Similarities between the neurological symptoms of COVID-19 and Functional Neurological Disorder: A systematic overview of systematic reviews and implications for future neurological healthcare services

Tamar Wildwing (ORCID ID: 0000-0002-3685-701X) Canterbury Christ Church University, Kent, UK
Nicole Holt (ORCID ID: 0000-0003-2995-5794) Canterbury Christ Church University, Kent, UK
Correspondence to: Tamar Wildwing tb1179@canterbury.ac.uk

Abstract

Background

COVID-19, a novel coronavirus, spread rapidly across the world from December 2019. While the main symptoms of the disease are respiratory, extensive research has realised evidence of a variety of neurological symptoms, both catastrophic such as cerebrovascular disease and benign such as hyposmia (loss of smell).

Aim

To provide health professionals with better accessibility to available evidence, this paper summarises findings from a systematic overview of systematic reviews of the neurological symptoms seen in patients with COVID-19. Similarities between the neurological symptoms of COVID-19 and Functional Neurological Disorder (FND) were explored and the impact of this on neurological services and health professionals’ perceptions towards FND.

Methods

This research was completed in three phases: phase one, a systematic overview of current reviews of neurological symptoms of COVID-19 was conducted; phase two, the most common symptoms of FND defined within key sources were collated; phase three, the neurological symptoms of COVID-19 and those of FND were compared.
Results

Fourteen systematic reviews were identified within seven databases, published between 1st December 2019 and 15th June 2020. The results indicated (so far), that when compared, COVID-19 and FND exhibit many similar neurological symptoms.

Conclusions

This led to a consideration of the implications for neurological healthcare services in the UK, and the possible change-effect on perceptions of FND. Implications may include longer waiting times and a need for more resources (including more qualified health professionals). Future research is required to explore how health professionals’ perceptions of neurological symptoms may change because of COVID-19.

Keywords: SARS-COV-2, COVID-19, Functional Neurological Disorder, neurological symptoms, neurological healthcare services, conversion disorder

Introduction

Coronavirus (COVID-19) has currently affected over twelve and a half million people worldwide. COVID-19 has been found to cause neurological manifestations in up to 50% of patients. The authors of this paper identified that many of these neurological symptoms appear similar to the symptoms of Functional Neurological Disorder (FND). This is ‘the name given for symptoms in the body which appear to be caused by problems in the nervous system, but which are not caused by physical neurological disease or disorder’. FND is deemed one of the most common sources of disability with prevalence ranging between 4 and 50 per 100,000 people, depending on measurement and type of FND.

As COVID-19 is so new, the potential similarities have not yet been explored in the literature. There is also limited research into the short and long-term effects of COVID-19 on medical and holistic neurological practice and where future resources will be required. To address these concerns, a systematic overview of systematic reviews was conducted. The aim was to summarise the neurological symptoms of COVID-19 and compare these symptoms with the symptoms of FND. This then led to consideration of the implications for neurological healthcare services in the UK and to the possible change-effect on perceptions of FND.
Neurological services in the UK offer diagnosis and treatment to patients with diseases of the nervous system. This research is therefore aimed at health professionals and commissioners in the field of neurology in the UK, informing future service provision for those who developed long-term neurological symptoms due to COVID-19, as well as exploring the effect of COVID-19 on health professionals’ perceptions towards those with symptoms of FND.

Methods

A systematic overview of current systematic reviews was conducted to explore: The potential impact of the longer-term neurological symptoms of COVID-19. The review protocol was not previously registered. The findings of this review were then compared with the symptom experiences of patients with FND. This research was completed in three phases: phase one, a systematic review of current reviews of neurological symptoms of COVID-19 was conducted; phase two, the most common symptoms of FND defined within key sources were collated; phase three the neurological symptoms of COVID-19 and those of FND were compared. The implications of these findings were then discussed.

