The change pattern and significance of IgM and IgG in the progress of COVID-19 disease

Xuzhen Qin1#, Jun Shen2#, Erhei Dai3#, Haolong Li1#, Guodong Tang5, Lixia Zhang4, Xin Hou1,
Minya Lu1, Xian Wu1, Simeng Duan1, Jingjia Zhang1, Yongzhe Li1*

1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, China
2 Department of Administrative Office, Haihe University, Tianjin, China
3 Division of Liver Disease, The Fifth Hospital of Shijiazhuang, Hebei Medical University, Shijiazhuang, China
4 Department of Clinical Laboratory, Haihe University, Tianjin, China
5 Department of Cardiology, Beijing Hospital of the Ministry of Health, Beijing, China
* corresponding author
E-mail addresses: yongzhelipumch@126.com (Y. Li)
they contributed equally

Background: To investigate the significance of IgM and IgG in the progress of COVID-19.

Method: A multicenter cross-sectional study conducted in suspected and confirmed patients from four hospitals of China and a cohort study to identify the change pattern and significance in the process of COVID-19 disease.

Results: A total of 571 patients were enrolled in the cross-sectional study, including 235 confirmed SARS-CoV-2 infection with 91.9% patients IgG positive and 92.3% IgM positive. 30 patients diagnosed with SARS-CoV-2 infection were enrolled in the cohort study for flowing-up in 20 days. The peak of IgM and IgG reached in 10th and 20th day separately after symptom onset. The relationship between clinical classification and serological antibodies were analysed. The positive rate of COVID-19 IgG and IgM increased along with the clinical classification and the delay of treatment time.
Conclusion: We demonstrated the kinetics of IgM and IgG SARS-CoV-2 antibody in COVID-19 patients, which may contribute to explain the results of IgM and IgG SARS-CoV-2 antibody test and predict the prognosis of COVID-19.

Key words: reference interval, specific protein, China

Introduction

2019 coronavirus disease (COVID-19) caused a great pandemic in all of the world. Until June 1, more than 6 million cases have been diagnosed COVID-19 and the mortality reached nearly 0.6% according to World Health Organization (WHO) reports. Chinese government and medical workers have taken great effort to prevent the distribution of this pandemic in nationwide. Facing with this unknown infectious disease, how to treat and avoid virus transmission is an urging question. The Chinese diagnosis and therapeutic guideline has been published 7 times[1]. More and more detailed information of COVID-19 got to known by the public.

One of the dilemma in the treatment of COVID-19 is the false negative rate of nucleic acid tests. The reasons cover several aspects including the low virus concentration in the upper respiratory tract, unstandardized sample collecting method, various performance of gene application method, decrease of viral load after one-week since disease onset[2,3]. Antibody tests has been confirmed a good supplement for nucleic acid tests. Since the immunity reaction were involved in the progress of COVID-19 disease, serological assays to detect antibodies has been developed and practiced in many countries [4]. It was used as an immunity passport or proof for the previous infection or asymptomatic infection or immunization. Yet, there's still many challenges and unknown knowledge for the clinical
practice of COVID-19 antibodies, including the stable performance of the products, the prevalence of antibodies in various regions, the protection role of antibodies and the duration and relationship with the clinical stage. To better understand these questions with COVID-19 serological tests, we arrange this study in multi-center of China.

Methods

Patients

This study is a multi-center study with patients from Peking Union Medical College Hospital, Tianjin Haihe Hospital, the Fifth Hospital of Shijiazhuang and Zhongnan Hospital of Wuhan University. It divided into a cross-sectional study with 576 patients and a cohort study with 30 patients. All the clinical data were retrieved from Laboratory Information System (LIS) and Hospital Information System (HIS) of enrolled hospitals. This study has been approved by the ethic committee of Peking Union Medical College Hospital. Informed consent is waived because of the use of the remaining samples.

