High SARS-CoV-2 seroprevalence in Health Care Workers but relatively low numbers of deaths in urban Malawi

Marah G. Chibwana1§, Khuzwayo C. Jere1,2§, Raphael Kamn’gona1, Jonathan Mandolo1, Vincent Katunga-Phiri1, Dumizulu Tembo1, Ndaona Mitole1, Samantha Musasa3, Simon Sichone1, Agness Lakudzala1, Lusako Sibale1, Prisca Matambo1, Innocent Kadwala1, Rachel L. Byrne5, Alice Mbewe1, Ben Morton1,5, Chimota Phiri4, Jane Mallewa3, Henry C Mwandumba1,5, Emily R. Adams5, Stephen B. Gordon1,5*, Kondwani C. Jambo1,5**

1 Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.
2 Centre for Global Vaccine Research, Institute of Infection, Veterinary Ecological Sciences, University of Liverpool, Liverpool, UK.
3 Department of Medicine, College of Medicine, University of Malawi, Blantyre, Malawi.
4 Ministry of Health, Queen Elizabeth Central Hospital, Blantyre, Malawi
5 Liverpool School of Tropical Medicine, L3 5QA, Liverpool, United Kingdom.

*Corresponding author: Viral Immunology Research Group, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, P.O Box 30096, Blantyre 3, Malawi. Tel : 01 874 628
Fax : +265 1 875 774. ORCID ID: 0000-0002-3195-2210
Email: kjambo@mlw.mw

§Authors contributed equally.

*Joint senior authors

Running Head: High SARS-CoV-2 seroprevalence in Urban Malawi

Key Words: SARS-CoV-2, COVID-19, Malawi, Seroprevalence, IgG
Abstract

Background
In low-income countries, like Malawi, important public health measures including social distancing or a lockdown, have been challenging to implement owing to socioeconomic constraints, leading to predictions that the COVID-19 pandemic would progress rapidly. However, due to limited capacity to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, there are no reliable estimates of the true burden of infection and death. We, therefore, conducted a SARS-CoV-2 serosurvey amongst health care workers (HCW) in Blantyre city to estimate the cumulative incidence of SARS-CoV-2 infection in urban Malawi.

Methods
Five hundred otherwise asymptomatic HCWs were recruited from Blantyre City (Malawi) from 22nd May 2020 to 19th June 2020 and serum samples were collected all participants. A commercial ELISA was used to measure SARS-CoV-2 IgG antibodies in serum. We run local negative samples (2018 - 2019) to verify the specificity of the assay. To estimate the seroprevalence of SARS CoV-2 antibodies, we adjusted the proportion of positive results based on local specificity of the assay.

Results
Eighty-four participants tested positive for SARS-CoV-2 antibodies. The HCW with a positive SARS-CoV-2 antibody result came from different parts of the city. The adjusted seroprevalence of SARS-CoV-2 antibodies was 12.3% [CI 9.0–15.7]. Using age-stratified infection fatality estimates reported from elsewhere, we found that at the observed adjusted seroprevalence, the number of predicted deaths was 8 times the number of reported deaths.
Conclusion

The high seroprevalence of SARS-CoV-2 antibodies among HCW and the discrepancy in the predicted versus reported deaths, suggests that there was early exposure but slow progression of COVID-19 epidemic in urban Malawi. This highlights the urgent need for development of locally parameterised mathematical models to more accurately predict the trajectory of the epidemic in sub-Saharan Africa for better evidence-based policy decisions and public health response planning.
Introduction

Coronavirus Disease 2019 (COVID-19) has had a dramatic impact worldwide, with high mortality in Asia, Europe and Americas (1). Africa reported its first COVID-19 case on 14th February 2020 (2). Due to poor socio-economic conditions, high HIV prevalence, an increase in non-communicable diseases and challenged health system infrastructure, it was predicted that the African pandemic would progress rapidly. As of 16th July 2020, however, the number of COVID-19 cases was 665,522 and deaths 14,434 (1, 2), much lower than predicted by mathematical models (3).

