Title: Demethylation and upregulation of an oncogene post hypomethylating treatment

Authors: Yao-Chung Liu1,2,3,4, Emiliano Fabiani5°, Junsu Kwon6°, Chong Gao1, Giulia Falconi5, Lia Valentini5, Carmelo Gurnari5, Yanjing V. Liu6, Adrianna I. Jones7, Junyu Yang1, Henry Yang6, Julie A. I. Thoms8, Ashwin Unnikrishnan9, John E. Pimanda8,9,10, Rongqing Pan11, Maria Teresa Voso*5, Daniel G. Tenen6,7*, Li Chai1*

Affiliations:

1Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
2Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
3Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
4Program in Molecular Medicine, School of Life Science, National Yang-Ming University, Taipei, Taiwan
5Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
6Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
7Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
8School of Medical Sciences and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
9Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, NSW 2052, Australia
10Department of Haematology, Prince of Wales Hospital, Randwick, NSW 2031, Australia
11Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115
°These authors contribute equally to this work

*Co-corresponding authors: lchai@bwh.harvard.edu, daniel.tenen@nus.edu.sg, and voso@med.uniroma2.it

The authors have declared that no conflict of interest exists.
Abstract

While hypomethylating agents (HMA) are currently used to treat myelodysplastic syndrome (MDS) patients, their effects on reactivation and/or upregulation of oncogenes have not been previously described. SALL4 is a known oncogene that plays an important role in MDS. In this study, we examined the relationship between SALL4 methylation and expression, and evaluated changes of SALL4 expression and their prognostic value in MDS patients undergoing HMA treatment. In no/low-SALL4 expressing leukemic cell lines, we identified that demethylation of a critical CpG region was associated with increased SALL4 expression, and HMA treatment led to demethylation of this region and upregulation of SALL4. In MDS patients, we observed SALL4 upregulation after four cycles of azacytidine (AZA) treatment in 40% of the cases. Significantly, patients in the responder group with SALL4 upregulation had the worst outcome. This is the first study focusing on demethylation and upregulation of an oncogene after HMA treatment. Our data indicate that MDS patients receiving HMA treatment should be monitored for upregulation of oncogenes such as SALL4 for poor outcome.
Introduction

Myelodysplastic syndrome (MDS) comprises heterogeneous myeloid disorders characterized by cytopenias and dysplasia in peripheral blood and bone marrow (BM), with ineffective hematopoiesis and a variable risk of leukemic transformation \(^1,2\). For high-risk (HR) patients, those that are elderly or unfit to receive chemotherapy, hypomethylating agent (HMA) therapy is the first-line treatment \(^3,5\). Although continuous azacytidine (AZA) therapy in responders was reported to be beneficial to improve patients’ clinical parameters, the survival after AZA in 'real-world' HR-MDS was lower than the expected overall survival (OS) in clinical trials \(^4\), and the outcome after AZA failure was less than 6 months \(^6\). Despite the known mode of action of HMAs, there seems to be little correlation between the degree of demethylation following HMA and hematologic response \(^7\). We hypothesize that global HMA treatment not only contributes to the demethylation of tumor suppressor genes but can also induce demethylation of oncogenes. In this study, we used the known oncogene SALL4 as an example to examine the effects of HMA on upregulation of oncogenes, and its related clinical impact on treatment response and overall outcomes.

Spalt-like transcription factor 4 (SALL4) plays an essential role in MDS and AML leukemogenesis \(^8,10\) and tumorigenesis in various solid tumors \(^11-15\). SALL4 is aberrantly expressed in HR-MDS \(^16-18\) and AML \(^9,19\). In a murine model with constitutive SALL4 expression, mice developed MDS-like features and subsequently leukemic transformation through activation of the Wnt/beta-catenin pathway \(^18\). However, the effect of HMA on SALL4 expression and its clinical implications for MDS/AML patients are unknown.

Methods
Patients and sample collection

BM samples were obtained from 37 newly diagnosed MDS patients enrolled in the BMT-AZA trial (EudraCT number 2010-019673-15)20,21. CD34− (n = 10) and CD34+ (n = 5) BM mononuclear cells (BM-MNCs) from healthy donors were used as controls. MDS diagnoses were according to the 2008 World Health Organization (WHO) classification.22 In 37 MDS patients, 25 patients had paired BM samples collected before and after four AZA cycles, with clinical characteristics listed in supplemental Table 1. The definition of first response follows the International Working Group (IWG) criteria.23 In the study, responders included patients achieving complete remission (CR), partial remission (PR), and hematologic improvement (HI), whereas nonresponders included those patients with stable disease (SD) and progressive disease (PD).

