Alpha-synuclein seeds in olfactory mucosa of patients with isolated rapid-eye-movement sleep behaviour disorder

Running title: Olfactory mucosa α-syn RT-QuIC in iRBD

Ambra Stefani¹, MD; Alex Iranzo², MD; Evi Holzknecht¹, MD; Daniela Perra³, PhD; Matilde Bongianni ³, PhD; Carles Gaig², MD; Beatrice Heim¹, MD; Monica Serradell²; Luca Sacchetto⁴, MD; Alicia Garrido², MD; Stefano Capaldi⁵, PhD; Almudena Sánchez-Gómez², MD; Michele Fiorini³, PhD; Joachim Schmutzhard⁶, MD; Pietro Cocchiara³, MS; Isabel Vilaseca², MD; Lorenzo Brozzetti³, MS; Salvatore Monaco³, MD; M. Jose Marti², MD; Klaus Seppi¹, MD; Eduardo Tolosa², MD; Joan Santamaria², MD; Birgit Högl¹, MD; Werner Poewe¹, MD; Gianluigi Zanusso³, MD, PhD; for the SINBAR (Sleep Innsbruck Barcelona) group.

¹Department of Neurology, Medical University Innsbruck, Innsbruck, Austria.
²Neurology Service, Hospital Clinic de Barcelona, IDIBAPS, CIBERNED, Barcelona, Spain.
³Department of Neurosciences, Biomedicine and Movement Sciences University of Verona, Verona, Italy.
⁴Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.
⁵Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Verona, Italy;
⁶Department of Otorhinolaryngology-Head and Neck Surgery, Medical University Innsbruck, Innsbruck, Austria.
⁷Department of Otorhinolaryngology, Hospital Clinic de Barcelona, University of Barcelona, IDIBAPS, CIBER-RES, Barcelona, Spain.

Manuscript word count: 3,365

Correspondence to:

Gianluigi Zanusso
Department of Neurosciences, Biomedicine and Movement Sciences
University of Verona
Policlinico GB Rossi
P.le L.A. Scuro 10,
37134 Verona, Italy
gianluigi.zanusso@univr.it
Tel: +39 045 8124286
Fax: +39 045 8027492

Werner Poewe,
Department of Neurology
Medical University of Innsbruck
Anichstrasse 35
6020 Innsbruck, Austria
werner.poewe@i-med.ac.at
Tel: +43 512 504 26282
Fax +43 512 504 23852
ABSTRACT

Isolated REM sleep behaviour disorder is an early-stage α-synucleinopathy in most, if not all, affected subjects. Detection of pathological alpha-synuclein in peripheral tissues of isolated REM sleep behaviour disorder patients may identify those progressing to Parkinson’s disease, dementia with Lewy bodies or multiple system atrophy, with the ultimate goal of testing preventive therapies. **Real-Time Quaking-Induced Conversion** provided evidence of α-synuclein seeding activity in cerebrospinal fluid and olfactory mucosa of patients with α-synucleinopathies. Aim of this study was to explore **Real-Time Quaking-Induced Conversion** detection of α-synuclein aggregates in olfactory mucosa of large cohort of subjects with isolated REM sleep behavior disorder compared to Parkinson’s disease and controls.

This prospective bicentric case-control study was performed between October 2017 and December 2018 at the Medical University of Innsbruck, Austria, and the Hospital Clinic de Barcelona, Spain. Olfactory mucosa samples obtained by nasal swab in 63 patients with isolated REM sleep behavior disorder, 31 matched Parkinson’s disease patients and 59 matched controls were analysed by α-synuclein **Real-Time Quaking-Induced Conversion** in a blinded fashion at the University of Verona, Italy. Median age of isolated REM sleep behavior disorder patients was 70 years, 85.7% were male. All participants were tested for smell, autonomic, cognitive and motor functions.

Olfactory mucosa was α-synuclein **Real-Time Quaking-Induced Conversion** positive in 44.4% isolated REM sleep behavior disorder patients, 41.9% Parkinson’s disease and 10.2% controls. While the sensitivity for isolated REM sleep behavior disorder plus Parkinson’s disease versus controls was 40.9%, specificity was high (89.8%). Among isolated REM sleep behavior disorder patients with positive α-synuclein **Real-Time Quaking-Induced Conversion**, 78.6% had olfactory dysfunction as compared to 21.4% with negative α-synuclein **Real-Time Quaking-Induced Conversion**, p<0.001. The extent of olfactory dysfunction was more severe...
in positive than in negative α-synuclein Real-Time Quaking-Induced Conversion olfactory mucosa isolated REM sleep behavior disorder patients (p<0.001).