Measurement and classification

IgM and IgG antibody against COVID-19 in plasma and serum were tested by a chemiluminescence assay or an immuno-chromatographic assay developed by Beier bioengineering company. Cutoff values of IgM and IgG were both used as 5 CU. Clinical classification referred to Chinese Recommendations for Diagnosis and Treatment of SARS-CoV-2 infection version 7 as light, normal, heavy, critical. According to the time interval from sample collecting to disease onset, patients were divided into three groups as ≤7 days, 8-15 days and >15 days.

Statistical Analysis

Continue variables were described by mean with standard deviation for normal distribution data and median with interquartile range (IQR) for skewed distribution data. Comparison between groups using Kruskal-Wallis tests for continuous variables and chi-square test for
categorical variables. All statistical analysis was conducted by SPSS 12.0 (SAS Institute, Cary, NC, USA).

Results

The demographic characters of enrolled patients

A total of 571 patients were enrolled in this study, of which 144 patients from Beijing, 147 patients from Tianjin, 29 patients from Wuhan, and 241 from Shijiazhuang, respectively. 235 patients were diagnosed COVID-19 disease. The basic demographic is shown in Table 1. Among of enrolled patients, 235 participants were confirmed COVID-19 and 336 participants excluded COVID-19 according to the clinical diagnosis. There were little more male patients than female patients in this study. COVID-19 positive patients in Wuhan and COVID-19 negative patients in Tianjin were older than other patients. In 235 confirmed COVID-19 patients, altogether 216 of 240 (91.9%) patients tested IgG positive and 217 of 240 (92.3%) tested IgM positive.

Antibodies concentration stratified by clinical classification

41 patients diagnosed COVID-19 with clinical classification information from Beijing and Wuhan were analyzed in Table 2. Although the number of patients with light symptom was only one, we could see the increase of median age, the concentration and positive rate of COVID-19 IgG and IgM along with the aggravation of illness.

Comparison of COVID-19 IgG and IgM in diagnosed patients between regions and symptom onset intervals
All patients diagnosed in cross-sectional study have collected the time interval from symptom onset to sampling. COVID-19 IgG and IgM positive rate stratified by symptom onset interval was shown in Figure 1A. The positive rate gradually increased with the delay of treatment time. Longer than 15 days the positive rate of COVID-19 IgG was closed to 100%. Figure 1B and 1C display the median of concentration of COVID-19 IgG and IgM in various regions. Obviously, the concentration of COVID-19 IgG and IgM rose up in 8-15 days in all regions. The concentration of IgM in Wuhan and IgG in Tianjin ascended distinctively step by step along with time interval.

The dynamic characteristics of IgM and IgG in the cohort study

30 patients diagnosed with COVID-19 disease from Tianjin were enrolled in this cohort study to investigate the dynamic change of IgM and IgG concentration. The change pattern of IgM and IgG are shown in Figure 2. The concentration of IgM was higher than IgG before the 15th day after the symptom onset. Subsequently, the concentration of IgG was higher than IgM. On the 10th day the concentration of IgM reached the peak after the symptom onset and then decreased slowly. While the concentration of IgG on the 20th day still kept the tendency of increase.

Discussion

In this study, we investigated the overall profile and kinetics of the COVID-19 antibody response in four regions of China, including Wuhan, Beijing, Tianjin, Shijiazhuang, of which Wuhan is a high incidence area of SARS-CoV-2 infection disease in early 2020[5]. In the cross-sectional study, 91.9% of 235 patients confirmed SARS-CoV-2 infection tested IgG positive and 92.3% IgM positive, accordingly 2.1% of 336 suspected patients tested IgG positive and 5.4% IgM positive. 30 patients diagnosed with SARS-CoV-2 infection were enrolled in the cohort study for flowing-up in 20 days. The peak of IgM and IgG reached in
10th and 20th day separately after symptom onset. The positive rate of COVID-19 IgG and IgM increased along with the clinical classification and the delay of treatment time.