Additional materials are described in the supplement.

Results and Discussion

Demethylation of a critical CpG region leads to upregulation of SALL4

The SALL4 5’UTR-Exon 1-Intron 1 region is differentially methylated in K562-induced pluripotency reprogrammed cells24. To define the correlation between methylation of this region and SALL4 expression, we applied the CRISPR-DNMT1-interacting RNA (CRISPR-DiR) technique, a novel approach to induce locus-specific demethylation by blocking DNMT1 activity25 in HL-60 cells (no/low SALL4 expression). Methylation of this CpG region was monitored in HL-60 cells following treatment with a specific CRISPR-DiR (Fig. 1A). Upon transduction of HL-60 cells with sgSALL4_1, significant demethylation changes were observed after 8 days (Fig. 1B) as well as increased SALL4 transcript levels (Fig. 1C). This suggests that
demethylation of this region can lead to upregulation of SALL4.

HMA treatment can lead to demethylation and upregulation of SALL4

We then tested whether SALL4 could be upregulated by HMAs. Using HL-60 cells, we first evaluated the dynamics of SALL4 levels through a cycle of 5-aza-2'-deoxycytidine (DAC), a HMA agent commonly used in treatment of cell lines, using a dosage range from 100nM to 500nM \(^{26,27}\). The number of mRNA copies per cell (by ddPCR) and protein (by western blot) for SALL4 was measured at day 5. We noticed a dose dependent upregulation of SALL4 RNA expression at day 5 (Fig. 1D and E). We then examined the methylation status of the SALL4 5’UTR-Exon 1-Intron 1 CpG island region after 250nM DAC treatment, and found this region was demethylated in HL-60 cells, in accordance with our CRISPR-DiR result (Fig. 1F). Similar results were also observed in another SALL4-low leukemic cell line, K562 cells (Fig. 1G-I).

Next, we evaluated the impact of HMA treatment on primary MDS patients. Consistent with our observation in cell lines, SALL4 mRNA expression was upregulated at the end of the first cycle of HMA in three newly diagnosed MDS patients (Fig. S1).

Poor outcome in MDS responders with SALL4 upregulation post HMA treatment

We next measured the baseline SALL4 expression at diagnosis from BM-MNCs of MDS patients prior to AZA treatment. Levels of SALL4 mRNA were significantly higher in 37 MDS patients \((p = 0.002)\) compared to CD34\(^-\) cells from healthy donors (Fig. S2A). Among the 37 enrolled MDS patients, there were 25 patients with available paired BM samples at diagnosis and after four cycles of AZA (Fig. S2B). Of these 25 patients, 48% were defined as responders, with 36% achieving CR, 8% PR, and 4% HI, respectively.
These 25 patients were then stratified according to the fold change in SALL4 mRNA expression pre- and post- AZA treatment into two distinct groups based on the up or down changes in SALL4 expression (Fig. 2A). We also evaluated the methylation status of the patient samples. In four patients with increased SALL4 expression (SALL4up), we noticed decreased methylation at the critical CpG region (Fig. 2B). Conversely, we did not observe changes in the methylation at the same CpG region in three patients with decreased SALL4 expression (SALL4down) post-AZA treatment (Fig. 2C).

There was no significant difference in fold change of SALL4 mRNA between responders and non-responders (Fig. S2C). However, surprisingly, when compared between the SALL4up (n = 10) and SALL4down (n = 15) groups, there was a trend towards a difference in Progression-free survival (PFS) ($p = 0.09$, Fig. S3A) and a significant Overall Survival (OS) difference ($p = 0.03$, median: 13.8 months in the SALL4 upregulated vs. not reached in the SALL4 downregulated, Fig. 2D), indicating that SALL4 upregulation may be associated with worse survival. Furthermore, there was significantly better PFS and OS in the responder/SALL4down group than in the other three subgroups ($p = 0.03$ in PFS; $p = 0.04$ in OS).

While the median survival in PFS or OS was not reached in the responder/SALL4down subgroup, strikingly, in the responder/SALL4up group, the median survival in PFS and OS was a dismal 7.9 months and 8.0 months, respectively (Fig. S3B & S3C).