We provide evidence that α-synuclein Real-Time Quaking-Induced Conversion assay enables the molecular detection of neuronal α-synuclein aggregates in olfactory mucosa of patients with isolated REM sleep behavior disorder and Parkinson’s disease. Although the overall sensitivity was moderate in this study, nasal swabbing is attractive as simple, non-invasive test, with a potential of use as screening test to identify subjects in the prodromal stages of α-synucleinopathies. Further studies are needed to enhance sensitivity, and better understand the temporal dynamics of α-synuclein seeding in the olfactory mucosa and spreading to other brain areas during the progression from isolated REM sleep behavior disorder to overt α-synucleinopathy.

Key words: RBD, Parkinson’s disease, alpha-synucleinopathies, Real-Time Quaking-Induced Conversion, nasal swabbing
Abbreviations list

α-syn: α-synuclein

IQR: Interquartile range

MDS: Movement disorders society

MDS-UPDRS: Movement disorders society Unified Parkinson’s Disease Rating Scale

MoCA: Montreal cognitive assessment

p-α-syn: Phosphorylated α-synuclein

OM: Olfactory mucosa

REM: Rapid eye movement

RBD1Q: REM sleep behaviour disorder single question

RT-QuIC: Real-Time Quaking Induced Conversion

SCOPA-AUT: SCales for Outcomes in PArkinson’s disease - AUTonomic dysfunction

ThT: Thioflavin T

UPSIT: University of Pennsylvania Smell Identification Test
Introduction

Isolated REM sleep behaviour disorder is characterized by abnormal behaviours during REM sleep (American Academy of Sleep Medicine, 2014). Long-term follow-up studies showed that more than 80% of patients with isolated REM sleep behaviour disorder may go on to develop Parkinson’s disease, dementia with Lewy bodies or, less commonly, multiple system atrophy (Schenck et al., 2013; Iranzo et al., 2013). These disorders are characterised by pathological deposition of α-synuclein (α-syn) aggregates in different sites within the central and peripheral nervous system and thus collectively labelled as α-synucleinopathies. Therefore, isolated REM sleep behaviour disorder is now commonly regarded as an early stage α-synucleinopathy (Högl et al., 2018).

Identification of early or prodromal stages of α-synucleinopathies is a key research goal on the path to disease-modifying and neuroprotective therapies. Recently, there has been great interest in detecting α-syn deposition in peripheral tissues of subjects with isolated REM sleep behaviour disorder as a potential biomarker of prodromal Lewy body disease stage. Intraneural phosphorylated α-syn (p-α-syn) deposits have been demonstrated by immunohistochemistry in tissue biopsies of colon (Sprenger et al., 2015), salivary glands (Vilas et al., 2016; Fernandez-Arcos et al., 2018; Iranzo et al., 2018) and skin of patients with Parkinson’s disease but also those with isolated REM sleep behaviour disorder (Antelmi et al., 2017; Doppler et al., 2017), where they were shown to differentiate isolated REM sleep behaviour disorder subjects from controls with variable sensitivity (24-89%) but overall high specificity (78-100%). However, these approaches are invasive, and feasibility and patient acceptance face limits when it comes to large scale screening for prodromal Parkinson’s disease or repeated prospective assessments of disease progression (Chanine et al., 2018). In addition, while colonic biopsies have tested the potential starting point of one suggested route of seeding and spreading of pathological α-syn species, i.e. from gut to brain, the olfactory system as the second proposed region of initiation of α-syn pathology in Parkinson’s disease has not been studied yet in prodromal
Parkinson’s disease stages such as isolated REM sleep behaviour disorder (Ruffmann et al., 2018). Real-Time Quaking Induced Conversion (RT-QuIC) is a novel assay based on the so-called “prion replication principle” implying that pathologic misfolded proteins (seeds) serve as template for imparting their conformation to normal isoform (substrate). Tissue samples such as cerebrospinal fluid and olfactory mucosa (OM) containing α-syn aggregates initiate amyloid fibril formation by converting the recombinant α-syn which, in turn, enhances the fluorescence of thioflavin T (ThT) (Fairfoul et al., 2016; De Luca et al., 2019; Garrido et al., 2019).

