Pulmonary function and risk of Alzheimer dementia: two-sample Mendelian randomization study

Tom C. Russ,1,4 * Sarah E. Harris,4 G. David Batty1,5

1. Alzheimer Scotland Dementia Research Centre, University of Edinburgh;
2. Edinburgh Dementia Prevention Group, University of Edinburgh;
3. Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh;
4. Lothian Birth Cohorts, Department of Psychology, University of Edinburgh;
5. UCL Research Department of Epidemiology & Public Health, University College London

* Correspondence to: Dr Tom Russ, Alzheimer Scotland Dementia Research Centre, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK
Telephone: +44 (0)131 650 4340; Email: T.C.Russ@ed.ac.uk

Manuscript statistics: 1000 words with one table

Funding: This article received no specific funding. The Alzheimer Scotland Dementia Research Centre is funded by Alzheimer Scotland. The Lothian Birth Cohorts are funded by Age UK. TCR is employed by the UK National Health Service and the Scottish Government. GDB is supported by the UK Medical Research Council (MR/P023444/1) and the US National Institute on Aging (1R56AG052519-01; 1R01AG052519-01A1). All researchers are independent of their funders.
ABSTRACT

Dementia is a major global public health concern and in addition to recognised risk factors there is emerging evidence that poorer pulmonary function is linked with subsequent dementia risk. However, it is unclear if this observed association is causal or whether it might result from confounding. Therefore, we present the first two-sample Mendelian randomisation study of the association between pulmonary function and Alzheimer dementia using the most recent genome-wide association studies to produce instrumental variables for both. We found no evidence of a causal effect of reduced Forced Expiratory Volume in 1 second (FEV₁) or Forced Vital Capacity (FVC) on Alzheimer dementia risk (both P>0.35). However, the FEV₁/FVC ratio was associated with Alzheimer dementia risk with, in fact, superior function predicting an increased dementia risk (β=0.11, P=0.016) which may result from survivor bias. While we can conclude that there is no causal link between impaired pulmonary function and Alzheimer dementia, our study sheds less light on potential links with other types of dementia.
It is well-documented that dementia is a major and growing public health problem — the number of cases are projected to increase, particularly in low-to-middle income countries.(1)

To date, the risk of developing Alzheimer disease — the most common neurodegenerative disease culminating in the dementia syndrome — is thought to be raised in the presence of a relatively small series of environmental and genetic factors. These include lower educational attainment, hypertension, obesity, diabetes, cigarette smoking, and carriage of the ε4 allele of the APOE gene.(2)

Recent findings from observational studies also suggest that impaired pulmonary function is consistently associated with around a 40% evaluation in the risk of later dementia. While there is mechanistic evidence to support this association — including the hypoxic effect of extended sub-optimal ventilatory function(3) — crucially, given the observational nature of these studies, it is unclear if this relationship is causal.(4) The primary impediment to drawing causal inference from such observational studies is the perennial problem of confounding — the notion that, in the case of pulmonary function, the characteristics of people in the low functioning group differ from the unexposed in a variety of ways that may explain the association. Investigators attempt to include as many relevant covariates as possible but the possibility of confounding by factors which have not been measured, or imprecisely quantified, is universal. The technique of Mendelian randomisation (MR) has been seen as a possible remedy to this problem.(5) MR exploits natural genetic variation to create instrumental exposure variables which are less prone to confounding than the directly measured phenotype. This technique has been extended to a two-sample MR where both the exposure and outcome are instrumental genetic variables.(6) Accordingly, for the first time to our knowledge, we present here a two-sample MR study to clarify whether our original observed
association between poorer pulmonary function and subsequent Alzheimer dementia is causal.

METHODS

We ran a two-sample MR using the summary data from the UKBiobank/SpiroMeta Consortium Genome-Wide Association Study (GWAS; 7) which comprised 400,102 individuals. We derived two genetic instruments for lung function: Forced Expiratory Volume in one second (in litres; FEV$_1$) and Forced Vital Capacity (in litres; FVC). Of the 279 SNPs associated with lung function, only those related to the relevant trait with P<5x10$^{-8}$ and with the same direction of effect in UKBiobank and SpiroMeta were used as genetic instruments. In addition, we included a more exploratory measure of pulmonary function, the FEV$_1$/FVC ratio, which has been used in the diagnosis of chronic obstructive pulmonary disease whereby lower values are more suggestive of this disorder.(8) For the outcome, Alzheimer dementia, we used summary data from the most recent GWAS for Alzheimer dementia which included 21,982 people with Alzheimer dementia and 41,944 controls.(9) The models were run in the R statistical computing environment using the TwoSampleMR package.(10)