For phase one, the recommendations outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement were followed (Fig 1 and Supplementary material). Following these recommendations reduces the risk of bias or selective reporting and demonstrates transparency in the process conducted. The following databases were searched between December 2019 and June 2020: 'PubMed Central', 'Cochrane Database of Systematic Reviews,' 'Ovid' 'ScienceDirect' 'Biomed Central' 'BMJ' and SAGE Journals. The following keywords within the title or abstract were used to conduct each search: 'coronavirus', 'COVID-19', 'SARS-COV-2', 'neurological', 'nervous' and 'review'. For example, PubMed Central was searched using the following search terms: (((COVID-19 OR SARS-COV-2 OR coronavirus>Title)) OR (COVID-19 OR SARS-COV-2 OR coronavirus[Abstract])) AND ((neuro* OR nervous>Title)) OR (neuro* OR nervous[Abstract])) AND ((review>Title) OR (review[Abstract]))). Limitations: Date: 01/12/2019- 01/07/2020. Only articles published in academic journals in English were retrieved. Reference lists of retrieved articles were also searched to ensure literature saturation.

The inclusion criteria consisted of systematic reviews only relating to neurological symptoms seen in patients with COVID-19 since 1st December 2019. Both authors participated through
each phase of the review independently (screening, eligibility and inclusion). Reviews were screened for relevancy against the inclusion criteria within title and abstract. Full-text reports for all potentially relevant reviews were obtained, including those where there was any uncertainty. The authors screened the full-text reports for relevancy and resolved any disagreement through discussions. Neither of the authors were blind to the journal titles, the authors’ of the reviews or institutions. The Critical Appraisal Skills Programme (CASP) checklist for systematic reviews (2018) was used to establish the quality of each review included within this systematic overview. All included reviews were deemed high quality; 9/10 of the CASP criteria were met by eight reviews, 8/10 were met by five reviews and 7/10 were met by one review. All reviews were read in full by both authors. Microsoft Excel was used to compile a list of all the included reviews and the neurological symptoms mentioned in each. This list was completed and checked by both authors.

For phase two, a second systematic search was conducted of the same databases, with the same date restriction, using the following keywords: ‘medically unexplained’, ‘MUPS’, ‘MUS’, ‘functional neurological’, ‘somatoform’, ‘psychogenic’, ‘review’. This search found 113 reviews relating to symptoms of FND. However, all were excluded after title and abstracts were screened for relevance. Therefore, four key sources were used to compile a summary of the common symptoms of FND, chosen as they were either certified by the NHS or the main accepted Diagnostic Manual for Mental Disorders.

For phase three, neurological symptoms of COVID-19 and FND were then placed into a table to compare the symptoms, which led to a consideration of the implications for neurological healthcare services in the UK, and to the possible change-effect on perceptions of FND.

Contents

Results

Phase 1: A systematic overview of systematic reviews of neurological symptoms of COVID-19

Figure 1 sets out the search strategy for the systematic overview. The database search identified 207 papers, with a further 13 papers identified within the reference lists. Of these 220 papers, 180 were excluded after title and abstract review for relevance. The remaining 32 papers were reviewed in full. 18 of these were excluded due to violation of inclusion criteria (date, study...
design or methodology). 14 systematic reviews met the inclusion criteria and were included in this overview.

Figure 1 Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram.

The 14 systematic reviews were published between 11th April 2020 and 9th June 2020. Table 1 sets out the characteristics of the reviews; the number of studies reviewed within each review, relevant to this review and the number of participants in each relevant study. (Also in brackets, the total number of studies reviewed and the total number of participants in each review). The aims of each study are also included. As mentioned, the CASP checklist was utilised to check for risk of bias in each review.
Table 1: Study characteristics