Olfactory dysfunction is common in patients with isolated REM sleep behaviour disorder, where it represents a predictor of short-term phenoconversion to Parkinson’s disease, dementia with Lewy bodies or multiple system atrophy (Mahlknecht et al., 2015), and is almost universal in established Parkinson’s disease. The olfactory dysfunction in Parkinson’s disease is likely related to Lewy pathology and neuronal cell loss in the olfactory bulbs, tracts and piriform cortex, and according to the Braak staging the olfactory bulbs may be an initial site of α-syn aggregation in Parkinson’s disease (Braak et al., 2003; Rey et al., 2018). The misfolded α-synuclein, which replicates and propagates with a prion-like mechanism, is believed to drive the neurodegenerative process.

In the present study, we tested a novel biomarker approach for identifying α-syn aggregates by RT-QuIC assay in OM samples obtained from patients with isolated REM sleep behaviour disorder, established Parkinson’s disease and healthy controls.
Materials and methods

Study design and participants

This was a cross-sectional study performed at two clinical academic centers (Department of Neurology of Innsbruck Medical University, Austria, and Hospital Clinic de Barcelona, Spain) and the Neuropathology Laboratory at the Department of Neurosciences, Biomedicine and Movement Sciences of the University of Verona, Italy. The study was approved by the local ethics committees and all participants provided written informed consent according to the Declaration of Helsinki.

Sixty-three patients with polysomnography-confirmed isolated REM sleep behaviour disorder were recruited at the Sleep Disorder Units of both clinical departments. Isolated REM sleep behaviour disorder was diagnosed according to the current International Classification of Sleep Disorders criteria (American Academy of Sleep Medicine, 2014), in the absence of parkinsonism or cognitive impairment (excluded by clinical history and examination). Demographic and clinical data were collected through interview and review of medical records.

The Movement Disorder Units of the two clinical departments recruited age- and sex-matched Parkinson’s disease patients (n=31), diagnosed according to the Movement Disorders Society (MDS) clinical diagnostic criteria (Postuma et al., 2015). Fifty-nine age- and sex-matched controls without parkinsonism or cognitive impairment were also included. Controls were recruited in Innsbruck from patients of the sleep laboratory in whom isolated REM sleep behaviour disorder and REM sleep without atonia were excluded by video-polysomnography (performed no longer than six months before OM sampling), and in Barcelona from non-blood relatives of isolated REM sleep behaviour disorder or Parkinson’s disease patients participating in the study. In all controls, evidence for a neurodegenerative disease was excluded by clinical interview and neurological examination. For control subjects without availability of a video-polysomnography, dream-enacting behaviours were excluded by clinical history.
Clinical markers of α-synuclein related neurodegeneration

In all participants, smell function was assessed with the 16-item identification part of the sniffin’sticks (Oleszkiewicz et al., 2019) or with the 40-item University of Pennsylvania Smell Identification Test (UPSIT) (Doty, 1995), the presence and quantification of motor signs using the motor part of the MDS Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008), autonomic dysfunction with the SCOPA (SCales for Outcomes in PArkinson’s disease) -AUT (autonomic dysfunction) (Visser et al., 2004), and cognitive function with the Montreal cognitive assessment (MoCA) (Nasreddine et al., 2005). These evaluations were performed no longer than three months before OM sampling. Additionally, in Parkinson’s disease patients a history suggestive of isolated REM sleep behaviour disorder was obtained using the REM sleep behaviour disorder (RBD) single question screen (RBD1Q) at the day of OM sampling (Postuma et al., 2012).

For data analysis, UPSIT scores were converted to Sniffin’ 16 scores using published equating scores (Lawton et al., 2016). Olfactory dysfunction was defined according to published updated age- and sex-adjusted normative data for the Sniffin’ 16 scores, using the 10th percentile as cut-off (Oleszkiewicz et al., 2019).

Olfactory mucosa sampling

Nasal swabbing procedure was performed in all participants using specifically designed flocked brush (FLOQBrush®; CopanItalia Spa, Brescia, Italy), as described previously (Bongianni et al., 2017). OM sampling was performed by otolaryngologists (LS, JS and IV) and did not require local anesthesia. The nasal swabbing procedure took less than five minutes and was done without the use of nasal tampons, to avoid patients’ discomfort or airways obstruction (see video 1). Coagulation disorder or anticoagulant/antiplatelet drug intake or other medical conditions were not an exclusion criterion. Adverse events were immediately recorded. At the end of the procedure, 61 participants (39.9%) were asked for evaluating the degree of pain or
discomfort perceived during nasal swabbing on a scale from one (i.e., minimal discomfort) to 10 (i.e., maximal discomfort).