In low-income countries, like Malawi, important public health measures like social distancing or a lockdown, are difficult to implement owing to socioeconomic constraints. Furthermore, the limited capacity to test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection impedes effective public health response planning. Initial testing in Malawi focused on case identification in patients with COVID-19-like symptoms, contacts of index patients and inbound travellers. The first COVID-19 case in Malawi was reported on 2nd April and as of 16th July 2020 there were 2716 cases with only 51 deaths reported (2, 4). Given the sampling strategy, the true burden is certainly much greater than the reported cases, but there are no reliable estimates of the true burden of infection and death. Up to now, health services have reported only small number of cases and have not been overwhelmed as predicted (3).

The unrestricted nature of the COVID-19 epidemic in Malawi provides an opportunity to compare its trajectory in a low-income setting with what has been reported in high income settings. It has been shown that the rate of asymptomatic SARS-CoV-2 infection among Health Care Workers (HCW) reflects general community transmission rather than in-hospital exposure (5). We, therefore, conducted a SARS-CoV-2 serosurvey amongst HCW in
Methods

Study participants

The study was conducted at the Malawi-Liverpool-Wellcome Trust Clinical Research programme in Blantyre, Malawi, between 22nd May 2020 to 19th June 2020. Participants were HCWs from Blantyre City, both clinical and non-clinical. Inclusion criteria for the study included being HCW resident in Blantyre, aged between 18 and 65 years old, and otherwise symptomatic. The exclusion criterion was withholding consent. Ethical approval was provided by the College of Medicine Research and Ethics Committee (COMREC, Malawi) (P.05/20/3045) and Liverpool School of Tropical Medicine (LSTM, UK) (20-043).

Sample collection, processing and experimental setup

Peripheral blood samples were collected from all study participants in serum separation tubes (SST) (BD Biosciences). Serum was collected from the SSTs and stored at -80°C for storage. To measure SARS-CoV-2 antibodies, we used a commercial Enzyme Linked-Immunosorbent Assay (ELISA) targeting Spike (S2) and Nucleoprotein (N) from SARS-CoV-2 (Omega diagnostics, UK). The assay was performed as per manufacturer’s instructions. This assay has undergone rigorous independent validation at the Liverpool School of Tropical Medicine (UK) and St George’s University of London (UK) (6).

Statistical analysis

Graphical presentation were performed using GraphPad Prism 8 (GraphPad Software, USA). We used FlowJo v10 software (Treestar, USA) to analyse flow cytometry data. To integrate
uncertainty arising from test sensitivity and specificity, we used a Bayesian model to produce a posterior distribution of seroprevalence that incorporates uncertainty associated with a finite sample size (7). The geospatial data was plotted using using RStudio (Version 1.3.959).

Results

Demographics of study participants

We recruited 500 asymptomatic HCW median age 31 (range 20-64 years). The average household size for the participants was 4 [Confidence Interval (CI) 3–5]. Three hundred and thirty-one were clinical HCWs and 169 non-clinical HCWs (Table 1). The clinical HCWs included nurses, medical doctors and clinical officers, while the non-clinical HCWs included clerical/administration, field workers and laboratory scientists. The primary workstation for the HCW included primary healthcare facility (35/500), secondary healthcare facility (291/500), and clinical research facility (174/500). The majority of the participants were nurses (57%). Forty one percent of all participants were involved in clinical work related to COVID-19 and 73% of the total participants used public transport or walking as main means of transport. The average household size for the participants was 4[CI 3-5]. The main characteristics of the participants are summarised in Table 1.

Seroprevalence of SARS CoV-2 antibodies and geospatial location of the antibody positive individuals

Using historical control samples from Malawi (2018–2019), which included malaria convalescence sera and sera from asymptomatic HIV-infected adults (antiretroviral therapy (ART) naïve and those on ART), we determined local assay cut-offs for seropositivity, low cut-off [+20% above manufacturer’s cut-off value], and conservative high cut-off (+80% above manufacturer’s cut-off value). The highest false positive sample was from an
asymptomatic HIV-uninfected adult collected end August 2019. None of the false positive
samples were malaria convalescence sera. The assay specificity at the low cut-off was 93%
(82/88) [88-96] and 97% (85/88) [90-99] at the high conservative high cut-off.