The demographic and clinical-biological characteristics between the SALL4up and the SALL4down patients are described in Table S1. The median follow-up was 14.1 months (IQR: 9.0–20.4) after starting AZA. We further conducted Cox proportional-hazards model analysis for prognostic factors on OS based on characteristics at diagnosis, mutational profile20 (Fig. S4) and SALL4 expression changes. In multivariate
In conclusion, SALL4 is an oncogene that plays an important role in MDS and AML. Using a novel CRISPR-DiR approach, we have identified a critical CpG island responsible for SALL4 expression. Furthermore, HMA treatment can lead demethylation of this region and upregulation of SALL4. This is the first report of HMA treatment inducing upregulation of an oncogene that is associated with poor outcome in HR-MDS patients. Our observation on SALL4 up responders suggests that this group needs close monitoring.
Acknowledgements

This study was supported by AIRC 5x1000 call “Metastatic disease: the key unmet need in oncology” to MYNERVA project, #21267 (Myeloid Neoplasms Research Venture Airc). A detailed description of the MYNERVA project is available at http://www.progettoagimm.it. This work was also by Singapore Ministry of Health's National Medical Research Council (Singapore Translational Research (STaR) Investigator Award, D.G.T.; NMRC/OFIRG/0064/2017); Singapore Ministry of Education under its Research Centres of Excellence initiative; NIH/NCI Grant R35CA197697 and NIH/NHLBI P01HL131477 (D.G.T); as well as NIH/NHLBI Grant P01HL095489 (L.C.); Xiu research fund (L.C); National Health and Medical Research Council of Australia (JEP: APP1024364, APP1043934, APP1102589; AU: APP1163815) and Leukemia & Lymphoma Society USA Translational Program Grant 6589-20 (AU).
Author contributions

Conception and design: Y.C. Liu, D.G. Tenen, L. Chai

Development of methodology: Y.C. Liu, Y.V. Liu

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): E. Fabiani, M.T. Voso, G. Falconi, L. Valentini, C. Gurnari, J. Yang, A. Jones, J. Kwon

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): Y.C. Liu, E. Fabiani, M.T. Voso, H. Yang, J. Kwon

Writing, review, and/or revision of the manuscript: J. Thoms, A. Unnikrishnan, J. Pimanda, Y.C. Liu, E. Fabiani, J. Kwon, C. Gao, M.T. Voso, D.G. Tenen, L. Chai

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases):

E. Fabiani, M.T. Voso, J.Kwon

Study supervision: M.T. Voso, D.G. Tenen, L. Chai
References

Figures Legends

Figure 1. Demethylation of a critical CpG island and SALL4 expression in leukemic cells treated with CRISPR-DiR and HMA. (A) Schematic of the CpG region within the SALL4 5’ UTR – exon 1– intron 1 region. (B) Bisulfite sequencing after CRISPR-DiR of HL60 cells transduced with either a non-targeting negative control guide RNA (DiR_NT) or a targeting guide RNA (sgSALL4_1), leading to demethylation (DiR_SALL4). (C) SALL4 transcript (copies per cell assessed by ddPCR) upregulation in HL-60 cells treated with CRISPR-DiR; (D) SALL4 copies per cell by ddPCR in HL-60 cells treated with DAC; (E) Western blot in HL-60 cells treated with DAC; (F) Methylation profiling in HL-60 cells untreated (HL60_NT) versus treated with 250 nM DAC (HL60_250); (G) SALL4 transcripts (copies per cell assessed by ddPCR) in K562 cells treated with DAC; (H) Western blot in K562 cells treated with DAC; (I) Methylation profiling in K562 cells treated with DAC. For panels D to I, treatment was for 5 days.

Figure 2. (A) Waterfall plot of log₂ fold change of SALL4 in 25 patients after 4 cycles of AZA treatment; Expression changes in SALL4 mRNA from 25 patients with paired BM-MNC samples before and after 4 cycles of AZA treatment were measured by qRT-PCR. Ten out of the 25 patients (40%) had ≥ 2 -fold increase in SALL4 expression (SALL4^{up}) whereas 15 patients (60%) had ≥ 2 - fold decrease in SALL4 expression (SALL4^{down}) after four cycles of AZA treatment. The median log₂ fold change for SALL4^{up} was 2.78 (IQR: 2.15-5.65), whereas SALL4^{down} was -2.25 with IQR from -1.26 to -4.45. (B) Methylation changes after 4 cycles of AZA treatment in 4 patients in which SALL4 is upregulated; t(0) is baseline, t(4) is after 4 cycles of treatment. (C) Methylation changes after 4 cycles of AZA treatment in 3 patients in which
SALL4 is downregulated; $t(0)$ is baseline, $t(4)$ is after 4 cycles of treatment. (D) Overall survival (OS) between SALL4up and SALL4down.