One to four OM samples were collected from each individual, depending on nasal cavity anatomy and individual tolerability. Almost all subjects had two nasal swabplings taken from a single nostril, except eight subjects in whom sampling was performed bilaterally. Since two swabs were required for RT-QuIC analysis cytological quality control of samples was limited to the eight subjects with bilateral procedures. These samples were processed for immunocytochemical analysis and from a single swab we collected one million of total cells where 30% were olfactory marker protein positive (Brozzetti et al., 2020).

Olfactory mucosa sample preparation

Following nasal swabbing, the swab was immersed in a 5 ml tube containing 0.9% saline and sealed. Tubes from each patient were labelled with an anonymised code, stored at 4°C, and sent to Neuropathology laboratory at University of Verona, Italy. Cellular material was dissociated from the swab by vortexing tubes for 1 min at room temperature. Then, the swab was removed from the tube, and cell suspension was pelleted by centrifugation at 2000×g at 4°C for 20 minutes. The supernatant was removed, and pellet frozen at −80°C until assayed.

Alpha-synuclein RT-QuIC analysis in olfactory mucosa swabs

Recombinant α-syn was expressed and purified from the periplasmic fraction as previously reported (Bongianni et al., 2019).

The α-syn RT-QuIC test used in this study has been previously setup using brain tissue of definite cases of Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy (Bongianni et al., 2019). OM samples were thawed and a disposable inoculating loop (Fisherbrand) was dipped into the pellet to transfer approximately 2 μl of the pellet into a tube containing 120 μl PBS. The latter tube was sonicated at 120W (Digital ultrasonic bath Mod.DU-32, Argo Lab) for at least one minute until the pellet was dispersed. For each test, two
microliters of diluted OM sample were plated in 98 µl of Reaction Buffer composed of 100 mmol/L phosphate buffer (pH 8.2), 10 µmol/L ThT, and 0.05 mg/mL human recombinant full length (1–140aa) α-syn and mg of 0.5-mm glass beads (Sigma). The plate was sealed with a plate sealer film (Nalgene Nunc International) and then incubated at 30°C in a BMG FLUOstar Omega plate reader with cycles of 1 min shaking (200 rpm double orbital) and 14 min rest. ThT fluorescence measurements (450+/−10 nm excitation and 480+/−10 nm emission; bottom read) were taken every 45 min. Four replicate reactions were tested for each sample. ThT fluorescence threshold was calculated considering three SD above the baseline. Because of the initial increase of fluorescence signal in all curves, the baseline was determined between 15 and 17 hours.

A sample was considered positive when at least two out of four replicate wells crossed this calculated threshold (100,000 rfu). If only one of the replicates was positive, the RT-QuIC was considered to be negative. Cut-off time was assessed at 80 hours, based on the results from definite cases, in order to obtain the best specificity and sensitivity.29 The maximal fluorescence value was the highest mean fluorescent value seen during the a-syn RT-QuIC analytical run of 80 h and we considered the lag-phase as the hours required for the average fluorescence to exceed the threshold for individual cases, as reported in figure 1. At the end of sample analyses, RT-QuIC results were sent to the study coordinator (AS) who unblinded the results.

Statistical analysis

Data distribution was tested using the Kolmogorov-Smirnov test. Since data were not normally distributed, quantitative variables are reported as median (interquartile range, IQR) and qualitative variables as number (%). Quantitative variables were analysed using the Kruskall-Wallis test for overall comparisons between groups. Qualitative variables were analysed with the Fisher’s exact test in case of comparison of two variables with two categories, with the Chi-squared test in case of two variables with more than two categories.
Sensitivity and specificity for OM+ in isolated REM sleep behaviour disorder plus Parkinson’s disease were calculated. Correlations were evaluated using the Spearman-Rho. All statistical analyses were performed with SPSS (IBM SPSS Statistics, Version 25) and with STATA/IC 16.0 for Windows (StataCorp LLC). P values <0.05 were considered statistically significant.

Data availability

Data can be available upon request to the corresponding author.
Results

This study was performed between October 2017 and December 2018. A total of 153 participants were included: 63 patients with isolated REM sleep behaviour disorder, 31 Parkinson’s disease and 59 controls. Demographic characteristics and results of clinical assessments are summarized in Table 1.

Olfactory function was similarly impaired in both isolated REM sleep behaviour disorder and Parkinson’s disease with significantly lower smell test scores as compared to controls (isolated REM sleep behaviour disorder vs controls <0.001, Parkinson’s disease vs controls <0.001) with no difference between isolated REM sleep behaviour disorder and Parkinson’s disease (p=0.426). Percentage of subjects meeting thresholds for hyposmia were markedly higher in both the isolated REM sleep behaviour disorder and Parkinson’s disease groups compared to controls (isolated REM sleep behaviour disorder 47.6%, Parkinson’s disease 58.1%, controls 13.6%).