Facing to the worldwide prevalence of COVID-19 disease, urgent demand has spawned a large number of in vitro diagnostic products. The range of sensitivity and specificity of these products was reported as 88-100\% and 75-100\%[6-8](Shaw Andrew M, Hyde Christopher, Merrick Blair et al. Real-world evaluation of a novel technology for quantitative simultaneous antibody detection against multiple SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome.[J]. Analyst, 2020, undefined: undefined.)(GeurtsvanKessel Corine H, Okba Nureen M, Igloi Zsofia et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment.[J]. Nat Commun, 2020, 11:3436.) In our study, approximately 8\% COVID-19 confirmed patients were negative for IgM or IgG, respectively. Possible reasons might lead to negative results for confirmed patients. Firstly, various detection time points of patients were an important factor[10,11], since it was reported that the antibody responses to SARS-CoV-2 are three days later from symptom onset or one week later after infection with SARS-CoV-2[12]. In our study Figure 1A also shows antibody positive rate increased along with the symptom onset intervals, the seroprevalence of IgM and IgG were 81\% and 83\% less than day 7 after onset of symptoms and reached over 95\% in two weeks later, a little higher than a previous study[9]. Therefore, the production of specific antibody exists window phase after individuals were infected with SARS-CoV-2. COVID-19 patients tested antibody in window phase also could lead to false-negative result due to the humoral immunity not respond during the early infection period[13,14]. Secondly, COVID-19 patients may not produce the specific antibody test against SARS-CoV-2 in essence. Some COVID-19 patients were negative for IgM and IgG from onset to recovery[15], which indicated that innate immune could make the virus clearance without the function of adaptive immune[14,15]. We found that the seropositive rates for IgM and IgG antibody in COVID-19 patients from Shijiazhuang and Tianjin were higher than COVID-19 patients from Beijing and Wuhan. The varied seropositive rates in different regions were likely associated with the detected time point of antibody tests which may affect the false negative results. Additionally, the sample size for COVID-19 patients are less in Beijing and Wuhan, which also may lead to the seropositive rates for IgM and IgG antibody are lower[16]. For non-infected patients there's also 2.1\% for IgG positivity and 5.4\% IgM positivity. There's
many reasons for the false positive results, including immune disease, cancer, drug usage and other infection, etc[17,18]. So we agree it's not a reliable tests for diagnosis of COVID-19.

The antibody titer in different clinical stages was explored in our study. IgM and IgG antibody titer in severe cases was observed higher than non-severe cases in this study, especially IgG antibody titer is especially higher in heavy cases, however, there was no statistically significant for the small number of cases. Our results were consistent with previous findings. Long et al. has reported that severe cases with higher titer of IgM and IgG antibody compared with non-severe cases[19]. Meanwhile, Qu et al. showed that the critical COVID-19 patients with more intensive IgM and IgG antibody responses compared with non-critical patients[20]. The two studies indicated that IgM and IgG antibody titer may be associated with the disease severity of COVID-19 patients, which could be explained by a high level of virus load or inflammatory storm in serve or critical cases[21]. Ages of severe cases were older than non-severe cases, but the difference was no statistical significance. Of note, many studies have reported that non-survivors were older than survivors in critical cases of COVID-19[22-24], especially the patients combined with basic diseases, including hypertension, coronary artery disease and diabetes[24,25]. Elder age was one of the risk factors for infected with SARS-CoV-2 and more easily progressed to critical cases with poorer prognosis[26]. Further study with more cases need to be organized to confirm our results.

The kinetics of IgM and IgG antibody responses in COVID-19 patients contribute to understand the immune responses caused by SARS-CoV-2. Figure 2 shows that the IgM antibody titer reached a peak earlier than the IgG antibody. Limited to the follow-up period, the peak titer of IgG antibody was not observed. Andrea et al. reported that IgM antibody levels peaked at 10–12 days and significantly declined after 18 days[27], similar with our study. It was reported that IgG antibody usually appeared in the late stage of infection and it can persist beyond 7 weeks[10]. Although antibody test didn’t mean that COVID-19 patients have produced protective antibody against SARS-CoV-2, due to many detected antibodies
were not neutralizing antibodies\cite{14,15,28}. Some studies has shown COVID-19 patients with high titer of IgG might have produced neutralizing antibody which can make virus clearance\cite{29,30}. Therefore, the results of COVID-19 antibody test should be explained with caution when used for evaluating the patient's condition.

