Regional variability in time-varying transmission potential of COVID-19 in South Korea

Eunha Shim 1,2 and Gerardo Chowell 2

1 Department of Mathematics, Soongsil University, 369 Sangdoro, Dongjak-Gu, Seoul, 06978, Republic of Korea; alicia@ssu.ac.kr
2 Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, GA, 30303, USA; gchowell@gsu.edu

* Correspondence: alicia@ssu.ac.kr

Abstract: In South Korea, the total number of the 2019 novel coronavirus disease (COVID-19) cases is 13,711 including 293 deaths as of July 18, 2020. To examine the change of the growth rate of the outbreak, we present estimates of the transmissibility of COVID-19 in the four most affected regions in the country: Seoul, Gyeonggi Province, Gyeongbuk Province, and Daegu. The daily confirmed COVID-19 cases in these regions were extracted from publicly available sources. We estimated the time-varying reproduction numbers in these regions by using the renewable equation determined by the serial interval of COVID-19. In Seoul and Gyeonggi Province, the first major peak of COVID-19 occurred in early March, with the estimated reproduction number in February being as high as 4.24 and 8.86, respectively. In Gyeongbuk Province, the reproduction number reached 3.49 in February 8 and declined to a value below 1.00 on March 10, 2020, and similarly in Daegu, it decreased from 4.38 to 1.00 between February 5 and March 5. However, the loosening of the restrictions imposed by the government has triggered a resurgence of new cases in all regions considered, resulting in a reproduction number in May 2020 estimated at 3.04 and 4.78 in Seoul and Gyeonggi Province, respectively. Even though our findings indicate the effectiveness of the control measures against COVID-19 in Korea, they also indicate the potential resurgence and sustained transmission of COVID-19, supporting the continuous implementation of social distancing measures to control the outbreak.

Keywords: coronavirus, COVID-19, Korea, Seoul, Gyeonggi, Gyeongbuk, Daegu, reproduction number

1. Introduction

Since the first reports of cases from Wuhan in Hubei Province, China, in December 2019, more than 12 million cases of the 2019 novel coronavirus disease (COVID-19), including 551,046 deaths, have been reported worldwide [1]. In South Korea, the disease began to spread when a 36-year old Chinese woman was diagnosed with COVID-19 on January 20, 2020. South Korea has since experienced epidemics with 13,338 cases and 288 deaths as of 10 July [2].

In the early phase of the COVID-19 outbreak in South Korea, public health authorities primarily conducted contact tracing of confirmed cases and quarantined suspected as well as confirmed cases [3].
However, as the number of COVID-19 cases increased, Korean public health authorities raised the alert level to the highest (Level 4) on February 23 and addressed the public to report any illness related to COVID-19 for screening. In addition, the country rapidly adopted a “test, trace, isolate, and treat” strategy that was considered effective in controlling the COVID-19 [2]. However, the number of total confirmed cases in South Korea spiked from 31 on February 18 to 433 on February 22. According to Centers for Disease Control and Prevention Korea (KCDC), such a sudden jump was mostly attributed to a superspreader, the 31st case, who participated in a religious gathering of devotees of Shincheonji Church of Jesus in Daegu [2]. Superspreading events occurred in the Daegu and Gyeongbuk provincial regions, contributing more than 5,210 secondary COVID-19 cases in Korea [2,4]. This led to sustained transmission chains, with 55% of the cases associated with the church cluster in Daegu [5].

On March 8, KCDC announced that 79% of the confirmed cases were related to group infection. The cluster of cases started to grow at churches in the Seoul Capital Area, and on March 17, 79 church devotees were infected with COVID-19 after attending a service of River of Grace Community Church. Despite a government order for social distancing, some churches held services, resulting in cluster infections. For instance, Manmin Central Church in Seoul was involved in such a cluster, with 41 infections linked to a gathering in early March; other church clusters, including SaengMyeongSu Church, with 50 cases appeared in Gyeonggi Province [6].

As infection rates rose outside Korea, the number of imported cases increased, resulting in 476 imported out of 9,661 total cases as of March 30. Consequently, as of April 1, KCDC implemented self-quarantine measures for travelers from Europe or the U.S. [2]. In addition, incoming travelers showing symptoms but tested negative, as well as asymptomatic short-term visitors, were ordered to quarantine for two weeks in a government-provided facility [2].

