) every 4 weeks during, and for 12 weeks after end of, treatment. Both care providers and patients were unaware of treatment allocations. Women could withdraw from the study at any time.

Women who had a recurrence of BV prior to Week 16 stopped treatment, ended the study and were offered BV therapy in line with local practice. A woman was considered to have completed the study if she reached the final follow-up visit (Week 28) recurrence free or had confirmed BV recurrence at any time.

Study Population

Women aged 18-45 years with a current diagnosis of BV, defined as presence of ≥ 3 Amsel criteria (discharge; vaginal fluid pH ≥ 4.5; $\geq 20\%$ clue cells; and/or positive 10% potassium hydroxide whiff test),19 Nugent score (NS) of 4-10^{20} and self-report of characteristic BV symptoms (abnormal vaginal odor and/or discharge), and a history of recurrent BV defined as at least 2 documented episodes of BV in the past year, were enrolled in the open-label phase. Women who were pregnant, planning to become pregnant, lactating, or within 3 months of last pregnancy outcome at enrollment, women testing positive for urinary tract infection (UTI), *Chlamydia trachomatis*, *Neisseria gonorrhoea* or *Trichomoniasis vaginalis* infections, or positive
for and/or having signs/symptoms of active genital herpes simplex virus (HSV)-1 or HSV-2 at Screening, were excluded. Women who had received antifungal or antimicrobial therapy (systemic or vaginal) within 14 days of enrolment were also excluded.

Women who were asymptomatic and were negative for Amsel criteria for discharge, whiff test and clue cells following the open-label phase, were randomized for the double-blind treatment phase.

Concomitant systemic and vaginal antimicrobial therapies, vaginal antifungals, or any other kind of vaginal products were not permitted during the study.

Outcomes

The primary efficacy endpoint was recurrence of BV at or by Week 16, defined as the presence of ≥3 Amsel criteria. Secondary efficacy endpoints included presence of subject-reported BV symptoms, recurrence of individual Amsel criteria, BV recurrence determined by NS 7-10, andBV recurrence determined as the presence of ≥3 Amsel criteria and a NS ≥4, at or by Week 16.

Time to BV recurrence and BV recurrence at any of the follow-up visits were also secondary efficacy endpoints.

Questionnaires (SF-36v2 [Short-form-36-item Health Survey version 2], Global Health Outcome, BISF-W [Brief Index of Sexual Functioning for Women] and CSFQ-F [Changes in Sexual Functioning Questionnaire – Female version]), were used to determine impact of product on quality of life (QoL) by capturing mean change of response scores at or by Week 16 compared to screening and/or baseline.

AEs were monitored throughout the study.
Primary and secondary efficacy analyses using logistic regression, with missing BV recurrence data at Week 16 imputed as recurrence and treatment as the only factor in the model, were performed on the modified intent-to-treat (mITT) population, which comprised all women randomized who administered ≥1 dose of study product. This population was also used to determine safety endpoints.

The primary efficacy endpoint was also analyzed for population subgroups based on Nugent category at screening and baseline, method of contraception, race, sexual activity during the study, change in sexual partner, use of a vaginal product, number of previous BV episodes, body mass index (BMI) and socio-economic status.

Categorical variables were summarized using frequency counts and percentages of patients in each category. Descriptive statistics were calculated for each continuous variable.

Survival curves for time to recurrence were estimated using Kaplan-Meier methodology. A log-rank test was used to test the difference between survival curves of the treatment arms. Hazard of BV recurrence was analyzed within the framework of the Kaplan-Meier survival analysis.

Statistical analyses were performed using SAS (Version 9.2; SAS Institute, Cary, NC).

Assuming BV recurrence rates of 32% and 45% for Astodrimer Gel and placebo, respectively, a sample size of 308 evaluable participants per treatment arm provided 90% power with a 2-sided test to detect a treatment difference with alpha significance level of 0.05. Therefore, 310 per
treatment arm and 620 participants overall were to be randomized into the double-blind

treatment phase of the study.

