Serial population based serosurvey of antibodies to SARS-CoV-2 in a low and high transmission area of Karachi, Pakistan

Imran Nisar MSc¹, Nadia Ansari MSc¹, Mashal Amin MSc¹, Farah Khalid MSc¹, Anesta Hotwani¹, Najeel Rehman¹, Arjumand Rizvi MPhil¹, Arslan Memon MPH², Zahoor Ahmed², Ashfaque Ahmed², Junaid Iqbal PhD¹, Ali Faisal Saleem MSc¹, Uzma Bashir PhD³, Daniel B Larremore PhD⁴, Bailey Fosdick PhD⁵, Fyezah Jehan MSc¹

¹ Department of Paediatrics and Child Health, The Aga Khan University, Stadium Road, Karachi, Pakistan.

² Health Department, Government of Sindh, Pakistan

³ World Health Organisation Country Office, Pakistan

⁴ University of Colorado Boulder, Colorado, USA

⁵ Colorado State University, Colorado, USA

ABSTRACT

Background

Pakistan is among the first low- and middle-income countries affected by COVID-19 pandemic. Monitoring progress through serial sero-surveys, particularly at household level, in densely populated urban communities can provide insights in areas where testing is non-uniform.

Methods

Two serial cross-sectional household surveys were performed in April (phase 1) and June (phase 2) 2020 each in a low- (District Malir) and high-transmission (District East) area of Karachi, Pakistan. Household were selected using simple random sampling (Malir) and systematic random sampling (East). Individual participation rate from consented households was 82.3% (1000/1215 eligible) in phase 1 and 76.5% (1004/1312 eligible) in phase 2. All household members or their legal guardians answered questions related to symptoms of Covid-19 and provided blood for testing with commercial Elecsys® Anti-SARS-CoV-2 immunoassay targeting combined IgG and
IgM. Seroprevalence estimates were computed for each area and time point independently. Given correlation among household seropositivity values, a Bayesian regression model accounting for household membership, age and gender was used to estimate seroprevalence. These estimates by age and gender were then post-stratified to adjust for the demographic makeup of the respective district. The household conditional risk of infection was estimated for each district and its confidence interval were obtained using a non-parametric bootstrap of households.

Findings

Post-stratified seroprevalence was estimated to be 0.2% (95% CI 0-0.7) in low-and 0.4% (95% CI 0 - 1.3) in high-transmission areas in phase 1 and 8.7% (95% CI 5.1-13.1) in low- and 15.1% (95% CI 9.4 -21.7) in high-transmission areas in phase 2, with no consistent patterns between prevalence rates for males and females. Conditional risk of infection estimates (possible only for phase 2) were 0.31 (95% CI 0.16-0.47) in low- and 0.41(95% CI 0.28-0.52) in high-transmission areas. Of the 166 participants who tested positive, only 9(5.4%) gave a history of any symptoms.

Interpretation

A large increase in seroprevalence to SARS-CoV-2 infection is seen, even in areas where transmission is reported to be low. Mostly the population is still seronegative. A large majority of seropositives do not report any symptoms. The probability that an individual in a household is infected, given that another household member is infected is high in both the areas. These results emphasise the need to enhance surveillance activities of COVID-19 especially in low-transmission sites and provide insights to risks of household transmission in tightly knit neighbourhoods in urban LMIC settings.

390 words
RESEARCH IN CONTEXT

Evidence before this study

Pakistan is the fifth most populous country in the world. The pandemic reached here in late February 2020 and so far more than 269,000 confirmed cases have been registered with over 5500 deaths. Karachi, the largest city in Pakistan has also seen most number of cases and deaths. However, true extent of transmission in the community is not known as testing rates have been low resulting in under reporting of cases and omission of mildly symptomatic and asymptomatic cases. Population based serosurveys can help understand true magnitude of the spread and its variation with sociodemographic and other factors. We searched PubMed and its specific hub LitCovid, medRxiv and bioRxiv preprint servers up to July 25, 2020, for epidemiological studies using the terms “seroprevalence” or “seroepidemiology” and “SARS-CoV-2” for articles in English language. Although there has been a recent surge in the number of serosurveys that have been done globally, many of them fail to meet the appropriate epidemiological and laboratory requirements of internal and external validity. No survey from Pakistan was identified.