After a sustained period in which the reported cases were below 20, the government eased its strict nationwide social distancing guidelines on May 6, with phased reopening of schools starting in mid-May. However, a new cluster, tied to nightclubs in Itaewon, emerged in central Seoul in early May. The number of cases that were linked to this cluster had increased to 266 as of May 29 [2]. Accordingly, the Seoul city government ordered all clubs, bars, and other nightlife establishments in the city to close indefinitely [2]. Moreover, there was another cluster stemming from an e-commerce warehouse in Gyeonggi Province, resulting in 108 cases as of May 30.

In the last week of May, the daily new cases increased and varied between 40 and 80 [2]. Following this highest spike of new coronavirus infections in nearly two months, the public health authorities reimplemented strict lockdown measures in Seoul and reclosed schools nationwide. In June, it was announced that the toughened social distancing campaign would be indefinitely extended as a preventive measure in Seoul, Incheon, and Gyeonggi Province; however, phased reopening of schools would take place. In July, sporadic cluster infections across the country continued, with most tied to religious facilities and door-to-door retailers, especially in the densely populated Seoul and adjacent areas. As a result, since July 10, the country has banned churches from organizing smaller gatherings other than regular worship services [2].

To estimate the regional variability in the transmissibility of COVID-19 in South Korea, we analyzed the time evolution of the epidemic in the country as well as in the most affected areas for four
months from onset, and we estimated the reproduction number. The basic reproduction number, denoted by R_0, applies at the outset of an exponentially growing epidemic in the context of an entirely susceptible population and no public health measures, whereas the effective reproduction number R_t quantifies the time-dependent transmission potential, incorporating the effect of control measures and behavioral changes. This key epidemiological parameter, R_t, represents the average number of secondary cases per case if the conditions remained as they were at time t. Steady values of R_t above one indicate sustained disease transmission, whereas values less than one indicate that the number of new cases is expected to follow a declining trend. In this report, we parameterized a mathematical model with cases series of the COVID-19 outbreak in the four most affected regions of Korea, that is, Seoul, Gyeonggi Province, Gyeongbuk Province, and Daegu. Thereby, we investigated the transmission potential using data regarding COVID-19 cases reported until July 18, and we demonstrated the effect of public health measures on this potential.

2. Methods

2.1. Data

We collected the daily series of confirmed cases of COVID-19 in South Korea from January 20 to July 18, which were published by national and local public health authorities, including city or provincial departments of public health in South Korea [7]. These data consist of the date of reporting for all confirmed cases. We restricted our analysis to the country as a whole and the regions with the highest incidence, that is, Seoul, Gyeonggi Province, Gyeongbuk Province, and Daegu (Figure 1).

2.2. Imputing the date of onset

To estimate the growth rate of the epidemic accurately, the epidemic curve should be characterized according to the date of symptom onset rather than reporting. For the COVID-19 data in Korea, however, the symptom-onset date is only available for the 732 cases reported in Gyeonggi Province. Therefore, we imputed the onset date for the cases with missing data using the empirical distribution of the reporting delay from onset to diagnosis. Specifically, we reconstructed 300 epidemic curves according to symptom-onset date, whence we derived the mean incidence curve of local case incidence [8,9]. To adjust for the reporting delay in the real-time analysis, we excluded the last three data points [8].

2.3. Calculation of R_t

To estimate the growth rate of the epidemic, we estimated $R_t(t)$ using the serial interval (SI) and calculated the transmission ability over a (short) period of time [10]. The SI was defined by the time between the timing of symptom onsets of two successive cases in a chain of transmission. Furthermore, the distribution of the SI of COVID-19 is denoted by a probability distribution w_s, the infectivity profile of infected individual, which is dependent on time since infection of the case, s, but independent of calendar time, t. For example, an individual would be most infectious at time s when w_s is the largest. In addition, the infectiousness of a patient is a function of time since infection and proportional to w_s, if
we set the timing of infection of the primary case as the time zero of w_s and assume the generation interval equals the serial interval. Individual biological factors such as pathogen shedding or symptom severity would affect the distribution w_s.

Figure 1. Map depicting the location of Seoul, Gyeonggi Province, Gyeongbuk Province, and Daegu.

The $R_t(t)$ can be estimated by the ratio of the number of new infections generated at time step t, I_t, to the total infectiousness of infected individuals at time t, given by $\sum_{s=1}^{t} I_{t-s} w_s$ [11,12]. Here, $\sum_{s=1}^{t} I_{t-s} w_s$ indicates the sum of infection incidence up to time step $t-1$, weighted by the infectivity function w_s. Analytical estimates of the R_t were obtained within a Bayesian framework. R_t was estimated in a 7 days interval and we reported the median and 95% credible interval (CI). Statistical analysis was performed using R language version 3.6.3.