Results

Disposition and Demographics

A total of 864 women were enrolled in the open-label phase of the study to receive

metronidazole; 586/864 (67.8%) eligible women entered the double-blind treatment phase and

were randomized to either Astodrimer 1% Gel (N=295) or placebo (N=291) at 67 sites in the US,

4 in Canada, 4 in Mexico and 2 in Puerto Rico. The mITT population included 585 women.

Treatment groups were well-balanced with respect to demographic and baseline characteristics

(Table 1). The majority of women completed the study and were included in the mITT

population (Figure 1).

Efficacy

Astodrimer 1% Gel was superior to placebo for the primary endpoint, with 44.2% (130/294)

given astodrimer compared to 54.3% (158/291) given placebo experiencing recurrence of BV at

or by Week 16; \(P = .015 \) (Table 2). The recurrence of subject-reported symptoms of BV at or by

Week 16 was also significantly lower in the astodrimer arm compared with placebo (Table 2).

Kaplan-Meier survival curves for time to recurrence separated after Week 4 and remained so at

Week 16; \(P = .007 \) (Figure 2).

Recurrence of individual Amsel criteria at or by Week 16 was lower in the astodrimer group than

in the placebo group, with exception of vaginal fluid pH (Table 2). In addition, a lower
proportion of patients receiving astodrimer compared with placebo had BV recurrence at or by Week 16 based on NS 7-10, and the composite of ≥3 Amsel criteria and NS ≥4 (Table 2).

During the 12-week follow-up phase, recurrence of BV (≥3 Amsel criteria) in women given astodrimer was lower than in those given placebo but the differences were not statistically significant (Table 3).

Recurrence of patient-reported BV symptoms of vaginal odor and/or discharge was statistically significantly lower in the astodrimer arm compared with placebo up to 8 weeks after cessation of therapy (Table 3).

QoL scores were similar between treatment groups at screening and baseline. Total CSFQ-F scores at or by Week 16 increased slightly in the astodrimer group and were slightly decreased in the placebo group, with a mean change from baseline of +1.0 (95% CI: -0.4, 2.3) and -0.8 (95% CI: -3.0, 1.3), respectively, suggesting a slightly improved sexual function in the astodrimer group. The change in BISF-W composite score was in line with the CSFQ-F findings and changed by +1.6 (95% CI: -0.5, 3.7) in the astodrimer group but only by +0.1 (95% CI: -2.0, 2.1) in the placebo group. There were no remarkable differences between groups in terms of mean score change for the SF-36v2 and Global Health Outcome questionnaires.

Subgroup recurrence rates were in line with those for the mITT analyses. The Breslow-Day test for homogeneity of odds ratios of astodrimer versus placebo was non-significant for each subgroup factor (P > .150, except Age, P = .098); data not shown. Lower recurrence rates at or by Week 16 for women randomized to astodrimer compared to placebo were statistically significant for several subgroup categories, including women with screening NS of 7-10 (46.2% [108/234] vs 57.7% [128/222], P = .014), black women (53.7% [79/147] vs 68.1% [96/141], ...
women who had penile-vaginal sexual acts during the treatment period (38.9% [96/247] vs 50.6% [121/239], \(P = .009 \)), and women who used condoms during treatment period (33.0% [29/88] vs 49.4% [44/89], \(P = .027 \)).

Safety/tolerability

The overall incidence of AEs was 54.1% (159/294) for Astodrimer Gel and 47.4% (138/291) for placebo (Table 4). AEs potentially treatment-related occurred in 12.6% (37/294) of astodrimer patients and 11.3% (33/291) for placebo.

Most AEs were mild or moderate in intensity, and self-limiting. During treatment, 1.7% (5) women in each group reported severe AEs, but none were considered treatment related. In the astodrimer group, 1 participant discontinued treatment due to menorrhagia and 1 participant due to vulvovaginal candidiasis, which was considered to be possibly related to treatment. In the placebo group, 1 participant discontinued due to each of vulvovaginal candidiasis, type 2 diabetes mellitus, headache and abdominal pain, and 1 participant discontinued after experiencing vaginal inflammation, vulvovaginal burning sensation, vulvovaginal pruritus and BV considered possibly treatment related.