Added value of this study

This is the first population-based seroprevalence study on estimates of antibodies against SARS-CoV-2 from Pakistan. We recruited more than 2000 participants across all age groups from one low transmission and one high transmission area in Karachi in two phases. Our findings show a huge jump in seroprevalence in both low and high transmission areas. Our findings suggest that in our population around 95% of individuals who have developed antibodies against SARS-CoV-2 were asymptomatic. Additionally, our results indicate that children and adolescents have similar seroprevalence as adults and seroprevalence does not vary by sex. We used a FDA approved lab assay for measuring antibodies.

Implications of all the available evidence

There was a huge increase seen in seroprevalence observed in both low and high transmission areas over a short period of time. Our results suggest that almost 95% of people with SARS-CoV-2 infection remained asymptomatic in our population, which has important public health implications.
INTRODUCTION

The global COVID19 pandemic has resulted in more than 15.5 million confirmed cases (until July 24) and more than 633000 deaths, with an estimated case fatality rate (CFR) of 4.1 %.\(^{(1)}\) Pakistan was among the first of low- and middle income countries to be affected, and since then, there have been 269000 cases with 5709 deaths (CFR 2.1 %).\(^{(2)}\) The epidemic started in Sindh province with the first case identified in Karachi on 26\(^{th}\) Feb 2020 in a traveller returning from a religious congregation in Iran. The first few cases were limited to this cohort however, by mid-March, cases without a history of travel appeared indicating local transmission. Since then Karachi has seen the largest number of cases (~83000 or 31% of all cases) in Pakistan.

An ideal surveillance strategy would provide nationally representative data by correctly and actively identifying incident cases through widespread nasopharyngeal (NP) swabbing and reverse transcription polymerase chain reaction (RT-PCR). However, this ideal testing strategy is limited on both supply and demand sides. On the supply side, equipment, reagents, and NP-swabs are limited in Pakistan (as elsewhere). On the demand side, the stigma of forced isolation and fear of lockdown decrease interest in testing and limit case reporting. These issues are further exacerbated by imperfect test sensitivity and high levels of pre-symptomatic and asymptomatic transmission which undermine symptom-based surveillance strategies.\(^{(3)}\)

Population-based sero surveys can be ideal to follow the epidemic,\(^{(4)}\) and support decision making for introduction of a vaccine and strategize target populations.\(^{(5)}\) However, high quality reliable population based surveys can also be expensive and challenging to conduct, especially in the face of an ongoing pandemic. They mandate proper training and personal protective equipment for the data collectors and allaying fear and anxiety in potential participants to avoid non-response bias.

One approach that mitigates these potential issues is a household-based approach to serosurveys. Sampling the entire household can ease procedures of data collection and blood sampling, and operational feasibility can be increased by covering a smaller geographical area and comparing a high incidence and a low incidence area as per disease and case notification data. The World Health Organization (WHO) Unity Studies provide early investigation protocols for performing household level serosurveys for Covid-19 in the population.\(^{(6)}\)
Another advantage of household sampling for COVID-19 is the opportunity to study transmission within the household itself, which becomes important especially when lockdown and social distancing measures are in place. Anecdotally, household transmission has also been a concern in closed congested neighbourhoods of metropolitan cities of Karachi. Several studies have shown that dynamics of household transmission of SARS-CoV-2 differ between symptomatic and asymptomatic households as symptomatic individuals are more likely to transmit the virus. (7-10) However, symptom based testing, pre-symptomatic infections and imperfect sensitivity of RT-PCR based testing can bias results when studying transmission in households with symptomatic individuals. The conditional risk of infection (CRI), namely the probability that an individual in a household is infected given that another household member is infected, is one way of quantifying household transmission, with the added advantage that it is easily estimable using aggregate data from seroprevalence surveys.

There is a presumption that household transmission increases relative to community spread when communities face lockdown orders. Since 23rd March 2020, Karachi has had a patchy imposition of such measures that were informed by results of tests and confirmed cases reported to local authorities. Household transmission and community spread will result in vastly different epidemic trajectories across age groups, and therefore an understanding of household transmission levels are necessary for epidemic forecasting.