3. Results

3.1. City of Seoul

As of July 10, the number of reported cases in Seoul was 1,401 (equivalently, 10.50% of the total reported cases in South Korea), including 315 imported cases and 9 deaths. The incidence rate in Seoul was estimated at 144 per million. In Seoul, the first peak occurred during the second week of March (8th
to 14\(^{th}\)) with 18 new cases reported each day, when the number of new infections linked to a Guro-gu call center was spiraling. Based on the estimated dates of symptom onset, the seven-day moving average of daily cases reached 19, recorded on March 9 (Figure 2a). The reproduction number \(R_t\) reached 2.92 on Feb 19 and stayed above one until Mar 6 (Figure 2b).

After its first peak in February, the new daily infection cases in Seoul were gradually reduced, dropped below five on Apr 1, and stayed under five for a month. However, in early May, in contrast to a steady decline in imported cases, locally transmitted infections broke out throughout the Seoul metropolitan area owing to a string of cluster infections traced to clubs, churches, and sports facilities. As a result, the reproduction number \(R_t\) increased, reaching 3.04 (95% CrI: 1.58, 4.96) on May 4.

The number of cases continued to increase, and in the first week of June, the average daily number of confirmed COVID-19 cases in the capital surpassed the previous high point reached in the middle of March. The major clusters in Seoul included nightclubs (139 cases), the Guro-gu call center (99 cases), Manmin Central Church (41 cases), Richway (97 cases), Yangcheon-gu table tennis club (41 cases), and Seoul Metropolitan Region newly planted churches (37 cases) as of June 18. On June 14, the reproduction rate of COVID-19 in the capital, which reflects the average number of people infected by a patient, dropped below 1, implying that the spread of the virus has slowed down in the city (Figure 2b). The current estimate of reproduction rate of COVID-19 in Seoul is 0.92 (95% CrI: 0.65, 1.23), as of July 15.

\[(a)\]

Epidemic curve

\[\text{Cases} \quad \text{vs} \quad \text{Time}\]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>
Figure 2. (A) Epidemic curve by symptom onset date for Seoul and (b) the real-time estimates of the time-varying reproduction number R_t in Seoul.

3.2. Gyeonggi Province

Gyeonggi Province (literally meaning the “province surrounding Seoul”) is located in the western central region of Korea, and with a population of 13.5 million people, it is the most populous province in South Korea. We used the empirical reporting delay distribution with the available onset dates in Gyeonggi Province from February 8 to July 10 and estimated the reproduction number R_t (Figure 3). In Gyeonggi Province, the daily infection cases during the last weeks in February is 6.32 on average. Accordingly, the first peak of reproduction number occurred on February 22, reaching 8.86 (95% CrI: 4.81-14.15). In the second week of March, South Korea recorded continuous drops in its daily new infections, as massive testing of the followers of a religious sect in the southeastern city of Daegu, the epicenter of the COVID-19, was near its end; accordingly, in late March, the number of cases in Gyeonggi Province gradually decreased thereafter.

However, cluster infections in Gyeonggi Province raised concerns over further community spread in May, and the resurgence of new cases in Gyeonggi Province occurred in late May, resulting in the highest peak in early June. Between June 1 and June 13, an average of 14 new cases were reported each day in Gyeonggi Province. The second peak of reproduction number in Gyeonggi Province occurred on May 12, with its estimated value at 4.78 (95% CrI: 2.98-6.99). Since its peak in May, the reproduction number gradually decreased; however, a series of sporadic cluster infections has continuously emerged. The major clusters in Gyeonggi Province included Grace River Church (67), Coupang warehouse (67), nightclubs (59), Uijeongbu St. Mary’s Hospital (50), Guro-gu call center-Bucheon SaengMyeongSu Church (50), Seoul Metropolitan Region (SMR) door-to-door sales (32), and Yangcheon-gu sport facility (28). As of July 18, the number of cases in Gyeonggi Province was 1,429 (equivalently, 10.42% of the total reported cases in South Korea), including 29 deaths with the reproduction number estimated at 0.79. The incidence rate in Gyeonggi Province was estimated at 108 per million.
Figure 3. (A) Epidemic curve by symptom onset date for Gyeonggi Province and (b) the real-time estimates of the time-varying reproduction number R_t.