OM sampling and α-synuclein RT-QuIC assay

Two nasal swabbings were performed into the most easily accessible nostril: on the left side in 99 (64.7%), on the right side in 46 (30.1%) participants, and bilaterally (two from each nostril because both were easily accessible) in eight (5.2%). Nasal swabbing was not associated with adverse events or complications except for a short and transient local discomfort during the procedure. The latter was experienced as a sudden and brief (seconds) intense discomfort (score ≥ eight) by 9.8%, moderate discomfort (score five to seven) by 42.6%, only mild discomfort (score < five) by 47.6%.

Nasal swabs were RT-QuIC positive for α-syn in 28/63 (44.4%) patients with isolated REM sleep behaviour disorder, in 13/31 (41.9%) Parkinson’s disease and in six out of 59 (10.2%) controls (figure 1). RT-QuIC positivity for α-syn was significantly different between isolated REM sleep behaviour disorder and controls (p<0.001), as well as between Parkinson’s disease...
and controls (p=0.001), but not between isolated REM sleep behaviour disorder and Parkinson’s disease (p=1.000). Sensitivity for isolated REM sleep behaviour disorder and Parkinson’s disease versus controls was 43.6% (95% CI 33.4-54.2%), specificity 89.8% (95% CI 79.2-96.2%).

There was no significant difference in RT-QuIC responses, either of average final ThT fluorescence value (214720±48471 and 209972±49528 rfu) or lag-time phase (47±14.2 and 42±12.8 hours) between OM samples from patients with isolated REM sleep behaviour disorder and with Parkinson’s disease. Six of 59 OM samples from controls were positive within 80 hours of seeding reaction (figure 1, table 2).

RT-QuIC assay results and clinical data

Twenty-two (78.6%) of the 28 OM-positive patients with isolated REM sleep behaviour disorder had olfactory dysfunction, while among the 35 OM-negative patients with isolated REM sleep behaviour disorder olfactory dysfunction was present in 22.9% (eight out of 35). The extent of olfactory dysfunction in isolated REM sleep behaviour disorder OM-positive patients was more severe compared to OM-negative subjects (p<0.001) and there was a correlation between RT-QuIC results and smell test score (Spearman-Rho -0.513, p<0.001) or olfactory dysfunction (Spearman-Rho 0.554, p<0.001).

These associations were not found in patients with Parkinson’s disease, where there were no differences in olfactory function between OM-positive and OM-negative patients (smell test score, p=0.859; presence of olfactory dysfunction, p=0.727). Smell test results for the different study groups in relation to RT-QuIC results are shown in figure 2.

Among patients with Parkinson’s disease, 24/31 (77.4%) screened positively for REM sleep behaviour disorder with the RBD1Q. Positive response to the RBD1Q did not differ between OM-positive and OM-negative Parkinson’s disease patients (10/13, 76.9% vs. 14/18, 77.8%).
Further demographic and clinical characteristics of the isolated REM sleep behaviour disorder and Parkinson’s disease patients did not differ between subjects with or without OM α-syn seeding activity (table S1).

Similarly, among healthy controls, the six (10.2%) OM-positive individuals as a group did not differ from OM-negative controls in any of the assessed clinical parameters.
Discussion

To the best of our knowledge this is the first study evaluating α-syn RT-QuIC in the OM of a large cohort of patients with isolated REM sleep behaviour disorder versus those with Parkinson’s disease or healthy controls. We studied a total of 153 subjects and found a positive α-syn RT-QuIC seeding reaction in the OM in 44.4% of patients with isolated REM sleep behaviour disorder, in 41.9% of those with Parkinson’s disease and also in 10.2% of controls. From the perspective of diagnostic testing this would result in an overall specificity of 89.8%, sensitivity of 43.6% and accuracy of 61.4%. Such figures, although impressive in terms of specificity, do not seem superior to what has been reported for immunohistochemical assays for p-α-syn in salivary glands and skin biopsies (Sprenger et al., 2015; Vilas et al., 2016; Antelmi et al., 2017; Doppler et al., 2017; Fernandez-Arcos et al., 2018; Iranzo et al., 2018). However, there are distinctive and unique features in the method employed in the present study.

