Multisectoral collaboration for pandemic response and operational support of critical care and emergency departments

RC Christofferson¹,²*, Hollis R. O’Neal³, Tonya Jagneaux³, Catherine O’Neal³, Christine S. Walsh¹, E. Handly Mayton¹, Luan D. Vu⁴, Abigail I. Fish⁵, Anh Phan⁴, Thaya E. Stoufflet¹, Jonathan R. Schroeder⁶, Morgan Walker³, Erik A. Turner¹, Christi G. Pierce⁶, K. Scott Wester⁶, Connie DeLeo⁷, Edgardo Tenreiro⁷, Beverly W. Ogden⁸, Stephania A. Cormier⁴,⁹

¹Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
²Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, USA
³Louisiana State University Health Sciences Center, Baton Rouge, LA, USA
⁴Pennington Biomedical Research Center, Baton Rouge, LA, USA
⁵Environmental Health and Safety, Louisiana State University, Baton Rouge, LA, USA
⁶Our Lady of the Lake Regional Medical Center, Baton Rouge, LA, USA
⁷Baton Rouge General Hospital, Baton Rouge, LA, USA
⁸Woman’s Hospital, Baton Rouge, LA, USA
⁹College of Science, Louisiana State University, Baton Rouge, LA, USA

Corresponding Author:

Rebecca C. Christofferson, PhD
Assistant Professor
Pathobiological Sciences
LSU School of Veterinary Medicine
225-578-9864 (o)
225-578-9701 (f)
Rcarri1@lsu.edu
Abstract:

Background: In March 2020, an influx of admissions in COVID-19 positive patients threatened to overwhelm healthcare facilities in East Baton Rouge Parish, Louisiana. Exacerbating this problem was a shortage of diagnostic testing capability, resulting in a delay in time-to-result return. An improvement in diagnostic testing availability and timeliness was necessary to improve the allocation of resources and ultimate throughput of patients. The management of a COVID-19 positive patient or patient under investigation requires infection control measures that can quickly consume personal protective equipment (PPE) stores and personnel available to treat these patients. Critical shortages of both PPE and personnel also negatively impact care in patients admitted with non-COVID-19 illnesses. **Methods:** A multisectoral partnership of healthcare providers, facilities and academicians created a molecular diagnostic lab within an academic research facility dedicated to testing inpatients and healthcare personnel for SARS-CoV-2. The purpose of the laboratory was to provide a temporary solution to the East Baton Rouge Parish healthcare community until individual facilities were self-sustaining in testing capabilities. We describe the partnership and the impacts of this endeavor by developing a model derived from a combination of data sources, including electronic health records, hospital operations, and state and local resources. **Findings:** Our model demonstrates two important principles: the impact of reduced turnaround times (TAT) on potential differences in inpatient population numbers for COVID-19 and savings in PPE attributed to the more rapid TAT. **Interpretation:** Overall, we provide rationale for and demonstration of the utility of multisectoral partnerships when responding to public health emergencies.

Key words: COVID-19, SARS-CoV-2, turnaround-time, emerging viruses
INTRODUCTION

SARS-CoV-2, the etiologic agent of the disease known as COVID-19, is a member of the Betacoronavirus genus in the Coronaviridae family. Following the first reported case of COVID-19 in December of 2019 in Wuhan, China, the virus spread rapidly globally. On January 19, 2020 the first presumptive COVID-19 case in the United States occurred in the state of Washington, and, on March 17, 2020, East Baton Rouge Parish (EBRP) announced its first case of COVID-19.

Outbreaks place extraordinary stress on healthcare systems, and a primary goal of public health response is to avoid accelerated utilization and depletion of resources. Data from the Italian outbreak demonstrated that treatment of COVID-19 rapidly exhausted such resources as ICU beds, ventilators, and personnel. The short period of time in which these cases presented to healthcare facilities inhibited the ability to expand hospital capacity and simultaneously consumed materials through thinly stretched supply chains. The management of a COVID-19 positive patient or Patient Under Investigation (PUI) requires infection control measures including strict PPE utilization and, and, due to the complexity of patient care, under ideal labor supply conditions, a reduced patient to nursing staff ratio. Early depletion of resources due to an influx of patients may result in rationing of needed interventions and, ultimately, consideration of crisis standards of care. By late-March 2020, an influx of COVID-19 positive patients threatened to overwhelm the two major hospitals in COVID-19-unit, which represent 75% of the healthcare market’s inpatient admissions.