<table>
<thead>
<tr>
<th>1st author</th>
<th>No. of studies referenced within each review, relevant to this review (total no. of studies reviewed)*</th>
<th>No. of participants within each review, relevant to this review (total no. of participants)*</th>
<th>Aim of review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agyeman¹³</td>
<td>24 (24)</td>
<td>8479 (8438)</td>
<td>To estimate the prevalence of olfactory and gustatory dysfunctions (OGDs) among patients infected with novel coronavirus disease 2019 (COVID-19).</td>
</tr>
<tr>
<td>Asadi-Pooya¹⁴</td>
<td>6 (6)</td>
<td>765 (765)</td>
<td>[To] discuss the evidence on the occurrence of central nervous system (CNS) involvement and neurological manifestations in patients with COVID-19.</td>
</tr>
<tr>
<td>Correia¹⁵</td>
<td>4 (7)</td>
<td>329 (409)</td>
<td>To describe the main neurological manifestations related to coronavirus infection in humans.</td>
</tr>
<tr>
<td>Dinakaran¹⁶</td>
<td>31 (12*)</td>
<td>2567 (not stated)</td>
<td>[To] report the available evidence of neuropsychiatric morbidity during the current COVID-19 crisis. The authors also discuss the postulated neuronal mechanisms of the coronavirus infection sequelae.</td>
</tr>
<tr>
<td>Leonardi¹⁷</td>
<td>9 (29*)</td>
<td>731 (not stated)</td>
<td>A systematic review has been performed of papers published until 5 April 2020. 29 papers related to neurological manifestations associated with COVID-19 were examined.</td>
</tr>
<tr>
<td>Montalvan¹⁸</td>
<td>20 (67)</td>
<td>764 (not stated)</td>
<td>To review the neurological aspects of SARS-cov2 and other coronavirus, including transmission pathways, mechanisms of invasion into the nervous system, and mechanisms of neurological disease.</td>
</tr>
<tr>
<td>Rogers¹⁹</td>
<td>12 (72)</td>
<td>1048 (3559)</td>
<td>[To] assess the psychiatric and neuropsychiatric presentations of SARS, MERS, and COVID-19.</td>
</tr>
<tr>
<td>Scoppettuolo²⁰</td>
<td>42 (42)</td>
<td>1704 (903)</td>
<td>[To] provide a clinical approach of SARS-CoV-2 neurological complications based on the direct or indirect (systemic/immune-mediated) role of the SARS-CoV-2 in their genesis.</td>
</tr>
<tr>
<td>Tsai²¹</td>
<td>35 (142)</td>
<td>3115 (not stated)</td>
<td>Review and integrate the neurologic manifestations of the Coronavirus Disease 2019 (COVID-19) pandemic, to aid medical practitioners who are combating the newly derived infectious disease.</td>
</tr>
<tr>
<td>Author</td>
<td>Participants</td>
<td>Studies</td>
<td>Summary</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Tsivgoulis</td>
<td>13 (not stated)</td>
<td>1641 (not stated)</td>
<td>To present the neurological manifestations associated with SARS-CoV-2 infection and COVID-19. We also evaluated the impact of the COVID-19 pandemic on the health care of neurological patients.</td>
</tr>
<tr>
<td>Vonck</td>
<td>21 (not stated)</td>
<td>3590 (not stated)</td>
<td>To perform a review to describe neurological manifestations in patients with COVID-19 and possible neuro-invasive mechanisms of Sars-CoV-2.</td>
</tr>
<tr>
<td>Werner</td>
<td>14 (54)</td>
<td>3293 (not stated)</td>
<td>To conduct ... a review of the reported data for studies concerning COVID-19 pathophysiology, neurological manifestations, and neuroscience provider recommendations and guidelines.</td>
</tr>
<tr>
<td>Whittaker</td>
<td>32 (31)</td>
<td>2598 (not stated)</td>
<td>Reports are emerging of the virus’ effects systemically, including that of the nervous system. A review of all current published literature was conducted.</td>
</tr>
<tr>
<td>Wilson</td>
<td>10 (10)</td>
<td>330 (not stated)</td>
<td>To evaluate and summarize the current status of the COVID-19 literature at it applies to neurology and neurosurgery. Neurological symptomatology, neurological risk factors for poor prognosis, pathophysiology for neuro-invasion, and actions taken by neurological or neurosurgical services to manage the current COVID-19 crisis are reviewed.</td>
</tr>
</tbody>
</table>

*Many reviews referenced the same studies, in some cases, reviews stated less studies were reviewed than were referenced within the review, some studies did not state no. of participants.

As can be seen in Table 1, some of the reviews explored issues outside the scope of this review. For example, some reviewers described neurological symptoms of other coronaviruses besides COVID-19 (e.g. Correia, 2020; Montalvan, 2020; Rogers, 2020). Within the scope of this review, 126 studies relating to neurological symptoms of COVID-19 were reviewed within the 14 reviews. Most of the reviews included the same studies. For instance, one study was included in all 14 reviews. 18,509 participants were included across the 126 studies reviewed.