Karachi’s highest reported cases have been from District East, especially in the sub-administrative unit (called Union Councils (UCs)) 7, 10, 13 and 14 (Figure 1). Karachi’s lowest reported cases have been from District Malir, particularly from UC 1 a densely populated peri-urban settlement where to date only 194 RT-PCR tests have been conducted and only 4 were reported as positive. Based on this, the district health office has categorised these districts as “high-” and “low-transmission” areas.

In order to understand the propagation of COVID-19 in contrasting geographies, we estimated the change in seroprevalence in a “low-” and “high-transmission” district of Karachi, Pakistan between April to July and correlated this to the change in case reporting and positivity for nasopharyngeal PCR in the area. We also determined age and gender stratified estimates of seroprevalence and assessed the role of household transmission on spread of COVID-19 through
conditional risk of infection (CRI) estimation; using the adapted World Health Organization (WHO) Unity protocol.\(^{(6)}\)

Figure 1. Map of Karachi, Pakistan indicating the union councils that comprised the study area.
METHODS

Study design, site and participants

The study was carried out in Karachi, the largest city in Pakistan, which has a population of more than 16.7 million. Karachi’s population is heterogeneous in terms of socio economic strata spread across urban, peri-urban and a few rural areas. We conducted the study in two areas, one in “high transmission” union councils of District East (area 165 square kilometres and population density of 17625 per square kilometre) and other in a “low transmission” union council of District Malir (area 2635 square kilometres and population density of 762.5 per square kilometres). The four union councils in District East are a densely populated mix of low and middle income communities. The one union council in District Malir is a peri urban fishing community with lower population density (See Table 1).

Table 1. Total population of the sampled union councils.

<table>
<thead>
<tr>
<th>“High-transmission” Union Councils - District East</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 UC 7 Dalmia/ Shanti Nagar</td>
<td>50,692</td>
</tr>
<tr>
<td>2 UC 10 Pehlwan Goth</td>
<td>136,229</td>
</tr>
<tr>
<td>3 UC 13 Safoora Goth</td>
<td>223,771</td>
</tr>
<tr>
<td>4 UC 14 Faisal cantonment</td>
<td>69,576</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“Low-transmission” Union Councils - District Malir</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 UC 1 Ibrahim Hyderi</td>
<td>85,000</td>
</tr>
</tbody>
</table>

Two serial cross-sectional surveys were performed at the household level, between April 15-25 and June 25- July 11, 2020, respectively. Participants in District East were selected through systematic random sampling as follows. A reference point was identified randomly in all 4 UCs
from a list of current positive cases obtained from the district health office. Four teams, comprising one data collector and one phlebotomist each conducted the survey. The first household was selected randomly by spinning a bottle or pen moving in the indicated direction. The sampling interval was determined by looking at the second to last digit of a banknote. Every nth household was sampled until the lane was completed in which case the team moved to the next lane or until the day was completed. The next day, the same sampling strategy was repeated until the overall sample size of the survey was achieved. In the case of refusal from a household, the household on the right was sampled. Teams sought household level approval from elders or representatives and individual participant written informed consent or assent as eligible. Participants in District Malir were selected using a different method than District East, due to the fact that the addresses of cases in District Malir were not available. Instead, there was a line listing of all households available from ongoing work in the area.(12) Simple random sampling was done from the list every day until the sample size was achieved. In both areas, all household members were eligible to participate irrespective of their case status.

All team members were trained on the importance of social distancing, proper use and disposal of Personal Protective Equipment (PPE), hand hygiene, disinfection techniques and safe transportation of biological samples.

A total of 5 ml blood from adults and children more than 1 year of age and 3 ml from infants was collected by a trained phlebotomist. Biosafety measures were followed during collection, transportation and laboratory processing. Demographic and clinical data were collected using Urdu translation of a survey instrument adapted from the WHO Unity Protocol for sero-epidemiology survey of COVID-19.(4)

Sample Size

The sample size for each phase of the survey per site was 500, totalling 1000 participants per survey. This allowed us to estimate an age adjusted prevalence for each site from 20-30\% at 95\% confidence with precision of ± 5\% and a design effect of 1.5 for household level clustering.