In both of these hospitals, clinicians admitted PUI’s to cohorted units until confirmation of by SARS-CoV-2 nucleic acid amplification. Because the hospitals maintained PUI’s in COVID-specific units, and because there was no specific treatment for COVID-19, a positive
result for SARS-CoV-2 did not impact individual patient care; however, clinicians acted on the presumptive negative results with admission to a non-COVID-19-unit. This action often resulted in unencumbered pursual of the differential diagnosis, relief of PPE use, and bed turnover for subsequent COVID-19 patients 10,11.

During the first weeks of the outbreak, there was a shortage of diagnostic testing ability in the EBRP area. The Louisiana Office of Public Health Laboratory became overwhelmed with specimens from across the state, and commercial laboratories were overwhelmed with specimens from around the country. Furthermore, the local hospitals did not have in-house capability for SARS-CoV-2 testing. However, the Louisiana State University School of Veterinary Medicine (LSU SVM), housed faculty with expertise in molecular diagnostics, including real-time Reverse Transcription Polymerase Chain Reaction (rt-PCR) and human respiratory pathobiology and viral pathogens. Recognizing the unique capabilities of these faculty and their laboratory, in an effort to improve local diagnostic testing capacity and turnaround time (TAT), a multisectoral partnership of healthcare providers, facilities, and academicians repurposed academic research facilities as a dedicated COVID-19 inpatient clinical testing entity, named River Road Testing Lab (RRTL).

The following analysis of the RRTL demonstrates how research laboratories can complement existing diagnostic infrastructure in times of crisis due to an emerging infection/pandemic, until commercial and hospital-based laboratories are able to bear the burden of testing. Further, a simple data-driven model demonstrates the differences in COVID-19 inpatient population numbers and PPE usage in scenarios where a RRTL-like, dedicated laboratory with accelerated TAT compared to the scenario where no RRTL-like laboratory exists. The study of
the impact of the RRTL on the Baton Rouge area was approved by the LSU Health Sciences Center – New Orleans Institutional Review Board (LSU HSC IRB #20-043).

RRTL Formation

The creation of RRTL began in early March 2020 (Figure 1), prior to the first confirmed case in COVID-19-unit, by exploring supply chain options for testing reagents and supplies. On March 16, physician-scientists from the area hospitals approached the LSU SVM faculty about both supplying viral transport media (VTM) and the potential for diagnostic testing. Also, on this date, the FDA issued a “guidance to provide a policy to help accelerate the availability of novel coronavirus (COVID-19) diagnostic tests developed by laboratories and commercial manufacturers during the public health emergency 12.” With administrative assistance from area hospitals for navigation of the federal regulations and certification processes, RRTL received the required regulatory approvals including CLIA certification and an Emergency Use Authorization (EUA) Protocol for a lab developed test to the U.S. Food and Drug Administration. These efforts

Figure 1: Timeline for establishment of River Road Testing Laboratory (RRTL) at Louisiana State University.
RRTL served two major purposes during this first wave of COVID-19 in EBRP: supply of viral testing kits and testing of inpatients. First, RRTL made and distributed nearly 8,000 viral testing kits consisting of tubes, swabs, and VTM to local healthcare, with assistance from volunteers from hospital and other academic partners. These kits were critically important, as they enabled testing despite compromised supply chains amid the growing epidemic in Europe, Washington State, New York City (NYC), and elsewhere. RRTL performed the majority of its assays on these testing kits. RRTL received strong support from LSU administration as well as state and federal representatives of Louisiana. The Baton Rouge Area Foundation, a local area philanthropic organization, Our Lady of the Lake Regional Medical Center, and Baton Rouge General Medical Center provided financial and personnel support.

The day-to-day testing team operated under the direction of a clinical laboratory medical director. The testing team was comprised of two senior scientists, two post-doctoral researchers, three research associates, and three graduate students. The clinical team consisted of three faculty physicians and one chief resident. In addition, data and patient information were collected and managed using REDCap electronic data capture tools hosted at LSUHSC School of Public Health – New Orleans, with data entry performed by volunteers and team members from the hospitals and clinical partners. The process flow of samples tested by RRTL on a typical day is shown in Figure S1.