RESULTS

In Table 1 we show the relationship between our markers of lung function with the subsequent risk of Alzheimer dementia. There was no evidence of a causal effect of poorer lung function — measured using FEV$_1$ or FVC — on Alzheimer dementia risk (both P>0.35). However, the FEV$_1$/FVC ratio was associated with Alzheimer dementia risk with, in fact, superior function predicting an increased dementia risk ($\beta=0.11$, P=0.016). The MR
Egger intercept for the latter indicates little horizontal pleiotropy ($\beta=0.0002$, $P=0.96$) and the inverse-variance weighted Q-value (177.7, $P=0.08$) suggests no substantial heterogeneity.

DISCUSSION

We found that the association between lower pulmonary function and Alzheimer dementia risk based on conventional epidemiological analyses was not supported as being causal in the present MR analyses. Thus, it is possible that the original relationship resulted from confounding by one or more unmeasured or poorly measured confounding factors. Multiple candidates exist including an adverse intrauterine environment leading to reduced maximal lung function, exposure to environmental factors (e.g., tobacco smoke, atmospheric pollution) affecting lung function and development, and socioeconomic factors (poverty, educational failure, and less-advantaged social class). In our systematic review and meta-analysis, most included studies took account of smoking and cardiovascular disease risk factors, and slightly fewer included height. Socioeconomic position was variably accounted for and there was little coverage of the whole life course in terms of all covariables included.

The FEV$_1$/FVC ratio has not been routinely examined in relation to dementia risk using conventional epidemiology methods. However, we found a link between high pulmonary function as captured using this measure and increased Alzheimer dementia risk. This may possibly be explained by survivor bias, with participants with poorer pulmonary function dying before they reach late life.

While it is less susceptible to unmeasured confounding, a two-sample MR approach is not without its limitations. It relies on the instrument being a strong predictor of the exposure
and the exposure being measured accurately in the GWAS from which the instrument is derived. Pulmonary function was accurately measured with rigorous quality control in UKBiobank (87.2% participants), as in the individual studies of the SpiroMeta consortium. (7) The Alzheimer dementia GWAS included 46 case-control studies from four consortia. (9) These studies used various methods of ascertaining dementia, with multiple diagnostic criteria being applied and some diagnosing dementia clinically and some identifying Alzheimer-type pathology post mortem. This variation is likely to affect the applicability of the GWAS findings in our analysis.

In contrast to the instrumental Alzheimer dementia variable used here, most observational studies use a more general category of ‘dementia.’ (4, 9) This lack of clarity is common and the multiple diseases which cause the dementia syndrome — such as Alzheimer disease, cerebrovascular disease, Lewy body disease, and the Fronto-Temporal Lobar Degenerative syndromes — are frequently conflated. Depending on the methodology used to ascertain dementia status, it can be more or less straightforward to clarify an individual’s precise diagnosis. For example, death certificates frequently only record the broad dementia syndrome, rather than the specific sub-type. Thus, while we can conclude that there is no causal link between impaired pulmonary function and Alzheimer dementia, our study sheds less light on potential links with other types of dementia. It is plausible that there may be a different relationship between pulmonary function and vascular dementia, for instance.
REFERENCES
Table 1. Inverse-variance weighted causal effect estimates of the association between pulmonary function (FEV₁, FVC, and FEV₁/FVC ratio) and Alzheimer dementia from a two-sample Mendelian randomization

<table>
<thead>
<tr>
<th></th>
<th>N SNPs</th>
<th>β</th>
<th>SE</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV₁</td>
<td>179</td>
<td>0.0554</td>
<td>0.05989</td>
<td>0.354949</td>
</tr>
<tr>
<td>FVC</td>
<td>133</td>
<td>-0.01728</td>
<td>0.074022</td>
<td>0.815442</td>
</tr>
<tr>
<td>FEV₁/FVC ratio</td>
<td>154</td>
<td>0.113478</td>
<td>0.047106</td>
<td>0.015996</td>
</tr>
</tbody>
</table>