Noninvasive prenatal exome sequencing inefficient for detecting single-gene disorders – problems and possible solutions

Dayne L Filer¹,²,*, Piotr A Mieczkowski¹, Alicia Brandt¹, Kelly L Gilmore³, Bradford C Powell¹,², Jonathan S Berg¹, Kirk C Wilhelmsen¹,²,⁴, and Neeta L Vora¹,³

¹Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC
²Renaissance Computing Institute, Chapel Hill, NC
³Department of Obstetrics & Gynecology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC
⁴Department of Neurology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC

*Corresponding author: 100 Europa Drive Suite 540, Chapel Hill, NC 27517, dayne_filer@med.unc.edu

Abstract

What’s already known about this topic?

• Sequencing-based noninvasive testing can detect large copy number abnormalities and some autosomal dominant single-gene disorders
• Exome sequencing (ES) on fetal samples provides 20% diagnostic yield for structural abnormalities after normal karyotype & microarray

What does this study add?

• ES on cell-free DNA in three gravid patients with suspected genetic disease in the fetus
• We demonstrate broad sequencing approaches are limited by sampling and technical difficulties, concluding broad sequencing is currently inappropriate for noninvasive testing

Letter

The beneficial health outcomes from newborn screening programs (NBS) are indisputable. We envision future NBS will begin with prenatal genetic testing to enable care in the immediate newborn period, and open up new possibilities for in utero and genetic therapies. During pregnancy placental DNA is released into maternal circulation, enabling noninvasive interrogation of fetal genetics (noninvasive prenatal testing, NIPT). NIPT has a well-established clinical utility in screening for common chromosomal abnormalities such as Down syndrome with high sensitivity and specificity.¹ More recently, efforts have demonstrated sequencing-based testing for de novo pathogenic variants in a list of 30 genes associated with dominant Mendelian disorders² and PCR-based testing for a small number of recessive Mendelian disorders.³ To date, no one has reported reliable fetal genotyping purely from maternal cell-free DNA using a sequencing-based approach.
<table>
<thead>
<tr>
<th>GA</th>
<th>Clinical findings</th>
<th>Genetic diagnosis</th>
<th>FF</th>
<th>Depth</th>
<th>%Dup</th>
<th>%Filt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32w2d 5 prior pregnancies affected with X-linked recessive Menke’s syndrome</td>
<td>Menke’s syndrome; del. ATP7A exon 1</td>
<td>0.117</td>
<td>241</td>
<td>42.8</td>
<td>21.96</td>
</tr>
<tr>
<td>2</td>
<td>24w5d Fetal sonogram at 21w5d showed femoral bowing with shortened length (<3% for GA) bilaterally</td>
<td>Osteogenesis imperfecta type VIII; P3H1 c.1120G>T (rs140468248)</td>
<td>0.122</td>
<td>152</td>
<td>33.32</td>
<td>22.09</td>
</tr>
<tr>
<td>3</td>
<td>34w0d Fetal sonogram at 19w0d showed bilateral club foot with bilateral upper limb arthrogryposis</td>
<td>None, to date, despite exome and genome sequencing of newborn</td>
<td>0.169</td>
<td>330</td>
<td>53.67</td>
<td>32.65</td>
</tr>
</tbody>
</table>

Table 1: Case summaries. GA: gestational age at the time of blood draw for cfES. FF: estimated fetal fraction. Depth: median depth used to estimate genotypes (does not include duplicated/filtered reads). %Dup: percentage of total mapped read pairs discarded as PCR and/or optical duplicates. %Filt: percentage of total mapped read pairs discarded for improper pairing and/or mapping quality.

To begin NBS with prenatal genetic testing, we believe we first need a reliable noninvasive test only requiring a maternal sample. Others could reasonably argue the availability of carrier screening, and the immeasurably small risk of invasive testing, removes the need for the noninvasive test. Such an argument, however, dismisses (1) the ethical and practical issues surrounding the necessity of involving the biological father, (2) the fact that many genetic disorders arise due to *de novo* mutations, and (3) the understandable fear and apprehension around invasive testing (especially for rare conditions). Additionally, we believe the prenatal diagnosis community should focus work on sequencing-based (as opposed to PCR-based) approaches. Sequencing-based approaches generalize across disorders more easily than PCR-based approaches, multiplex to a degree not feasible using PCR, and will only continue to decrease in cost.