The typical daily testing capacity was 95 unique samples, with a maximum capacity of 190 samples. This meant that RRTL also was able to run samples from additional healthcare facilities, institutions, as well as healthcare workers and first responders. RRTL was the primary testing site for the area’s two largest hospitals from March 23 through April 22, 2020.
period between April 23 and May 15 served as a transition period, when local hospitals were increasing in-house testing capacity. By May 15, RRTL had run 3,857 samples since opening on March 23. The overall positivity rate was 33%, including 23·6% of hospitalized inpatients, meaning that RRTL was able to quickly provide operationally actionable results to move over 76·4% of tested patients out of COVID-19 inpatient units, provided there was no clinical or operational indication to keep the patient in the unit. The ages ranged from a premature infant to a 99-year-old patient. The TAT (defined as the time of collection to the time of result reporting) for the period of March 23, 2020 to May 15, 2020 was median of 1·67 days from the time of collection (IQR [1·6, 2·63]).

Data and Model formulation

We wanted to estimate the impact of RRTL compared to “what if we had not formed RRLT?” To estimate this impact, a model was developed to assess the time of March 23 – April 22, 2020 when RRTL was the primary testing laboratory for two major hospitals. Daily admissions of PUI’s are from a hospital partner data (Figure 2). Daily PUI’s included any patient with symptoms that raised suspicion for COVID infection, COVID exposures, and/or incomplete resolution of prior COVID infection. Based on hospital practice, movement out of the COVID-19-unit population required a ND test result or discharge. We provide details in the Supplemental Information, a schematic in Figure S2, and provide an overview below.
The model updates the population of the COVID-19-unit daily to include daily admissions of PUI’s based on data from a hospital partner (Figure 2). Daily PUI’s included any patient with symptoms that raised suspicion for COVID infection, COVID exposures, and/or incomplete resolution of prior COVID infection. Based on hospital practice, clinicians treated these patients as potentially infected until tests results returned. Movement out of the COVID-19-unit population required a ND test result or discharge. A schematic of the model is given in supplemental Figure S2.

At each timepoint i, the number of individuals comprising the COVID-19-unit (C_{19U}) population was calculated as:

$$C_{19U_i} = C_{19U_{i-1}} + A_i - NT_i - E_i$$

where $C_{19U_{i-1}}$ is the C_{19U} yesterday ($i-1$), A_i is the number of new PUI today, NT_i is the number of ND test results at time i, and E_i is the number of patients that egress from the COVID-19-unit at time i. NT_i was determined by patient data from hospitals based on the % positivity.
associated with the testing date (Supplemental Figure S3). NTi was further informed by TAT so that the individuals with a ND result at time \(i\) are discharged at time \(i+TAT\).

TAT for RRTL was determined from RRTL records where the median TAT was 1.67 and the IQR was between 1.6 and 2.63, with a minimum of half a day and a maximum of just under 3 days post-collection. TAT for RRTL was thus defined daily by drawing a whole number between 1 and 3 from and uniform distribution. The TAT of non-RRTL tests was approximated by investigation of two days during peak PUI rates (April 4-5, 2020) where RRTL was offline and all samples were sent to other laboratories (Figure S4). Using this data, individuals not tested by an RRTL-like entity would have a TAT corresponding to that distribution, excluding outlier TAT of 9 and 13 days (Figure S4).

Data was also provided from partner hospitals to estimate the egress from COVID-19-unit based on length of stay (LoS) data provided (Supplemental Figure S5), which includes both recovery and mortality. Patient data from sampled records of SARS-CoV-2 positive individuals (n=108) indicated that 16% of patients had a length of stay of up to 1 day, 44% had LoS between 2 and 6 days, 17% between 7 and 10 days, 7% between 11 and 13 days, and the remaining 16% between 14 and 37 days (Supplemental Figure S5). Daily egress from the COVID-19-unit population was updated daily based on this distribution.

Three scenarios were considered: 1-2) RRTL capacity of only 25% or 50% of inpatient and 3) the actual RRTL capacity for testing 90% of COVID-19 inpatients. These scenarios were then compared to one where no RRTL was formed, and thus TATs were consistently longer. For all scenarios, we realized 1000 simulations and the mean number of patients in the COVID-19-unit population daily for each scenario was calculated. Projected PPE utilization impacts were calculated by estimating the number of PPE sets (e.g., gloves, masks, gowns) used daily per each
individual in the COVID-19-unit as 23 per patient per day (Source: onsite counts performed by COVID-19-unit team).