We conducted a multi-center study and a cohort study to investigate the change characters of IgM and IgG in the progress of COVID-19 disease to better understand the immune response in COVID-19 patients after they infected with SARS-CoV-2. However, further research were needed for more cases enrolled. Additionally, individuals with asymptomatic SARS-CoV-2 infection were not included in our studies, so an epidemiological investigation needed to conduct.

Acknowledgments: The manufacturer provided equipment and reagent for this study, but had no role in directing the study or influencing the study outcomes.

Financial support: This research was supported by grants from CAMS Innovation Fund for Medical Sciences (CIFMS) (2020-I2M-CoV19-001, 2017-I2M-3-001 and 2017-I2M-B&R-01), the National Natural Science Foundation of China Grants (81671618, 81871302).

Conflicts of Interest: All authors declare no conflicts of interest.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Competing interests: Authors state no conflict of interest.
Informed consent: Informed consent was waived for remaining samples left after measurement in this study.

Ethical approval: The study has been cleared by the ethnic committee of Peking Union Medical College Hospital (ZS-2303).

References

SARS-CoV-2 antigens in a cohort of patients presenting with COVID-19 syndrome. The Analyst. doi:10.1039/d0an01066a

Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circulation research 126 (12):1671-1681. doi:10.1161/circresaha.120.317134

| Table 1 The demographic of enrolled patients in cross-sectional study |
|------------------------|----------------|--------|---------|--------|--------|
| | Beijing | Tianjin | Wuhan | Shijiazhuang | Sum | P value |
| COVID-19 confirmed patients |
| Cases | 12 | 127 | 29 | 67 | 235 | - |
| interval from onset to measurement |
| average | 3.3 | 104 | 20.9 | 13.5 | - | - |
| p value | | | | | | |
Table 2 Antibodies concentration stratified by clinical classification

<table>
<thead>
<tr>
<th>Clinical Classification</th>
<th>Light</th>
<th>Normal</th>
<th>Severe</th>
<th>Sum</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1</td>
<td>34</td>
<td>6</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>25</td>
<td>52.5(39.8, 64.8)</td>
<td>67.0(55.5, 71.5)</td>
<td>60.0(39.5, 67.5)</td>
<td>0.09 1</td>
</tr>
<tr>
<td>Male</td>
<td>0.0%</td>
<td>50.0%</td>
<td>33.3%</td>
<td>51.2%</td>
<td>0.36 6</td>
</tr>
<tr>
<td>Concentration of IgG</td>
<td>9.1</td>
<td>22.2(3.9, 89.4)</td>
<td>157.9(28.8, 190.7)</td>
<td>30.6(8.4, 6)</td>
<td>0.05 6</td>
</tr>
<tr>
<td></td>
<td><0.25</td>
<td>0.25</td>
<td>0.67</td>
<td>0.74</td>
<td>1.0</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Positive rate of COVID-19 IgG</td>
<td>100.0%</td>
<td>70.6%</td>
<td>100.0%</td>
<td>75.6%</td>
<td>0.25</td>
</tr>
<tr>
<td>Concentration of COVID-19 IgM</td>
<td>8.17</td>
<td>27.9 (4.4, 145.6)</td>
<td>29.7 (8.6, 188.6)</td>
<td>25.5 (5.2, 152.7)</td>
<td>0.67</td>
</tr>
<tr>
<td>Positive rate of COVID-19 IgM</td>
<td>100.0%</td>
<td>73.5%</td>
<td>83.3%</td>
<td>75.6%</td>
<td>0.74</td>
</tr>
</tbody>
</table>

1A

![Graph showing antibody positive rate](image)

1B

![Bar chart showing median concentration of IgM](image)
Figure 1 The positive rate and concentration comparison of COVID-19 IgG and IgM in patients diagnosed stratified by regions and symptom onset interval

1A The positive rate of COVID-19 IgG and IgM stratified by symptom onset interval

1B The positive rate of COVID-19 IgM stratified by symptom onset interval and region

1C The positive rate of COVID-19 IgG stratified by symptom onset interval and region
Figure 2 The change pattern of antibodies against SARS-CoV-2 of COVID-19 disease in continuous monitoring patients