Previously, Kitzman et al. performed whole-genome fetal sequencing from maternal plasma by combining whole genome data from the father, mother, and maternal plasma, but illustrate the cost-infeasibility in their subsequent review article and suggest more targeted approaches such as exome sequencing (ES).

As an exploratory exercise, we performed ES on cell-free DNA (cfES) from three pregnant women with singleton fetuses.

Briefly, we collected cell-free DNA from maternal plasma, prepared sequencing libraries for the Illumina platform, and performed exome capture using the IDT xGen Exome Research Panel v1.0 (Cases 1 & 2) or Agilent SureSelect Human All Exon v7 (Case 3). All participants were consented and enrolled at UNC Hospitals by certified genetic counselors with approval from the UNC Institutional Review Board (IRB Number: 18-2618); we do not include any identifying information in this manuscript. We processed the data using a novel analytic pipeline developed in Snakemake using Anaconda environments for reproducibility. Sequencing reads were aligned to hg38 (excluding alternate contigs) using BWA-MEM, then base quality scores were re-calibrated using GATK4. We only retained non-duplicate, properly-paired reads with unambiguous mapping and mapping quality >30 for each read. We called variants using the bcftools software requiring basepair quality scores >20, 5 alternate allele-supporting fragments, and 80 total fragments. Analyses were restricted to the regions overlapping between the IDT and Agilent capture platforms. Using the identified single-nucleotide variants, we applied a novel empirical Bayesian procedure to estimate the fetal fraction (FF; the proportion of placental/fetal to maternal sequencing reads). We then estimated fetal and maternal genotypes using a maximal likelihood model incorporating the FF estimate and observed proportion of minor allele (alternate) reads (PMAR). Full analytic pipeline available upon request.
Figure 1: [A-C] Distribution of observed PMAR values for the three cases across the possible maternal-fetal genotype pairs. Uppercase letters give the estimated maternal genotype, lowercase letters give the estimated fetal genotype; ‘A/a’ indicates the reference allele, ‘B/b’ indicates the alternate allele. Solid lines show the normal approximation for the theoretical distribution of binomial probabilities, given the frequency of the estimated genotypes. The vertical line in [B] shows the observed PMAR for the known pathogenic variant, rs140468248. [D] 95% confidence intervals on the binomial proportions for possible maternal-fetal genotype pairs across increasing fetal fractions; represents a sequencing depth of 500x. Average fetal fractions by gestational age (in weeks) given in light gray. [E] Expected misclassification rate (Weitzman overlapping coefficient; i.e. the area of overlapping distributions in [D]) considering ABab versus ABbb as a function of sequencing depth and fetal fraction. The dashed horizontal line shows 5% error. The theoretical error rates for ABab vs ABaa are symmetric and equal; however, the frequency of errors will depend on the population frequency of the reference versus alternate allele.

Table 1 lists the known genetic diagnoses for the three cases presented. Genetic counselors recruited the three participants with investigators and cfES analysis blinded to the eventual genetic diagnoses.

In Cases 1 & 2, specific gene sequencing based on family history and sonographic findings, respectively, provided genetic diagnoses. To date, Case 3 does not have a specific genetic diagnosis despite whole-genome sequencing of the newborn and ES on the trio. Afterwards, we learned the mother in Case 1 carries a deletion of exon 1 in the gene most-often responsible for Menke’s syndrome (ATP7A). Neither exome capture platform targets ATP7A exon 1; therefore, cfES could not have identified the diagnosis for Case 1 with the platform used. In Case 2, we identified the causal variant using cfES. In this case, we correctly genotyped the fetus, but lacked the power to make the genotyping call with any level of confidence acceptable for clinical use (fig. 1B, note the widely-overlapping distributions at the causal variant). We did not identify any known pathogenic variants in the sequencing of Case 3, and despite performing whole-genome sequencing on the newborn, we still do not have a genetic diagnosis for the family.

Without the ability to reliably exclude maternal DNA fragments, noninvasive sequencing-based methods to genotype the fetus either require additional sequencing of parental samples or distinguishing genotypes by the proportion of minor allele reads (PMAR). Here, we make no attempt to utilize parental genetic
information and demonstrate the difficulty of inferring the genotypes directly from the PMAR. We model
the PMAR as a binomial proportion; given the fetal fraction, one can prove the true PMAR defines the
maternal-fetal genotype combination.

