Abstract
One of the most challenging keys to understand COVID-19 evolution is to have a measure on those mild cases which are never tested because their few symptoms are soft and/or fade away soon. The problem is not only that they are difficult to identify and test, but also that it is believed that they may constitute the bulk of the cases and could be crucial in the pandemic equation. We present a novel and simple algorithm to extract the number of these mild cases by correlating a COVID-line phone calls to reported cases in given districts. The key assumption is to realize that, being a highly contagious disease, the number of calls by mild cases should be proportional to the number of reported cases. Whereas a background of calls not related to infected people should be proportional to the district population. We present the plain mathematics of the method and as a working example we apply it to Buenos Aires Province (Argentina), where it is being currently used. The implementation of this algorithm by other regions would be straightforward and would provide compelling information to the corresponding Health Care Administration.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This is supported by CONICET and by CAF
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The research and the manuscript complies with the Ethic Code of the Confederacion Medica de la Republica Argentina (https://www.comra.org.ar/assets/images/cms/244137d29d571505be194a4573ae33cb.pdf), as stated in its Chapter XIII, Articles 99 & 185, and does not require explicit ethic approval.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.