OM sampling provides direct access to olfactory neurons and thus to one of the sites, that is currently regarded as one of the potential initiation points of seeding and spread of pathological α-syn assemblies in Parkinson’s disease. RT-QuIC for α-syn detects disease-associated α-syn aggregates in billion-fold diluted brain tissue preparations from different α-synucleinopathies (Groveman et al., 2018) with a higher sensitivity than conventional immunohistochemistry, as shown in prion diseases (Race et al., 2019). RT-QuIC results are classified as negative or positive based on the extent of α-syn aggregates seeding and do not depend on observer evaluation, as occurs for α-syn immunohistochemistry in skin biopsies of patients with iRBD (Donadio et al., 2019).

Furthermore, immunohistochemistry is too insensitive to detect the early misfolded forms of α-syn occurring in olfactory neurons, as suggested by the low yield of Lewy pathology in olfactory neuroepithelium of subjects with α-synucleinopathies (Arnold et al., 2010). In addition, RT-QuIC positivity for α-syn has been found in OM of 10% of controls, suggesting
that α-syn aggregation occurs as an incidental event in the olfactory neuroepithelium (Saito et al., 2016). However, this finding was not unexpected since the occurrence of incidental Lewy bodies is around 10% in people over 60 years (Gibb et al., 1988; Beach et al., 2009) which corresponds to the mean age of controls recruited in the present study. It is intriguing to speculate if these individuals might be at increased risk to develop Parkinson’s disease or other α-synucleinopathies, but numbers here were too small for cross-sectional analysis.

In the only previous study (De Luca et al., 2019) using α-syn RT-QuIC on OM samples from patients with synucleinopathies (18 Parkinson’s disease, 11 multiple system atrophy vs 18 controls with non α-syn related disorders) sensitivity and specificity were broadly similar (56% and 83%, respectively) to the present study, supporting the reproducibility of the analytical approach.

Recent studies have also explored the performance and diagnostic accuracy of α-syn RT-QuIC assay of CSF in patients with α-synucleinopathies. In patients with Parkinson’s disease, diagnostic sensitivity and specificity were 84% and 89% respectively regarding differentiation from non-synucleinopathy parkinsonism (van Rumund et al., 2019).

Since the olfactory system is believed to be one of the earliest sites of pathology in PD, RT-QuIC for α-syn in OM samples is a particularly attractive approach not only in the quest for biomarkers of α-synucleinopathies but also for understanding the dynamics of seeding and spread of α-syn pathology. Previous observations in isolated REM sleep behaviour disorder showed that olfactory dysfunction can identify patients at high risk of short-term conversion to overt α-synucleinopathy (Mahlknecht et al., 2015). Intriguingly, in our study, α-syn RT-QuIC positivity in the OM from patients with isolated REM sleep behaviour disorder was preferentially associated with olfactory dysfunction, but this was not observed in Parkinson’s disease patients. A possible explanation could be that different olfactory areas are involved in the two conditions. For instance, olfactory dysfunction in Parkinson’s disease is driven by the
involvement of the anterior olfactory nucleus and olfactory bulb or larger areas of the olfactory system beyond the OM, while isolated REM sleep behaviour disorder patients may have a more relevant involvement of peripheral sites such as OM. These differences might reflect rostral trans-synaptic propagation of α-syn pathology, as reported for the enteric neurons in Parkinson’s disease (Sprenger et al., 2015). The fact that the rate of α-syn RT-QuIC positivity in the OM of Parkinson’s disease patients was present in less than 50% of subjects might suggest that numbers of olfactory neurons progressively decrease with disease progression (Witt et al., 2009) a process which might occur also in isolated REM sleep behaviour disorder. To further investigate this hypothesis, prospective studies including isolated REM sleep behaviour disorder as well as early Parkinson’s disease subjects are needed. This approach is expected to provide further insight into the temporal dynamics of α-syn seeding activity in the OM and its association with phenoconversion.

In summary, we show that α-syn RT-QuIC enables detection of pathological seeding activity in olfactory neurons from patients with isolated REM sleep behaviour disorder and Parkinson’s disease. This reaction appears highly specific for these synucleinopathies as compared to controls and is associated with olfactory disturbances in isolated REM sleep behaviour disorder. Probing the OM with α-syn RT-QuIC may provide a valuable marker to recognize patients in an early-stage of α-synuclein related neurodegeneration and might help to select subjects for clinical disease-modification trials of interventions targeting α-syn pathologic conversion and spread.

Acknowledgements: Authors deeply thank Santina Castriciano for donating nasal swabs.

Funding: This work was supported in part by the Ministero della Salute GR201302355724 to MB and GZ, Cariverona: “ Development and validation of a novel molecular assay for alpha-
synuclein in patients with Parkinson’s disease and other alpha-synucleinopathies” to GZ and Brain Research Foundation Verona.