Laboratory analysis
A commercial Elecsys® Anti-SARS-CoV-2 immunoassay (Roche Diagnostics), targeting both IgG and IgM against SARS-CoV-2 was performed in the Nutritional Research Laboratory (NRL) at the Aga Khan University. The manufacturer reports a specificity greater than 99.8% and sensitivity of 100% for individuals with a positive PCR test at least two weeks prior, and 88.1% sensitivity for those 7-13 days post a PCR positive test.\(^{(13)}\) Test was optimized at the NRL by assessing a small number of samples; 20 stored sera from before 2019 (pre-pandemic era negative controls) and 25 newly collected sera from RT-PCR-confirmed COVID-19 cases. All 20 pre-pandemic sera were negative while 20 of 25 sera from cases were positive.

Statistical analysis

Bayesian Modelling and Estimation of Seroprevalence

Age and gender-stratified seroprevalence estimates were computed using a Bayesian hierarchical regression model. This approach, described in detail in the Supplementary Material, accounts for uncertainty due to finite lab validation data,\(^{(14)}\) and produces estimates with uncertainty across age and gender groups using typical choices of uninformative or weakly informative prior distributions.\(^{(15, 16)}\)

Seroprevalence estimates were computed for each district and each survey phase independently, and all seroprevalence estimates are expressed as posterior means and 95% equal-tailed credible intervals based on 20000 samples from the Bayesian posterior distribution. All calculations were performed in R and samples from the posterior distributions were obtained using Stan.\(^{(17)}\)

Household conditional risk of infection (CRI) analysis

CRI is the probability that an individual in a household is infected, given that another household member is infected.\(^{(18)}\) It is estimated by a fraction whose numerator is the total number of ordered pairs among infected individuals in the same household and whose denominator is the total number of ordered pairs in the same household in which the first individual in the pair is infected. A 95% confidence interval was estimated via bootstrap for each area by resampling households with replacement.

Results
A total of 2004 participants were enrolled across two phases from District East and District Malir. Figure 2 A&B describes the flow of participants in the study. Among households who agreed to take part, individual participation rate was 82.3% (1000 out of 1215 household members eligible) in phase 1 and 76.5% (1004 out of 1312 household members eligible) in phase 2. Table 2 describes the baseline sociodemographic and clinical characteristics of the enrolled participants.