Serious AEs (other than pregnancy) were reported for 3/294 (1.0%) women in the astodrimer group and 3/291 (1.0%) in placebo, and none was considered to be potentially treatment related.

Vulvovaginal candidiasis was reported in 18.0% (53/294) and 13.7% (40/291) women in the astodrimer and placebo groups, respectively, during treatment and 20.1% [59/294] vs 17.2% [50/291] for the overall study period. Vulvovaginal candidiasis considered potentially treatment-related was reported in 6.8% (20/294) and 4.8% (14/291) of women using astodrimer or placebo, respectively, during treatment. During follow-up, vulvovaginal candidiasis rates were 4.1%
(12/294) for astodrimer and 5.8% (17/291) for placebo. During treatment, UTI rates were 7.8%
(23/294) for astodrimer and 2.4% (7/291) for placebo.

Comment

Principal findings

Astodrimer 1% Gel, administered every second day for 16 weeks, was effective and superior to placebo for the prevention of BV recurrence in women with a history of recurrent BV. The primary efficacy finding was supported by multiple secondary endpoints including significantly longer time to recurrence and lower recurrence of symptoms, which was significant up to 8 weeks after end of treatment.

Astodrimer 1% Gel was well-tolerated, with the incidence of AEs generally similar between the astodrimer and placebo arms. Rates of candidiasis were generally low.

Results – efficacy

The current study of Astodrimer 1% Gel represents the largest and first adequately powered, randomized, placebo-controlled study of a therapy for preventing recurrent BV.

Some approved antibiotics or investigational therapies have been shown to reduce recurrence of BV in limited clinical studies that have been generally non-randomized, not placebo-controlled, and/or not adequately powered. Findings have not been replicated in larger randomized controlled trials. Nevertheless, off-label regimens of products not approved for prevention, including topical metronidazole, oral metronidazole and topical acid boric over periods of 4-6 months, together with fluconazole to prevent likely secondary candidiasis, are recommended for long-term maintenance therapy for reducing recurrent BV, even without confirmatory evidence.
The proportion of women with known BV recurrence (i.e., missing data not imputed) for Astodrimer 1% Gel (34.9% [88/252] vs 46.6% [116/249] for placebo) was comparable with that seen in a similarly designed, but substantially smaller study of topically applied metronidazole gel given for 16 weeks (25.5%).

The difference in recurrence rates between astodrimer and placebo narrowed progressively after end of treatment, but women in the astodrimer group recurred later than placebo, and therefore had more recurrence free days. In addition, recurrence of symptoms of BV was statistically significantly lower for astodrimer compared with placebo up to Week 24, 8 weeks after end of therapy, indicating a clinically meaningful residual benefit.

Treatment with astodrimer helped maintain normal vaginal flora, with lower BV recurrence rates as determined by Nugent score and the combination of Amsel criteria and Nugent score.

Overall, treatment with Astodrimer 1% Gel for the prevention of BV recurrence was superior to placebo across all efficacy endpoints: clinical (Amsel criteria), patient reported (symptoms) and microbiological (Nugent score).

Results – safety profile

The proportion of women with vulvovaginal candidiasis receiving astodrimer (18% during treatment, 20.1% overall) was similar to placebo and less than half that reported during a study of 16 weeks’ treatment with topical metronidazole 0.75% gel (43.1% vs 20.5% in placebo).

The slightly higher proportion of women with UTI for astodrimer compared with placebo could be potentially explained by the longer symptom-free period associated with use of astodrimer allowing a resumption of a more normal frequency of intercourse, consistent with slightly higher
sexual functioning scores observed in this study. In any case, the incidence of uncomplicated UTI in young, sexually active women in the US is reported to be approximately 0.5 episodes per person per year. The incidence in women using astodrimer in this study was 0.37 episodes per person per year.

There were no other notable differences in AEs reported for astodrimer and placebo.

Clinical implications

Astodrimer is a novel dendrimer administered vaginally and is not systemically absorbed. Data show that it inhibits formation of and disrupts biofilms due to its ability to block bacterial adhesion. Given this profile, astodrimer avoids issues typically associated with conventional antibiotics, such as systemic side effects and antibiotic resistance, and is suitable as an effective and safe alternative for the long-term management of recurrent BV, addressing an unmet medical need.