Eighty-four participants tested positive for SARS-CoV-2 antibodies at the local low cut-off,
while 39 participants tested positive for SARS-CoV-2 antibodies at the local conservative
high cut-off (Figure 1 and Table 1). After adjusting for test sensitivity and specificity, the
overall seroprevalence of SARS-CoV-2 antibodies was 12.3% [CI 9.0–15.7] at low cut-off
and 5.9% [CI 3.6–8.3] at conservative high cut-off. This suggests that local transmission was
high and that SARS-CoV-2 may have been circulating for some time in Blantyre.

To estimate the potential geographical spread of SARS-CoV-2, we plotted the geographical
coordinates of place of residence for the individuals with a positive antibody on the map of
Blantyre City. We found that the HCW with a positive SARS-CoV-2 antibody result came
from different parts of the city (Figure 2). This suggests that SARS-CoV-2 local transmission
was widespread across the city.

Crude projections of mortality based on seroprevalence estimates

Using estimates of infection fatality rates from Verity et al. (8) and the Malawi population
census (9), we estimated the number of deaths that could have occurred at the observed
seroprevalence of SARS-CoV-2 antibodies (Table 2). We adjusted the population estimates
by inflating them to take into account population annual population growth rate of 2% from
2018 to 2020 (9). We assumed that there was a uniform risk of infection at all age groups and
that the seroprevalence was similar to the general population.
The crude estimates suggest that there should have been at least 138 deaths by 19th June 2020. However, four weeks following the serosurvey, only 17 COVID-confirmed deaths in Blantyre have been reported by the Public Health Institute of Malawi (4), which is approximately 8 times below the predicted deaths. When the seroprevalence is extrapolated to the entire Malawi, it predicts approximately 5,295 COVID-19 deaths, but only 51 deaths have been reported by 16th July 2020. These crude estimates highlight a discrepancy between the predicted deaths using infection fatality rates from elsewhere and the actual number of reported COVID-19 deaths in Malawi.

Conclusions

To our knowledge, this seroprevalence study among HCW is among the first to report estimates of SARS-CoV-2 exposure in an African urban low-income setting. It provides insights into the potentially unique trajectory of the COVID-19 epidemic in sub-Saharan Africa (SSA), using data from urban Malawi. We observe a high seroprevalence of SARS-CoV-2 antibodies amongst HCW. It has been reported elsewhere that HCW accounted for a high proportion of cases early in the SARS-CoV-2 outbreak when transmission was increasing sharply and personal protective equipment (PPE) provision was patchy (10-12). Our data could suggest that Malawi is relatively early in the epidemic and that COVID-19 cases are likely to continue to rise sharply in the coming weeks, but the serology also suggests that large numbers of cases must be either asymptomatic or only show mild disease.

The discrepancy between the predicted compared reported mortality at the observed seroprevalence estimate, may also suggest that there are large numbers of underreported or misclassified deaths in Malawi. However, even in countries like South Africa with relatively abundant testing capacity and strong health systems there is relatively low mortality with a
case fatality ratio of 1.5 (13). This may imply that the impact of SARS-CoV-2 in Africa is potentially much less severe or is following a different trajectory than that experienced in China, Americas and Europe, where case fatality ratios were commonly above 5 (1). This warrants further investigation.

However, the reasons behind the discrepancy in the COVID-19 pandemic trajectory between SSA and elsewhere might include population demography, climate and prior cross-reactive immunity (14). In Malawi, for example, the population is younger (median age 17 years old) (9), and the elderly who mostly experience worse outcomes in other settings (8), are 5.1% of the population (9), largely residing in rural areas. If the prevalence of SARS-CoV-2 is very low in rural areas, this may explain the low number of deaths, and would strengthen the call to shield the elderly (15).