Figure 2A. Flow chart of participants in the first phase of study

Figure 2B. Flow chart of participants in the second phase of study
Table 2. General characteristics of the study participants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>District East</th>
<th>District Malir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase 1 (n= 500)</td>
<td>Phase 2 (n= 500)</td>
</tr>
<tr>
<td>Sex, male n (%)</td>
<td>256 (51.2%)</td>
<td>225 (45.0%)</td>
</tr>
<tr>
<td>Age in years, mean(SD)</td>
<td>26.2 (17.9)</td>
<td>25.9 (16.7)</td>
</tr>
<tr>
<td>Age in years, median(IQR)</td>
<td>22 (12-38)</td>
<td>21 (12-38)</td>
</tr>
<tr>
<td>Age, categories, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4 year</td>
<td>35 (7.0%)</td>
<td>22 (4.4%)</td>
</tr>
<tr>
<td>5-9 year</td>
<td>57 (11.4%)</td>
<td>54 (10.8%)</td>
</tr>
<tr>
<td>10-18 year</td>
<td>107 (21.4%)</td>
<td>139 (27.8%)</td>
</tr>
<tr>
<td>19-39 year</td>
<td>185 (37.0%)</td>
<td>170 (34.0%)</td>
</tr>
<tr>
<td>40-59 year</td>
<td>83 (16.6%)</td>
<td>97 (19.4%)</td>
</tr>
<tr>
<td>60 and above</td>
<td>33 (6.6%)</td>
<td>18 (3.6%)</td>
</tr>
<tr>
<td>Household size, mean (SD)</td>
<td>6.1(4.17)</td>
<td>6.6(3.6)</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Working outside home, n (%)</td>
<td>155 (31.0%)</td>
<td>145 (29.0%)</td>
</tr>
<tr>
<td>Comorbid conditions, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>453 (92.3%)</td>
<td>463 (93.0%)</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Diabetes</td>
<td>20 (4.0%)</td>
<td>14 (2.8%)</td>
</tr>
<tr>
<td>Hypertension</td>
<td>14 (2.8%)</td>
<td>13 (2.6%)</td>
</tr>
<tr>
<td>Asthma or Allergy</td>
<td>3 (0.6%)</td>
<td>3 (0.6%)</td>
</tr>
<tr>
<td>Chronic Hepatitis</td>
<td>2 (0.4%)</td>
<td>3 (0.6%)</td>
</tr>
<tr>
<td>Chronic Heart Disease</td>
<td>0 (0.0%)</td>
<td>3 (0.6%)</td>
</tr>
<tr>
<td>Symptoms in last 2 months n, (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>435 (87.0%)</td>
<td>453 (90.6%)</td>
</tr>
<tr>
<td>Sought medical attention, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sought care</td>
<td>9 (1.8%)</td>
<td>9 (1.8%)</td>
</tr>
<tr>
<td>Hospitalization</td>
<td>1 (0.2%)</td>
<td>5 (1.0%)</td>
</tr>
<tr>
<td>History of exposure, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td>2 (0.4%)</td>
<td>11 (2.2%)</td>
</tr>
<tr>
<td>Contact with suspected or confirmed COVID-19 case</td>
<td>1 (0.2%)</td>
<td>1 (0.2%)</td>
</tr>
</tbody>
</table>

In Phase 1 of the study, only 2 of 500 samples tested positive in District East and 0 of 500 tested positive in District Malir. In Phase 2 of the study, 100 of 500 samples (20.0%) tested positive in District East and 64 of 504 samples (12.7%) tested positive in District Malir. Both districts showed marked and significant increase in seroprevalence between time points. Of the total 166 participants who tested positive, only 9(5.4%) gave a history of any symptoms.
To measure whether individuals in the same household were more likely to have similar sero-status, we computed the conditional risk of infection (CRI) for phase two. CRI estimates were 0.41 (95% CI 0.28-0.52) in District East and 0.31 (95% CI 0.16-0.4) in District Malir. These measures are consistent with household transmission, but cannot be attributed to household transmission with certainty without additional information.\(^{(18)}\)

Given the correlation among household seropositivity values, we estimated seroprevalence via a Bayesian regression model (see Methods) which took into account household membership, age, and gender for each individual, as well as the lab validation data reported by the test manufacturer.\(^{(13)}\) Seroprevalence estimates by age and gender were then post-stratified to adjust for the demographic makeup of the respective district.

In Phase 1, post-stratified seroprevalence was estimated to be 0.4% (95% CI 0%-1.3%) in District East and 0.2% (95% CI 0%-0.7%) in District Malir.

In Phase 2, post-stratified seroprevalence was estimated to be 15.1% (95% CI 9.4%-21.7%) in District East, and 8.7% (95% CI 5.1%-13.1%) in District Malir.

Seropositivity rates were indistinguishable between men and women within each district. Point estimates of seroprevalence were lower across all age groups in District Malir than in District East, however there was significant overlap between the credible intervals for the two locations (Figure 3).
Figure 3: Prevalence estimates by age and gender based on the data from the survey. The circle represents the posterior mean seroprevalence and the bar represents the 95% equal-tailed credible interval. Posterior mean estimates for District East are consistently greater than those for District Malir, although there is significant overlap in the credible intervals for all age and gender subpopulations. No consistent patterns exist between the prevalence rates for males and females.

Discussion

The two serial serosurveys conducted in a metropolitan city of Pakistan in low- and high-transmission districts indicate a sharp increase in seroprevalence rates between April and June. While increase in the high transmission district is slightly greater and anticipated based on their identification, as current “hotspots” of infection as per the local health authorities, there has been a notable increase in the low transmission areas as well. The survey did not identify any difference in patterns of seroprevalence rates across age and gender categories. In both areas infection was mostly seen in individuals without any symptoms and within household sero-concordance suggests household transmission rates were high.
This is the first report from Pakistan and a low- and middle-income country, of a longitudinal population representative household survey conducted simultaneously in areas of low and high transmission.