Table 2 shows the country where each reviewed study took place. As can be seen, a third of the studies took place in China (41 studies with a total of 5,794 participants). In addition, one study in South Korea investigated the neurological symptoms of COVID-19 of 3,191 participants, whilst Spain (five studies) and the UK (seven studies) also researched more than...
2,000 participants in each country. This gives an overview of the countries in which neurological symptoms of COVID-19 are under investigation, although it was not determined whether all participants were within the country stated. In addition, there may be publication bias as this review excluded reviews that were not in English.

Table 2: Country where studies relevant to this review took place*

<table>
<thead>
<tr>
<th>Country*</th>
<th>No. studies</th>
<th>Total no. of participants in all studies*</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>41</td>
<td>5794</td>
</tr>
<tr>
<td>Italy</td>
<td>15</td>
<td>1244</td>
</tr>
<tr>
<td>USA</td>
<td>14</td>
<td>201</td>
</tr>
<tr>
<td>France</td>
<td>10</td>
<td>690</td>
</tr>
<tr>
<td>UK</td>
<td>7</td>
<td>2188</td>
</tr>
<tr>
<td>Iran</td>
<td>6</td>
<td>71</td>
</tr>
<tr>
<td>Spain</td>
<td>5</td>
<td>2309</td>
</tr>
<tr>
<td>Germany</td>
<td>5</td>
<td>178</td>
</tr>
<tr>
<td>Unknown</td>
<td>3</td>
<td>240</td>
</tr>
<tr>
<td>Europe (unspecified)</td>
<td>2</td>
<td>1837</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2</td>
<td>263</td>
</tr>
<tr>
<td>Belgium</td>
<td>2</td>
<td>47</td>
</tr>
<tr>
<td>Turkey</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Switzerland</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>South Korea</td>
<td>1</td>
<td>3191</td>
</tr>
<tr>
<td>Romania</td>
<td>1</td>
<td>126</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Israel</td>
<td>1</td>
<td>42</td>
</tr>
<tr>
<td>Japan</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Morocco</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>France & Spain</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Poland & USA</td>
<td>1</td>
<td>u/k</td>
</tr>
</tbody>
</table>

*Where countries were not stated, country of first author's affiliation is stated. It is possible that some of the studies include data from each other.

Throughout the 126 studies, 21 neurological symptoms were described. These are summarised in Table 3 below.
Table 3: Review of the literature relating to neurological symptoms of COVID-19

<table>
<thead>
<tr>
<th>Symptom</th>
<th>No. of novel studies*</th>
<th>Agyeman</th>
<th>Asadi-Pooya</th>
<th>Correia</th>
<th>Dinakaran</th>
<th>Leonardi</th>
<th>Montalvan</th>
<th>Rogers</th>
<th>Scoppettuolo</th>
<th>Tsai</th>
<th>Tsivgoulis</th>
<th>Vonck</th>
<th>Werner</th>
<th>Whitaker</th>
<th>Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyposmia and/or Hypogeusia</td>
<td>39(a)</td>
<td>x</td>
</tr>
<tr>
<td>Acute CVD (b) (c)</td>
<td>29</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>(c)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Altered Mental Status (d)</td>
<td>23</td>
<td>x</td>
</tr>
<tr>
<td>Encephalitis (e)</td>
<td>22</td>
<td>x</td>
</tr>
<tr>
<td>Headache</td>
<td>17</td>
<td>x</td>
</tr>
<tr>
<td>Guillain-Barre syndrome (f)</td>
<td>11</td>
<td>x</td>
</tr>
<tr>
<td>Neuralgia/Polynuropathy</td>
<td>11</td>
<td>x</td>
</tr>
<tr>
<td>Muscle Issues (g)</td>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td>Seizure</td>
<td>9</td>
<td>x</td>
</tr>
<tr>
<td>Dizziness</td>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>Fatigue</td>
<td>6</td>
<td>x</td>
</tr>
<tr>
<td>Amblyopia</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>Insomnia (i)</td>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>Mental Health Issues (j)</td>
<td>3</td>
<td>x</td>
</tr>
<tr>
<td>Anxiety & Depression</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>Polynuertitis Cranialis</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>Facial Pain</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>Sustained upward gaze, dystonic bilateral leg extension</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>Weakness (of limbs)</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>Ondine’s Curse (k)</td>
<td>1</td>
<td>x</td>
</tr>
<tr>
<td>Myelitis</td>
<td>1</td>
<td>x</td>
</tr>
</tbody>
</table>