Competing interests:

The authors report no competing interests.
Figure legends:

Figure 1. Real-Time Quaking-Induced Conversion (RT-QuIC) analysis of OM samples from patients with isolated RBD, Parkinson’s disease and controls. Final fluorescence values (a) and lag-phase (b) of positive α-syn RT-QuIC subjects in OM samples from iRBD, PD and controls. Data points in panel a, represent the average fluorescence value obtained for each individual case at 80h; samples are grouped in 3 different classes (iRBD, triangle; PD, circle; Controls, diamond) and bars show the average ± SD for type of case. Data points in panel b show hours required from the average fluorescence value to exceed the threshold of 100,000 rfu for individual cases; samples are grouped in 3 different classes (iRBD, triangle; PD, circle; Controls, diamond) and bars show the average ± SD for type of pathology.

Au, arbitrary unit; h, hours; iRBD, isolated REM sleep behaviour disorder; PD, Parkinson’s disease.

Figure 2. Olfactory mucosa (OM) Real-Time Quaking-Induced Conversion (RT-QuIC) for α-synuclein results and smell test scores in iRBD, PD and controls groups.

Legend: Positive OM results are shown as a black circle, negative OM results are shown as a white circle. iRBD, isolated REM sleep behaviour disorder; PD, Parkinson’s disease; RT-QuIC, real-Time Quaking-Induced Conversion.
TABLES

Table 1. Demographic and clinical characteristics of the study population

<table>
<thead>
<tr>
<th></th>
<th>iRBD (n=63)</th>
<th>PD (n=31)</th>
<th>Controls (n=59)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>70 (64-74)</td>
<td>70 (64-74)</td>
<td>70 (64-73)</td>
<td>0.994</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>9 (14.3)</td>
<td>6 (19.4)</td>
<td>11 (18.6)</td>
<td>0.754</td>
</tr>
<tr>
<td>Male</td>
<td>54 (85.7)</td>
<td>25 (80.6)</td>
<td>48 (81.4)</td>
<td></td>
</tr>
<tr>
<td>Disease duration (from diagnosis), y</td>
<td>5 (2-9)</td>
<td>6 (2-9)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>MDS-UPDRS III score</td>
<td>4 (2-7)</td>
<td>21 (12-29)</td>
<td>1 (0-3)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs PD <0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs Ctr <0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD vs Ctr <0.001</td>
</tr>
<tr>
<td>SCOPA-AUT score</td>
<td>14 (9-27)</td>
<td>19 (11-25)</td>
<td>11 (6-19)</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs PD 0.649</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs Ctr 0.023</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD vs Ctr 0.013</td>
</tr>
<tr>
<td>MoCA score</td>
<td>27 (24-28)</td>
<td>28 (26-29)</td>
<td>27 (25-29)</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs PD 0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs Ctr 0.526</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD vs Ctr 0.097</td>
</tr>
<tr>
<td>Sniffin’sticks score</td>
<td>8 (7-12)</td>
<td>8 (7-9)</td>
<td>12 (11-13)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs PD 0.426</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs Ctr <0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD vs Ctr <0.001</td>
</tr>
<tr>
<td>Olfactory dysfunction, n (%)</td>
<td>30 (47.6)</td>
<td>18 (58.1)</td>
<td>8 (13.6)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs PD 0.539</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>iRBD vs Ctr <0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PD vs Ctr <0.001</td>
</tr>
</tbody>
</table>

Data are shown as median (IQR) or N (%). Ctr, controls. iRBD: isolated REM sleep behaviour disorder; MDS-UPDRS III: Movement Disorders Society Unified Parkinson’s.
Disease Rating Scale, part III; PD: Parkinson’s disease; SCOPA-AUT: SCales for Outcomes in Parkinson’s disease AUTonomic dysfunction; MoCA: Montreal cognitive assessment.
Table 2. Alpha-syn RT-QuIC assay, lag-phase, and final fluorescence values in OM from subjects with isolated RBD, Parkinson’s disease and healthy controls.