The sharp elevation in seroprevalence in an area of presumably low transmission indicates that the virus continues to spread unchecked in populations where test timing is irregular or test numbers are suboptimal. It will be critical to monitor such populations because of the possible risk of resurgence within such areas once lockdown and contact tracing in high transmission areas is eased, as is currently being seen in North America.\(^{(19)}\)

Reasons for inter-district heterogeneity in SARS-CoV-2 transmission are unclear. One explanation could be low socioeconomic area with poor access to clean water and sanitation and recurrent pneumonia and diarrheal illness.\(^{(20, 21)}\) Transmission of COVID-19 in areas with poor hygienic conditions is possibly reduced due to environmental microbes and resulting trained immunity seen with other SARS infections.\(^{(22)}\) However, several of the District East neighborhoods that were part of the study had similar characteristics including household size. This heterogeneity and its underlying causes need to be further explored.

Seroprevalence in children was not different from that seen in adults and elderly. Current evidence suggests that children are less likely to transmit the virus. Also data from population-based studies in Iceland, Italy, South Korea, Netherlands, California and a hospital-based study in the UK suggest children may be less likely to be infected.\(^{(23)}\) However, our study found that children might be infected at a rate similar to adults. This may be due to the household nature of our survey during school closure, where we were powered better for the pediatric population compared to other studies. However, the margins of errors were broad suggesting the need of better-powered studies to establish rates of infection in children relative to adults. Moreover, the role of children in transmission also needs to be assessed through serial symptom surveillance at household level and rapid testing through both NP swab and serology. Specifically, such studies could better elucidate the role of children in transmission blocking strategies such as lockdowns, school closures and vaccination measures, once available.

Spread of infection in the household is an important consideration in SARS-CoV2 transmission, especially in areas where there is lockdown and large families are roomed-in in small poorly
ventilated spaces, typical of the neighborhoods of Karachi. The probability of an individual to have an infection in the presence of another infected household member in our study, as measured by conditional risk of infection (CRI), was found to be similar to the modelled secondary attack rates reported in other studies. CRI can function as a substitute in situations where comprehensive surveillance and disease notification strategy is absent and secondary attack rates are difficult to calculate.

The strength of our study is the serial nature of our survey with a two month inter survey interval allowing for a study of change in seroprevalence. A third round of survey is planned in August 2020. About one third or more of our sample includes children less than 18 years of age focusing on an understudied age group in the pandemic. Probability sampling which is community based is less biased for estimating prevalence and results are more generalizable than those from self-selecting or specific groups of individuals. Adaptation of the UNITY protocol will allow for pooling of our results with other reports. The Electro Chemi Luminescence (ECL) technology used to test antibodies is sensitive and precise as per manufacturer's report.

Limitations include the limited geographical area of the study and the slight lag in duration of conduct of the second serosurvey that may have led to a slight over-estimation in District Malir. In-house validation on local samples was also not performed due to a limited supply chain of testing kits in Pakistan, however this was somewhat compensated by modeling directly on the data reported by the manufacturer.

Conclusion

There is a large increase in seroprevalence to SARS-CoV-2 infection even in areas where transmission is reportedly low. Most seropositives are asymptomatic and a majority of the population is still seronegative. There is high probability of an individual to be infected given exposure to another infected in the household, irrespective of symptoms. Enhanced surveillance activities of COVID-19 are required especially in low-transmission sites in order to determine the real direction of the pandemic and the risks of household transmission in tightly knit neighborhoods in urban LMIC settings.

Acknowledgments
The authors would like to acknowledge all the data collectors, phlebotomists and laboratory personnel who made this happen in the most difficult of circumstances.

Ethics Statement

Ethical Approval was obtained from Aga Khan University’s Ethical Review Committee (AKU ERC#: 2020-3685-10447). Relevant approvals were obtained from district health offices (DHOs) before commencing field activities.