This study has some limitations. First, selection bias is likely due to the convenience sampling approach, however, targeting HCW for regular serosurveys could help predict local transmission outbreaks. Second, this serosurvey focused on an urban population where Malawi has reported the concentration of COVID-19 cases. The seroprevalence in the rural population remains unknown, but if high, may prompt other explanations for the African/Malawi situation. Third, current SARS-CoV-2 ELISAs are still undergoing rigorous validation and verification in the African settings, hence seroprevalence estimates could change with new information on the accuracy of the test kits.

In conclusion, our findings indicate a major discrepancy between predicted COVID-19 mortality at the observed SARS-CoV-2 seroprevalence in HCW, with reported COVID-19 deaths in urban Malawi. The high seroprevalence estimate implies earlier exposure of SARS-
CoV-2 than that reported but with slow progression of the COVID-19 epidemic.

Development of locally parameterised mathematical models should be prioritised to more accurately predict the trajectory of the epidemic in SSA. This will allow better evidence-based policy decision-making and public health response planning.

Acknowledgements
We acknowledge the PROTECT Study Team at the Malawi-Liverpool-Wellcome Trust Clinical Research Programme, namely Alice Kalilani, Gift Sagawa, Martha Moyo, Orpha Kumwenda, Sharon Nthala, Chisomo Jassi, Neema Nyakuleha and Tayamika Banda. We thank Dr Joe Fitchett at Mologic (UK) for providing the SARS-CoV-2 ELISA kits.

Funding
This work was funded by the Wellcome (UK), NIHR (UK), MRC (UK) and NIH (USA). K.C.J* was supported by the NIHR and MRC through grant numbers 3477609 and MR/T008822/1, respectively. K.C.J.§ was supported by a Wellcome Training Fellowship number 201945/Z/16/Z. M.G.C. is supported by NIH through grant number U01AI131348. E.R.A is supported by the Wellcome Trust/DFID Joint Initiative for Research in Epidemic Preparedness and Response (220764/Z/20/Z), and the NIHR HPRU (200907) in Emerging and Zoonotic Infection. The Malawi-Liverpool-Wellcome Trust Clinical Research Programme [MLW] was supported by a strategic award from the Wellcome awarded to S.B.G.

Author Contributions
and A.L. performed the laboratory work. K.C.J.* carried out the statistical analyses. K.C.J.*, K.C.J. §, M.G.C. and S.B.G. drafted the manuscript. K.C.J*. K.C.J. §, M.G.C. and S.B.G. obtained funding for the study. All authors contributed to critical revision of the manuscript for important intellectual content: All authors have read and approved the final manuscript.

Disclaimer

The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication. Mologic (UK) was provided the opportunity to review a preliminary version of this manuscript for factual accuracy but the authors are solely responsible for final content and interpretation. The authors received no financial support or other form of compensation related to the development of the manuscript. The findings and conclusions in this report are those of the authors.

Potential conflicts of interest

E.R.A. and R.L.B. worked with Mologic (UK) to independently validate the SARS-CoV-2 ELISA at the Liverpool School of Tropical Medicine (LSTM). All other authors report no potential conflicts.
Figure Legends

Figure 1. SARS-CoV-2 serological results from asymptomatic health care workers. We used a commercial ELISA to measure SARS-CoV-2 antibodies against Spike (S2) and Nucleoprotein (N). We run the assay on local negative control samples from 2018 to 2019 and used the results to set assay cut-off values for positivity. These cut-off values were then used to interpret results from our test samples. OD, Optical Density.