* No. of novel studies in which each symptom was found. Many studies referenced the same papers.
(a) 20 studies were only in Agyeman’s review that was specifically about olfactory and taste effects of COVID-19.
(b) cerebral vascular disease incl. stroke
(c) incl. blood clots thought to cause stroke (incl. 1 novel study)
(d) incl. confusion
(e) incl. meningitis
(f) incl. Miller Fisher Syndrome
(g) incl. myalgia, muscle injury, ataxia, spasms
(h) incl. epilepsy
(i) and other sleep issues
(j) incl. suicidal ideation, psychosis, excluding anxiety, depression
(k) fatal respiratory failure in sleep
Hyposmia and hypogeusia, changes to the senses of smell and taste, have been much discussed throughout the pandemic and have become key in aiding diagnosis of COVID-19. These symptoms were discussed in 39 studies within the 14 reviews, although it is worth noting that 20 of the studies were novel to a single review which specifically explored these symptoms.\(^{28}\)

Neurological manifestations of COVID-19 include catastrophic symptoms such as cardiovascular disease (CVD), encephalitis and Guillain-Barre Syndrome, which are understandably hugely concerning and have therefore generated intense discussion and research. As seen in Table 3, COVID-19 has also been found to cause symptoms such as fatigue, dizziness and headache, which though more benign, can be disabling if they become chronic.

Phase 2: The most common symptoms of FND

The most common symptoms experienced by people with FND are presented in Table 4.

Table 4: Most common symptoms of FND

<table>
<thead>
<tr>
<th>Symptoms leading to a diagnosis of FND</th>
<th>DSM-5*</th>
<th>NHS source which describes this**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olfactory symptoms</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Headaches or migraines</td>
<td></td>
<td>(a) (b) (c)</td>
</tr>
<tr>
<td>Altered sensation (e.g. numbness, tingling, pain)</td>
<td>Y</td>
<td>(a) (b)</td>
</tr>
<tr>
<td>Movement disorders (e.g. tremors, spasms, jerking, walking (gait) problems, paralysis)</td>
<td>Y</td>
<td>(a) (b) (c)</td>
</tr>
<tr>
<td>Altered awareness episodes (e.g. dissociative or non-epileptic seizures, faints)</td>
<td>Y</td>
<td>(a) (b) (c)</td>
</tr>
<tr>
<td>Dizziness</td>
<td></td>
<td>(c)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>(b) (c)</td>
<td></td>
</tr>
<tr>
<td>Visual symptoms (e.g. loss of vision, double vision, seeing flashing lights)</td>
<td>Y</td>
<td>(a) (b)</td>
</tr>
<tr>
<td>Sleep problems</td>
<td>(a) (c)</td>
<td></td>
</tr>
<tr>
<td>Personality changes (e.g. irritability, depression)</td>
<td>(a)</td>
<td></td>
</tr>
<tr>
<td>Abnormal limb posturing</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Limb weakness</td>
<td>Y</td>
<td>(a) (b) (c)</td>
</tr>
<tr>
<td>Speech symptoms (e.g. whispering, slurring or stuttering) (a form of ataxia)</td>
<td>Y</td>
<td>(c)</td>
</tr>
<tr>
<td>Facial pain & spasms</td>
<td>(c)</td>
<td></td>
</tr>
<tr>
<td>Bladder or bowel issues</td>
<td>(a) (c)</td>
<td></td>
</tr>
<tr>
<td>Hearing loss</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Swallowing problems</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

* Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (2013)

** (a) patient.info; (b) nhs.uk (sth nhs.uk); (c) Neurosymptoms.org (Edinburgh University)
DSM-5, the leading diagnostic manual for mental disorders, lists the symptoms of FND. However, on exploration it was found that key NHS sources list additional symptoms as can be seen in Table 4. Only three of the 17 symptoms are listed in all four sources (shaded in grey). Some symptoms such as dizziness and facial pain are listed in only one source.