For illustration, consider watching two people randomly place balls into an urn. We know each person
either has all white balls, all black balls, or equal numbers of white and black balls; we also know the
number, but not the color of balls each person places. We count 60 black balls and 40 white balls in
the urn. Given Person A placed 80 balls, the maximum likelihood estimate suggests Person A had equal
white and black balls ($0.5 \times 80 = 40$) and Person B had all black balls ($1.0 \times 20 = 20$).

The theoretical bounds of the binomial distribution, therefore, confine our ability to discriminate maternal-
fetal genotypes. Using the normal approximation for the binomial variance (valid when the number of
observations (sequencing depth), N, times the binomial proportion (PMAR), p is greater than 10), we
can clearly explain the poor results we observed (fig. 1D-E). At sequencing depths up to 500x, the 95%
confidence intervals on PMAR distributions still overlap for fetal fractions up to roughly 0.17 (fig. 1D).
When we calculate the degree of distribution overlap (a proxy for classification error rate), we see required
sequencing depths in excess of 8,000x for low fetal fraction samples.

The sequencing herein likely suffers from three problems: (1) inadequate sequencing depth; (2) biased
PMAR values from the removal of duplicate reads; (3) errors in sequencing and/or PCR. We have already
illustrated the inadequate depth, but emphasize that the theoretical results we present speak to the final
depths (not the raw sequencing depth). In our three cases, we excluded over half the reads taken off the
sequencer due to sequencing quality thresholds (table 1). We observe the evidence of problems (2) and
(3) by observing the high proportion of both duplicate reads and PMAR values outside the theoretic
distributions. Additionally, for Case 3 only, we can assess the accuracy of the genotype estimates. In
Case 3, we have ES from newborn cord-blood; if we examine variants from both the cfES and ES of
newborn cord-blood, we observe a 50.9% genotyping accuracy (data not shown).

Typical sequencing workflows start with randomly fragmenting DNA molecules to build sequencing li-
braries. Standard bioinformatic practices suggest we remove read-pairs with identical endpoints, because
the duplicate read-pairs more likely represent PCR amplification of a single molecule than two molecules
with the same fragmentation. Cell-free DNA molecules are shorter than nuclear DNA, not requiring
manual fragmentation, and have a non-random distribution of endpoints. Therefore, compared to stan-
dard sequencing libraries, the likelihood of observing true duplicates in cell-free libraries increases and
we cannot necessarily assume duplicates represent PCR amplification. However, for this work we have
no way of differentiating reads representing true duplicate molecules versus PCR duplicates and thus
excluded duplicate reads from our analysis.

To solve the above issues, we are currently developing and testing a more targeted approach with se-
quencing depths in excess of 10,000x and unique molecular identifiers to estimate accurately sequencing
errors and differentiate true versus artifactual duplicate reads. Given the depth requirements for esti-
mating fetal genotypes by the PMAR, and the challenge of variants of uncertain clinical significance, we
advocate against broad sequencing modalities on noninvasive samples. Despite the challenges ranged by
this letter, we have good reason to believe we can assess hundreds to thousands of basepairs, rather than
the tens of millions targeted in ES, economically and reliably. In doing so, we hope to foster population-
level screening for Mendelian disorders during the prenatal period and, ultimately, unlock new avenues
in the treatment of these disorders.

Acknowledgements

We thank Dr. James Evans for providing review and feedback of this manuscript. We especially thank
the authors of the software packages that we did not have room in this brief letter to cite directly. Neeta
Vora and this work was supported by NICHD (K23HD088742). Dayne Filer was supported by NICHD
(F30HD101228) and by NIGMS (5T32GM067553).
References

Word count

File: ResearchLetter.tex
Encoding: utf8
Words in text: 1577
Words in headers: 18
Words outside text (captions, etc.): 235
Number of headers: 5
Number of floats/tables/figures: 2
Number of math inlines: 5
Number of math displayed: 0
Subcounts:
 text+headers+captions (#headers/#floats/#inlines/#displayed)
 57+13+0 (1/0/0/0) _top_
 79+1+0 (1/0/0/0) Section: Abstract
 1385+1+235 (1/2/5/0) Section: Letter
 56+1+0 (1/0/0/0) Section: Acknowledgements
 0+2+0 (1/0/0/0) Section: Word count