Subgroup analyses showed statistically significant differences in clinical response between astodrimer and placebo in population groups with recognized risk factors for BV, such as black women, those engaging in penile-vaginal sexual acts during the treatment period, and a high screening NS of 7-10, suggesting clear benefit of the preventive treatment with astodrimer in these high-risk groups.

Research implications

The findings of this Phase 3 study support the clinical utility of Astodrimer 1% Gel as a novel treatment for prevention of BV recurrence in women suffering from recurrent BV. The product has regulatory approval in Europe, Australia and a number of countries in Asia, and additional
safety information will be derived from routine post-market surveillance activities.

Strengths and limitations

The study is the largest randomized, double-blind, placebo-controlled study of a therapy to prevent recurrent BV and was adequately powered to detect a difference in rates of BV recurrence between astodrimer- and placebo-treated women.

The results of reduced recurrence of BV at Week 16 are consistent with the ability of Astodrimer 1% Gel to achieve clinical cure of BV at the end of a 7-day treatment period, as demonstrated in phase 2 and 3 clinical studies.17,18

The study was not stratified for race or other characteristics known to be associated with recurrence of BV, although treatment groups were well balanced with respect to baseline demographics. Subgroup analyses were exploratory in nature and results should be interpreted with caution.

Conclusions

Astodrimer 1% Gel was effective at reducing recurrence of BV during 16 weeks’ treatment and was well-tolerated. This finding was robust and consistently supported across all types of efficacy measure including patient-reported symptoms, clinical endpoints (Amsel criteria), microbiological endpoints (Nugent score) and time to recurrence. Recurrence remained lower for astodrimer compared to placebo up to 12 weeks after treatment had stopped.

The results from this large, adequately powered, well-controlled study support a role for Astodrimer 1% Gel as an effective long-term therapy to prevent recurrence of BV with a novel, non-antibiotic mechanism of action related to blocking of biofilms. The product acts locally and
is not systemically absorbed, and offers patients and clinicians a unique treatment option that avoids potential issues associated with existing conventional antibiotics.
Acknowledgments

The authors would like to thank all the patients who were involved in the study and the Principal Investigators for involvement with the clinical trial. Editorial and medical writing assistance was provided by Angela Hart, MSc, of Quanticate UK Ltd, supported by Starpharma Pty Ltd, the manufacturer of Astodrimer Gel. The authors were fully responsible for the content, editorial decisions, and opinions expressed in the current article. The authors did not receive an honorarium related to the development of this manuscript.
References

Tables

Table 1: Screening Characteristics (mITT population), by Treatment Group

<table>
<thead>
<tr>
<th></th>
<th>Astodrimer Gel (N=294)</th>
<th>Placebo (N=291)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean [SD]</td>
<td>31.6 [7.23]</td>
<td>31.6 [6.99]</td>
</tr>
<tr>
<td>Range</td>
<td>18 to 45</td>
<td>18 to 45</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>147 (50.0)</td>
<td>141 (48.5)</td>
</tr>
<tr>
<td>White</td>
<td>115 (39.1)</td>
<td>113 (38.8)</td>
</tr>
<tr>
<td>All Others(^a)</td>
<td>32 (10.9)</td>
<td>37 (12.7)</td>
</tr>
<tr>
<td>Ethnicity, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>209 (71.1)</td>
<td>206 (70.8)</td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>85 (28.9)</td>
<td>85 (29.2)</td>
</tr>
<tr>
<td>Screening Nugent score, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 3</td>
<td>3 (1.0)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>4 to 6</td>
<td>57 (19.4)</td>
<td>67 (23.0)</td>
</tr>
<tr>
<td>7 to 10</td>
<td>234 (79.6)</td>
<td>222 (76.3)</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Number of BV episodes in 12 months prior to enrolment(^b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 (0.7)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>187 (63.6)</td>
<td>198 (68.0)</td>
</tr>
<tr>
<td>3 to 4</td>
<td>94 (32.0)</td>
<td>82 (28.2)</td>
</tr>
<tr>
<td>≥5</td>
<td>11 (3.7)</td>
<td>11 (3.8)</td>
</tr>
</tbody>
</table>