Phase 3: A comparison between the neurological symptoms of COVID-19 and those of FND

The neurological symptoms of COVID-19 in Table 3 were compared with the neurological symptoms of FND in Table 4. Table 5 shows this comparison.

Neurological symptoms of COVID-19 include catastrophic symptoms requiring emergency care such as stroke, brain haemorrhage, encephalitis and Guillain-Barre Syndrome. However, 13 other neurological symptoms were shown to be similar in both COVID-19 and FND (shaded in grey within Table 5). In fact, except for hypogeusia, every non-catastrophic symptom of COVID-19, including the much-researched symptom of hyposmia, is also described as a symptom of FND. Furthermore, every symptom of FND, except bladder and bowel issues, hearing loss and swallowing problems, has been experienced by some people with COVID-19 neurological symptoms. These neurological symptoms, seen in both COVID-19 and FND, are the focus of this research, as if they become longer-term or chronic symptoms, they can be disabling and may require sustained support from within neurological healthcare services.
Table 5: Comparison of COVID-19 and FND symptoms

<table>
<thead>
<tr>
<th>Neurological symptoms in COVID-19</th>
<th>Neurological symptoms in FND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyposmia and/or hypogeusia</td>
<td>Olfactory symptoms</td>
</tr>
<tr>
<td>Acute CVD (incl. stroke)</td>
<td>No</td>
</tr>
<tr>
<td>Altered mental status (incl. confusion)</td>
<td>No</td>
</tr>
<tr>
<td>Encephalitis (incl. meningitis)</td>
<td>No</td>
</tr>
<tr>
<td>Headache</td>
<td>Headaches or migraines</td>
</tr>
<tr>
<td>Guillain-Barre syndrome (incl. Miller Fisher Syndrome)</td>
<td>No</td>
</tr>
<tr>
<td>Neurological symptoms</td>
<td>Altered sensation (e.g. numbness, pain)</td>
</tr>
<tr>
<td>Seizure (incl. epilepsy)</td>
<td>Altered awareness episodes (e.g. dissociative or non-epileptic seizures, fains)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>Dizziness</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Muscle issues (incl. myalgia, muscle injury, ataxia)</td>
<td>Movement disorders (e.g. tremors, spasms, jerking, walking (gait) problems, paralysis) and speech symptoms (e.g. whispering, slurring or stuttering) (a form of ataxia)</td>
</tr>
<tr>
<td>Amblyopia</td>
<td>Visual symptoms (e.g. loss of vision, double vision, seeing flashing lights)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>Sleep problems</td>
</tr>
<tr>
<td>Severe mental health issues (incl. suicidal ideation, psychosis, excluding anxiety, depression)</td>
<td>No</td>
</tr>
<tr>
<td>Anxiety & depression</td>
<td>Personality changes (e.g. irritability, depression)</td>
</tr>
<tr>
<td>Polyneuritis cranialis</td>
<td>No</td>
</tr>
<tr>
<td>Facial pain</td>
<td>Facial pain & spasms</td>
</tr>
<tr>
<td>Sustained upward gaze, dystonic bilateral leg extension</td>
<td>Abnormal limb posturing</td>
</tr>
<tr>
<td>Weakness (of limbs)</td>
<td>Weakness (of limbs)</td>
</tr>
<tr>
<td>Ondine’s curse (fatal respiratory failure in sleep)</td>
<td>No</td>
</tr>
<tr>
<td>Myelitis</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>Bladder or bowel issues</td>
</tr>
<tr>
<td>No</td>
<td>Hearing loss</td>
</tr>
<tr>
<td>No</td>
<td>Swallowing problems</td>
</tr>
</tbody>
</table>

Discussion

From these results, this paper argues three main points from what has been seen so far: 1) COVID-19 and FND present similar neurological symptoms; 2) the long-term neurological effects of COVID-19 may impact neurological and wider health care services; 3) the neurological symptoms seen in COVID-19 may affect health professionals’ perceptions of FND.
1) COVID-19 and FND present similar neurological symptoms

COVID-19 and FND present similar neurological symptoms; every non-catastrophic symptom except for hypogeusia of COVID-19 is described as a symptom of FND. In addition, every symptom of FND, except bladder and bowel issues, hearing loss and swallowing problems, has been experienced by some people with COVID-19.