3.3. Gyeongbuk Province

The first case in the Sincheonji cult cluster (the largest COVID-19 cluster in South Korea) appeared on February 18, resulting in sustained transmission chains, with 39% of the cases associated with the church cluster in Gyeongbuk Province. As a result, the virus alert level was raised to "red" (the highest level on February 23, and health authorities focused on halting the spread of the virus in Daegu and Gyeongbuk Province. Figure 4 shows that the peak of an epidemic occurred in the first week of March (with a reproduction number greater than 1 until 9 March) can be seen on the incidence curve. As of July 18, the number of cases in Gyeongbuk Province was 1,393, including 54 deaths. Among these cases, 566 were related to the Shincheonji cluster. The incidence rate in Gyeongbuk Province was 523 per million, accounting for 10.2% of all confirmed cases in South Korea [2]. The major clusters in Gyeongbuk Province included Cheongdo Daenam Hospital (119 cases), Bonghwa Pureun Nursing Home (68 cases),
Gyeongsan Seo Convalescent Hospital (66 cases), pilgrimage to Israel (41 cases), Yecheon-gun (40 cases), and Gumi Elim Church (11 cases).

Figure 4. (A) Epidemic curve by symptom onset date for Gyeongbuk Province and (b) the real-time estimates of the time-varying reproduction number R_t.

3.4. City of Daegu

The epicenter of the South Korean COVID-19 outbreak has been identified in Daegu, a city of 2.5 million people, approximately 150 miles south east of Seoul. The rapid spread of COVID-19 in Daegu is attributed to a superspreading event in a religious group called Shincheonji, resulting in an explosive outbreak with 4,511 infections in the city of Daegu. Other major clusters in Daegu included the second Mi-Ju Hospital (196 cases), Hansarang Convalescent Hospital (124 cases), Daesil Convalescent Hospital (101 cases), and Fatima Hospital (39 cases). Daegu was the most severely affected area in South Korea, with 6,932 cumulative cases as of July 18, accounting for 50.56% of all confirmed cases. From our model, the number of new cases based on onset of symptoms was estimated to be highest on February 27; the
number gradually decreased thereafter. Accordingly, the estimated R_t was above 2 until February 27 and dropped below 1 on March 5 (Figure 5).

![Epidemic curve](image1)

![Estimated R](image2)

Figure 5. A) Epidemic curve for Daegu by symptom onset date and (b) the real-time estimates of the time-varying reproduction number R_t.

4. Discussion

The estimates of the transmission potential of COVID-19 in Korea exhibit spatiotemporal variation. Several factors influence the value of the reproduction number, including the transmissibility of an infectious agent, individual susceptibility, individual contact rates, and control measures. We demonstrated that the reproduction number for COVID-19 declined over its first epidemic curve in the regions of interest in March and April, suggesting that social isolation measures might have had a beneficial effect.

More recently, the second epidemic curves observed in Seoul and Gyeonggi Province exhibited sub-exponential growth patterns (not shown). This was caused by the resurgence of infections in Seoul.
and Gyeonggi Province (i.e., the province surrounding Seoul) after a sustained period in which the reported cases were below five in each region. Sporadic cluster infections appeared in Seoul and near Gyeonggi Province, immediately after the government eased its strict nationwide social distancing guidelines on May 6. Late in May, the country implemented two weeks of tougher virus prevention guidelines for the metropolitan area, with measures including shutting down public facilities and regulating bars and karaoke rooms. Our simulations accordingly indicated sustained local transmission in Seoul and Gyeonggi Province, with the estimated reproduction number above 1 until the end of May.

In the second week of June, South Korea decided to indefinitely extend the deadline for tougher social distancing measures, as nearly all locally transmitted cases were in the metropolitan area.

Although Korea has a relatively low number of reported cases compared with other countries including the U.S. and China, it is believed that South Korea is currently experiencing a second coronavirus wave. Originally, South Korean authorities predicted a resurgence of the virus in the fall or winter; however, this possible second wave started in and around Seoul, which, with 51.6 million inhabitants, accounts for about half of the entire population of the country. Furthermore, it has been demonstrated that a substantial proportion of COVID-19 cases are asymptomatic; thus, they are not detected by surveillance systems, resulting in the underestimation of the epidemic growth curve. It is also worth noting that the relative transmission of asymptomatic cases in Korea is unknown. Other limitations include the incompleteness of data related to symptom-onset dates, which would have improved the estimates of the reproduction number. Overall, even though our study highlights the effectiveness of the control interventions in South Korea, it also underscores the need for persistent social distancing and case findings to cut out all active disease transmission chains in South Korea.

Author Contributions: E.S. retrieved, managed, and analyzed the data. E.S. and G.C. wrote the first draft of the manuscript. All authors contributed to the writing of the manuscript, and have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) [No. 2018R1C1B6001723] to E.S.

Conflicts of Interest: The authors declare no conflicts of interest.
1. WHO. Coronavirus disease (COVID-19) situation reports.