BV=bacterial vaginosis; SD=standard deviation

\(^a\) All Others = American Indian or Alaskan Native, Asian, Native Hawaiian or Other Pacific Islander, Other

\(^b\) Not including a current episode
Table 2: Efficacy Outcomes at or by Week 16 (mITT population), by Treatment Group

<table>
<thead>
<tr>
<th>BV Recurrence Endpoint</th>
<th>Astodrimer</th>
<th>Placebo</th>
<th>RR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N (%) [95% CI]</td>
<td>n/N (%) [95% CI]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Endpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 Amsel criteria</td>
<td>130/294 (44.2) [38.5, 50.1]</td>
<td>158/291 (54.3) [48.4, 60.1]</td>
<td>0.81 (0.69, 0.96)</td>
<td>0.015</td>
</tr>
<tr>
<td>Subject-reported BV Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal Discharge</td>
<td>56/275 (20.4) [15.8, 25.6]</td>
<td>79/276 (28.6) [23.4, 34.3]</td>
<td>0.71 (0.53, 0.96)</td>
<td>0.025</td>
</tr>
<tr>
<td>Vaginal Odor</td>
<td>57/275 (20.7) [16.1, 26.0]</td>
<td>87/276 (31.5) [26.1, 37.4]</td>
<td>0.66 (0.49, 0.88)</td>
<td>0.004</td>
</tr>
<tr>
<td>Vaginal Discharge and/or Odor</td>
<td>75/269 (27.9) [22.6, 33.6]</td>
<td>108/266 (40.6) [34.6, 46.8]</td>
<td>0.69 (0.54, 0.87)</td>
<td>0.002</td>
</tr>
<tr>
<td>Individual Amsel Criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaginal Discharge</td>
<td>97/276 (35.1) [29.5, 41.1]</td>
<td>125/276 (45.3) [39.3, 51.4]</td>
<td>0.78 (0.63, 0.95)</td>
<td>0.015</td>
</tr>
<tr>
<td>Positive Whiff Test</td>
<td>99/276 (35.9) [30.2, 41.8]</td>
<td>119/276 (43.1) [37.2, 49.2]</td>
<td>0.83 (0.68, 1.02)</td>
<td>0.082</td>
</tr>
<tr>
<td>Clue Cells ≥20%</td>
<td>104/274 (38.0) [32.2, 44.0]</td>
<td>132/273 (48.4) [42.3, 54.5]</td>
<td>0.79 (0.65, 0.95)</td>
<td>0.014</td>
</tr>
<tr>
<td>pH >4.5</td>
<td>175/276 (63.4) [57.4, 69.1]</td>
<td>175/276 (63.4) [57.4, 69.1]</td>
<td>1.00 (0.88, 1.14)</td>
<td>1.000</td>
</tr>
<tr>
<td>Composite Definition</td>
<td>81/276 (29.3) [24.0, 35.1]</td>
<td>111/276 (40.2) [34.4, 46.3]</td>
<td>0.73 (0.58, 0.92)</td>
<td>0.008</td>
</tr>
<tr>
<td>Nugent Score 7-10</td>
<td>95/240 (38.5) [32.4, 44.8]</td>
<td>135/273 (49.5) [43.4, 55.5]</td>
<td>0.78 (0.64, 0.95)</td>
<td>0.012</td>
</tr>
</tbody>
</table>