As can be seen in Table 4, key sources differ in their description of FND symptoms, indicating that there is no comprehensive list of all FND symptoms. It is likely that this contributes to health professionals’ uncertainty in diagnosing FND. On the other hand, COVID-19 can be quickly and easily diagnosed with a test (leaving aside the possibilities of false results). As academic journals and the media increasingly report neurological symptoms of COVID-19, it is feasible that patients who have had COVID-19 may attribute any neurological symptoms they have to the disease. Conversely, patients who develop FND now or in the future, may also attribute their symptoms to COVID-19, despite negative test results. The effects of these possibilities warrant further research.

2) The impact of these findings on neurological healthcare services

The findings of this review highlight the effects that short and long-term neurological symptoms of COVID-19 may have on current neurological, and other, health services. Symptoms such as facial pain, muscle issues, neuralgia, fatigue and insomnia, which may become long term, may lead to an increase in demand for services such as pain, fatigue and sleep clinics. This is supported by other research which suggests rehabilitation required by patients following COVID-19 infection may be ‘very much along the same lines’ as existing services but with double the demand’. As seen in Table 5, fatigue is a symptom of both COVID-19 and FND. Consultant-led neurological services such as chronic fatigue clinics and headache clinics are already overstretched with a shortage of neurology consultants and long waiting lists. Neurological symptoms of COVID-19 may increase demand for these clinics and may indicate a need for more qualified health professionals and specialists in neurology. However, the effects of COVID-19 on these services is hard to predict as the neuropathy, myopathy and sensory deficits of SARS resolved within three months of recovery and COVID-19 may be similar.
Additionally, COVID-19 is causing a wider impact on patient populations. For example, COVID-19 has affected health care services, through reduction in use of emergency services during the peak of the pandemic in the UK as patients were worried about contracting the virus from hospitals. There is evidence that some patients with long term conditions have improved their self-care techniques, such as better use of medication and alternative therapies such as physiotherapy, cognitive behavioural therapy, and exercise. On the other hand, most outpatient appointments and elective surgeries were postponed, leading in some cases to deaths as an indirect result of COVID-19. There are now questions about whether there will be a rebound in demand, potentially overwhelming NHS services, or whether the reduction in demand can be sustained. Combined with the previously mentioned potential increase in demand for neurological services, there is likely to be wide reaching financial implications. This research is therefore useful for aiding future patient management while helping to develop policies for response to COVID-19 and its critical outcomes.

3) The effect of COVID-19 on perceptions of FND

The similarities between neurological symptoms of COVID-19 and FND are important to consider, providing education for health professionals, informing future practice and illustrating the need for more funding for neurological services to meet increased demand. Although large sums of money and research at pace, are contributing to a greater understanding of long-term symptoms of COVID-19 (for example, the UK Health and Social Care Secretary has announced the launch of a major £8.4 million research study into the long-term health effects of COVID-19 on hospitalised patients), FND experiences a lack of funding and research into understanding, treatment and support for those who suffer from it.

FND may have lower prestige than COVID-19, as research has found that lower value is given to health professionals' role in managing poorly defined or unnamed symptoms. In addition, FND, alongside other ambiguous uncertain conditions (e.g. fibromyalgia and chronic fatigue syndrome), is considered among the lowest conditions on the hierarchy of importance of conditions. Furthermore, people with FND often feel health professionals do not believe their symptoms. The realisation that COVID-19 causes neurological symptoms similar to FND may lead to a potential shift in perceptions in relation to FND.

Due to this shift, FND may be taken more seriously, and more funding may be made available for neurological services. However, the authors of this research are concerned that the opposite
may occur: within neurological services priority may be given to patients who have had COVID-19, who may actually experience some level of prestige because they have survived a disease feared by all and any neurological symptoms they experience might be automatically accepted, extensively researched and supported, at detriment to FND. This skewing of services may have already begun as, alongside the research into long-term effects of COVID-19 previously mentioned, the NHS has declared its intention to provide a COVID-19 rehabilitation service.42

Limitations

Scientific reports centred on neurological effects of COVID-19 are still scarce, and risk of publication bias is high. For example, within the reviews included in this research, a third of the studies were undertaken in China and a further third in Europe and the USA combined. Despite the status of COVID-19 as a pandemic, this is not a worldwide review of the neurological effects of COVID-19.