Figure 2. Map of Blantyre showing geospatial distribution of seropositive results. We collected geocoordinate data for the place of residence of all study participants at recruitment. The geocoordinates were combined with the ELISA assay results based on the low local assay cut-off and plotted on the map of Blantyre using R. Black dot, seronegative; Orange dot, indeterminate; Red dot, seropositive.
References

2. CDC A. Latest updates on the COVID-19 crisis from Africa CDC. 2020 [cited 2020 15.07.2020]; Available from:

Table 1. Study participant demographics

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Number of participants</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>236</td>
<td>47%</td>
</tr>
<tr>
<td>Female</td>
<td>264</td>
<td>53%</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>209</td>
<td>42%</td>
</tr>
<tr>
<td>30-39</td>
<td>170</td>
<td>34%</td>
</tr>
<tr>
<td>40-49</td>
<td>86</td>
<td>17%</td>
</tr>
<tr>
<td>50-59</td>
<td>28</td>
<td>6%</td>
</tr>
<tr>
<td>60+</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical HCW</td>
<td>331</td>
<td>66%</td>
</tr>
<tr>
<td>Non-Clinical HCW</td>
<td>169</td>
<td>34%</td>
</tr>
<tr>
<td>COVID-19 work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical</td>
<td>205</td>
<td>41%</td>
</tr>
<tr>
<td>Non-Clinical</td>
<td>43</td>
<td>9%</td>
</tr>
<tr>
<td>None</td>
<td>252</td>
<td>50%</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public + Walking</td>
<td>363</td>
<td>73%</td>
</tr>
<tr>
<td>Private</td>
<td>137</td>
<td>27%</td>
</tr>
</tbody>
</table>

COVID-19, Coronavirus Diseases of 2019; HCW, Health Care Workers
Table 1. Number of projected deaths relative to SARS-CoV-2 seroprevalence in Blantyre and Malawi

<table>
<thead>
<tr>
<th>Age</th>
<th>Population* (Blantyre)</th>
<th>Population* (Malawi)</th>
<th>Infection fatality rate</th>
<th>Number of Infections</th>
<th>Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blantyre</td>
<td>Malawi</td>
</tr>
<tr>
<td>0-9 yrs</td>
<td>207,002</td>
<td>5,394,769</td>
<td>0.00%</td>
<td>24,840</td>
<td>663,557</td>
</tr>
<tr>
<td>10-19 yrs</td>
<td>199,915</td>
<td>4,753,846</td>
<td>0.01%</td>
<td>23,990</td>
<td>584,723</td>
</tr>
<tr>
<td>20-29 yrs</td>
<td>176,360</td>
<td>2,997,379</td>
<td>0.03%</td>
<td>21,163</td>
<td>368,678</td>
</tr>
<tr>
<td>30-39 yrs</td>
<td>130,362</td>
<td>2,160,103</td>
<td>0.08%</td>
<td>15,643</td>
<td>265,693</td>
</tr>
<tr>
<td>40-49 yrs</td>
<td>67,618</td>
<td>1,316,593</td>
<td>0.16%</td>
<td>8,114</td>
<td>161,941</td>
</tr>
<tr>
<td>50-59 yrs</td>
<td>28,397</td>
<td>722,800</td>
<td>0.60%</td>
<td>3,408</td>
<td>88,904</td>
</tr>
<tr>
<td>60-69 yrs</td>
<td>15,225</td>
<td>494,678</td>
<td>1.93%</td>
<td>1,827</td>
<td>60,845</td>
</tr>
<tr>
<td>70-79 yrs</td>
<td>5,715</td>
<td>280,394</td>
<td>4.28%</td>
<td>686</td>
<td>34,488</td>
</tr>
<tr>
<td>80+ yrs</td>
<td>2,001</td>
<td>152,762</td>
<td>7.80%</td>
<td>240</td>
<td>18,790</td>
</tr>
<tr>
<td>Total</td>
<td>832,595</td>
<td>18,273,324</td>
<td></td>
<td>99,911</td>
<td>2,247,619</td>
</tr>
</tbody>
</table>

Figure 1. SARS CoV-2 serological results from asymptomatic health care workers
Black dot, negative; Red dot, positive; Orange dot, indeterminate

Figure 2. Map of Blantyre showing geospatial distribution of seropositive results using the low local assay cut-off.