BV=bacterial vaginosis; CI=confidence interval; RR=relative risk

a Clopper Pearson CI
b Wald CI and P value
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Astodrimer n/N (%) [95% CI<sup>a</sup>]</th>
<th>Placebo n/N (%) [95% CI<sup>a</sup>]</th>
<th>RR (95% CI)<sup>b</sup></th>
<th>P value<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>BV Recurrence (≥3 Amsel criteria)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 20</td>
<td>191/294 (65.0) [59.2, 70.4]</td>
<td>203/291 (69.8) [64.1, 75.0]</td>
<td>0.93 (0.83, 1.04)</td>
<td>0.217</td>
</tr>
<tr>
<td>Week 24</td>
<td>194/294 (66.0) [60.3, 71.4]</td>
<td>213/291 (73.2) [67.7, 78.2]</td>
<td>0.90 (0.81, 1.00)</td>
<td>0.059</td>
</tr>
<tr>
<td>Week 28</td>
<td>197/294 (67.0) [61.3, 72.4]</td>
<td>206/291 (70.8) [65.2, 76.0]</td>
<td>0.95 (0.85, 1.06)</td>
<td>0.323</td>
</tr>
<tr>
<td>Subject-reported BV Symptoms – Vaginal Discharge and/or Odor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 20</td>
<td>87/269 (32.3) [26.8, 38.3]</td>
<td>110/266 (41.4) [35.4, 47.5]</td>
<td>0.78 (0.62, 0.98)</td>
<td>0.031</td>
</tr>
<tr>
<td>Week 24</td>
<td>97/269 (36.1) [30.3, 42.1]</td>
<td>121/266 (45.5) [39.4, 51.7]</td>
<td>0.79 (0.64, 0.97)</td>
<td>0.027</td>
</tr>
<tr>
<td>Week 28</td>
<td>107/269 (39.8) [33.9, 45.9]</td>
<td>124/266 (46.6) [40.5, 52.8]</td>
<td>0.85 (0.70, 1.04)</td>
<td>0.111</td>
</tr>
</tbody>
</table>

BV=bacterial vaginosis; CI=confidence interval; RR=relative risk
^a Clopper Pearson CI
^b Wald CI and P value
Table 4: Tolerability (mITT population), by Treatment Group

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Astodrimer N=294 n (%)</th>
<th>Placebo N=291 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with ≥1 AE</td>
<td>159 (54.1)</td>
<td>138 (47.4)</td>
</tr>
<tr>
<td>Patients with ≥1 AE considered by investigator to be potentially related to study treatment</td>
<td>37 (12.6)</td>
<td>33 (11.3)</td>
</tr>
<tr>
<td>Patients with ≥1 severe AE during treatment</td>
<td>5 (1.7)</td>
<td>5 (1.7)</td>
</tr>
<tr>
<td>Patients with ≥1 serious AE (other than pregnancy)</td>
<td>3 (1.0)</td>
<td>3 (1.0)</td>
</tr>
<tr>
<td>Patients who discontinued treatment due to AE (other than pregnancy)</td>
<td>2 (0.7)</td>
<td>5 (1.7)</td>
</tr>
<tr>
<td>Most frequent AEs during treatment (incidence ≥2% for astodrimer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulvovaginal candidiasis</td>
<td>53 (18.0)</td>
<td>40 (13.7)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>23 (7.8)</td>
<td>7 (2.4)</td>
</tr>
<tr>
<td>Headache</td>
<td>15 (5.1)</td>
<td>18 (6.2)</td>
</tr>
<tr>
<td>Abdominal pain (upper, lower, not specified)</td>
<td>11 (3.7)</td>
<td>8 (2.7)</td>
</tr>
<tr>
<td>Vaginal discharge</td>
<td>9 (3.1)</td>
<td>4 (1.4)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>8 (2.7)</td>
<td>13 (4.5)</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>8 (2.7)</td>
<td>6 (2.1)</td>
</tr>
<tr>
<td>Vulvovaginal pruritus</td>
<td>7 (2.4)</td>
<td>10 (3.4)</td>
</tr>
</tbody>
</table>

AE=adverse event
Figure Legends

Figure 1. CONSORT diagram

Figure 2. Kaplan-Meier survival curves for time to recurrence of bacterial vaginosis at or by Week 16 (modified intent-to-treat population)

^ Log-rank test for the difference between the survival curves of the two treatment groups
N=864
Patients Enrolled
(Open-label Oral Metronidazole)

N=586
Patients Randomized
(Double-blind Treatment Phase)

N=295
Astodrimer 1% Gel

N=294
Included in mITT

N=1
Excluded from mITT
Not treated = 1

N=291
Placebo Gel

N=291
Included in mITT

N=0
Excluded from mITT
Log-rank testa $P = .007$