Additionally, this systematic review is grounding its results on previous studies' findings; thus it is difficult to assess how reliable some of these results can be, for example several of the articles did not state the source of their findings. Quality assessment has however been undertaken as described earlier and the reviews deemed high quality. Retrospective and prospective studies of larger cohorts are necessary to correctly assess nervous system involvement, which has not been possible yet for COVID-19 as it is a very new disease and it is unclear how much it mimics other coronaviruses.

Conclusion and Implications for future research

In conclusion, there is an array of evidence to show that COVID-19 causes neurological symptoms, although it is difficult to ascertain how long-term the symptoms may become. Although this paper is primarily UK focused, these concerns are likely to be similar in every country. This research collates the evidence so far and provides insight into the neurological effects of COVID-19 in relation to FND symptoms. Concerns about the potential impact of these findings on neurological and wider healthcare services are considered alongside the potential effect COVID-19 may have on perceptions of neurological symptoms, particularly
those relating to FND. Further research is recommended to explore whether the neurological symptoms of COVID-19 will improve acceptance and understanding of FND or whether this will worsen the experience for those who suffer from FND. Further thought for future planning of health care resources also needs to be taken into consideration, in light of this pandemic.

Funding acknowledgements and conflict of interests

This research received no grant from any funding agency in the public, commercial, or not-for-profit sectors.

The authors declare that there is no conflict of interest.
Reference List

29 Canna M, Seligman R. Dealing with the unknown. Functional neurological disorder (FND) and the conversion of cultural meaning. Social Science & Medicine. 2020 Feb 1; 246:112725.

Appendix 1

PRISMA statement

<table>
<thead>
<tr>
<th>Section/topic</th>
<th>#</th>
<th>Checklist item</th>
<th>Reported on page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>1</td>
<td>Identify the report as a systematic review, meta-analysis, or both.</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structured summary</td>
<td>2</td>
<td>Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rationale</td>
<td>3</td>
<td>Describe the rationale for the review in the context of what is already known.</td>
<td>2</td>
</tr>
<tr>
<td>Objectives</td>
<td>4</td>
<td>Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).</td>
<td>2</td>
</tr>
<tr>
<td>METHODS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol and registration</td>
<td>5</td>
<td>Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.</td>
<td>3</td>
</tr>
<tr>
<td>Eligibility criteria</td>
<td>6</td>
<td>Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.</td>
<td>3</td>
</tr>
<tr>
<td>Information sources</td>
<td>7</td>
<td>Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.</td>
<td>3</td>
</tr>
<tr>
<td>Search</td>
<td>8</td>
<td>Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.</td>
<td>3</td>
</tr>
<tr>
<td>Study selection</td>
<td>9</td>
<td>State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).</td>
<td>3</td>
</tr>
<tr>
<td>Data collection process</td>
<td>10</td>
<td>Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.</td>
<td>4</td>
</tr>
<tr>
<td>Data items</td>
<td>11</td>
<td>List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.</td>
<td>4</td>
</tr>
<tr>
<td>Risk of bias in individual studies</td>
<td>12</td>
<td>Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.</td>
<td>4</td>
</tr>
<tr>
<td>Summary measures</td>
<td>13</td>
<td>State the principal summary measures (e.g., risk ratio, difference in means).</td>
<td>n/a</td>
</tr>
<tr>
<td>Synthesis of results</td>
<td>14</td>
<td>Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.</td>
<td>4</td>
</tr>
<tr>
<td>Risk of bias across studies</td>
<td>15</td>
<td>Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).</td>
<td>4</td>
</tr>
<tr>
<td>Additional analyses</td>
<td>16</td>
<td>Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.</td>
<td>n/a</td>
</tr>
</tbody>
</table>

RESULTS

Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	4
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	6
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	4
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	n/a
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	9
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	4
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	n/a

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	15

FUNDING

| **Funding** | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 16 |