<table>
<thead>
<tr>
<th>Positive RT-QuIC in each subject group (n/total)</th>
<th>Final fluorescence in positive RT-QuIC (rfu)</th>
<th>Lag-phase in positive RT-QuIC (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iRBD (28/63)</td>
<td>214720 ± 48471</td>
<td>47 ± 14.2</td>
</tr>
<tr>
<td>PD (13/30)</td>
<td>209972 ± 49528</td>
<td>42 ± 12.8</td>
</tr>
<tr>
<td>Controls (6/59)</td>
<td>194000 ± 38925</td>
<td>37 ± 12</td>
</tr>
</tbody>
</table>

Legend: iRBD, isolated REM sleep behaviour disorder; PD, Parkinson disease; rfu, relative fluorescence units; RT-QuIC, Real-Time Quaking-Induced Conversion. Values of lag-phase and rfu are reported as mean ± standard deviations.
SUPPLEMENTARY TABLE

Table S1. Demographic and clinical characteristics of the iRBD group (n=63) and of the PD group (N=31).

<table>
<thead>
<tr>
<th></th>
<th>iRBD</th>
<th>PD</th>
<th>P value</th>
<th>iRBD</th>
<th>PD</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-syn positive</td>
<td>α-syn negative</td>
<td>P value</td>
<td></td>
<td>α-syn positive</td>
<td>α-syn negative</td>
<td>P value</td>
</tr>
<tr>
<td>n=28 (44.4%)</td>
<td>n=35 (55.6%)</td>
<td>n=13 (41.9%)</td>
<td></td>
<td>n=18 (58.1%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td>0.059</td>
<td></td>
<td></td>
<td>0.859</td>
</tr>
<tr>
<td>Age at diagnosis, y</td>
<td>72 (67-74.8)</td>
<td>67 (60-74)</td>
<td></td>
<td>70 (65-74)</td>
<td>69.5 (63-74)</td>
<td></td>
</tr>
<tr>
<td>Age at onset, y</td>
<td></td>
<td></td>
<td>0.004</td>
<td></td>
<td></td>
<td>0.902</td>
</tr>
<tr>
<td>Disease duration, y</td>
<td>4.5 (1.3-8)</td>
<td>6 (2-10)</td>
<td>0.176</td>
<td>7 (1-12)</td>
<td>5 (2-9)</td>
<td>0.934</td>
</tr>
<tr>
<td>Sex, n (%)</td>
<td></td>
<td></td>
<td>0.170</td>
<td></td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDS-UPDRS III score</td>
<td>6 (21.4)</td>
<td>3 (8.6)</td>
<td>0.692</td>
<td>2 (15.4)</td>
<td>4 (22.2)</td>
<td>0.594</td>
</tr>
<tr>
<td>SCOPA-AUT score</td>
<td>18 (11-29)</td>
<td>13 (8-21)</td>
<td>0.133</td>
<td>15 (12-20)</td>
<td>21 (11-28)</td>
<td>0.211</td>
</tr>
<tr>
<td>MoCA score</td>
<td>27 (24-28)</td>
<td>27 (24-28)</td>
<td>0.737</td>
<td>28 (26-29)</td>
<td>27 (26-29)</td>
<td>0.594</td>
</tr>
<tr>
<td>Sniffin’sticks score</td>
<td>7 (5-8)</td>
<td>11 (8-13)</td>
<td><0.001</td>
<td>8 (6-12)</td>
<td>8 (7-9)</td>
<td>0.859</td>
</tr>
<tr>
<td>Olfactory dysfunction, n (%)</td>
<td>22 (78.6%)</td>
<td>8 (22.9%)</td>
<td><0.001</td>
<td>7 (53.8%)</td>
<td>11 (61.1%)</td>
<td>0.727</td>
</tr>
<tr>
<td>Hoehn and Yahr stage</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>2 (2-2)</td>
<td>2 (2-2)</td>
<td>n.a.</td>
</tr>
<tr>
<td>Rigidity, n (%)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>13 (100%)</td>
<td>17 (94.5%)</td>
<td>1.000</td>
</tr>
<tr>
<td>Rest tremor, n (%)</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>7 (53.8%)</td>
<td>11 (61.1%)</td>
<td>0.727</td>
</tr>
</tbody>
</table>

Data are shown as median (IQR) or N (%). iRBD: isolated rapid-eye-movement sleep behaviour disorder; MDS-UPDRS III: Movement Disorders Society Unified Parkinson’s Disease Rating Scale, part III; PD, Parkinson’s disease; RBD1Q: REM sleep behaviour disorder single question; SCOPA-AUT: SCales for Outcomes in PArkinson’s disease AUTonomic dysfunction; MoCA: Montreal cognitive assessment.
References

Iranzo A, Borrego S, Vilaseca I, et al. α-Synuclein aggregates in labial salivary glands of idiopathic rapid eye movement sleep behavior disorder. Sleep 2018;41(8).

Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med 2013;14:744-748.