Results of model to estimate impacts of accelerated TATs

Comparison of scenarios where an RRTL-like laboratory to a scenario with no dedicated laboratory, and thus consistently higher TATs, demonstrates that the formation of RRTL had a critical impact. Further, even smaller-scale operations could contribute meaningfully (Figure 3). Had RRTL accounted for just 25% of inpatient COVID-19 testing load, the highest one-day difference in COVID-19-unit population was 22, with a maximum savings of 506 of each type of PPE (masks, pairs of gloves, gowns, face shields, and goggles) that day. Cumulatively, there was a savings of 5,681 sets of PPE (247 total patient difference). At 50% capacity, RRTL would have a maximum impact of 30 patient-difference, corresponding to 690 sets of PPE that day and a cumulative PPE savings of 8,096 sets (352 total patients).

Finally, the model simulated the actual RRTL capacity (90% of COVID-19 inpatients) and estimate the impact of efforts. The maximum one-day difference in a COVID-19-unit population was 50 patients, with 11 consecutive days of patient population differences over 25 patients compared to no RRTL. The maximum daily savings of PPE was estimated to be 1,150 sets, with a cumulative savings of 11,316 units of PPE (497 total patients).
Discussion

State government-operated reference laboratories and often commercial laboratories service very broad geographic ranges, while a smaller, dedicated lab can focus on local demands and alleviate the burden on reference laboratories while keeping TAT short. Through the multi-sectoral partnership of academic biomedical laboratories, higher education administration, hospital physicians / physician-scientists, hospital administration, and local and state philanthropic and government officials, RRTL filled two major gaps in a crisis: availability of testing kits and CVID-19 testing capacity.
Intuitively, accelerated results would be beneficial. However, model results enable quantification of differences between what may have been had there been no RRTL laboratory. Model results suggest that faster TAT for even smaller proportions of inpatients (25%, e.g.) significantly impact hospital resource caches and bed capacity. Understanding this impact could prove critical should an expected second wave of COVID-19 illness be as big, or larger, than the first. Hospital administrators are confident that having access to the RRTL resource and rapid testing TAT significantly impacted the hospital’s ability to effectively manage COVID-19 patients, conserved critical PPE and supplies, and contributed to the overall efficiency while managing hospital operations in a pandemic. Furthermore, the impact of RRTL on the morale of local healthcare providers is immeasurable, as the impact of local expertise and personnel on the attitudes of providers proved invaluable.

Despite the positive contribution of RRTL, the repurposing of an academic virology lab for diagnostic testing – especially within the timeframe that was accomplished here – was not without challenges, including the cross-translation of regulatory lexicon and scientific communication in the setting of an academic partnership with clinical laboratory, hospital administration, finance, and operations. Of the lessons learned, there are five major take-aways that other labs may encounter as COVID-19 transmission continues. First, partnerships with medical and clinical administration are critical for transition from an academic research lab to a CLIA-approved laboratory with the data and administrative capabilities to report actionable results. Proper data management and reporting architecture are necessary; integrating into existing frameworks used by hospitals was the most efficient route. Second, careful consideration should be made about converting what is often older laboratory space into a lab designed to have a clean-to-dirty flow (one-way flow) \(^1\). The RRTL process involved several
discrete checkpoints to keep contamination from occurring, including daily decontamination of all laboratory spaces, and development of process flow that created as close to a one-way flow as possible. Third, Louisiana’s outbreak occurred early relative to most states, though it was somewhat coincident with the large-scale outbreak in NYC and the ongoing transmission in Washington state \(^4\)\(^,\)\(^18\). Even so, we experienced significant supply chain issues despite early preparation prior to the case surge in both Louisiana and NYC, that required direct resolution of issues with the vendors themselves. We strongly suggest that long-term supply chain continuity be a major part of planning and regularly updated, as expectation is that a second wave could cause interruptions and/or delays.

Fourth, reasonable relaxation of regulatory requirements was a major determinant in the speed at which RRTL came online. While regulatory relief was available midway through the process, RRTL could have come online days sooner had the regulations relaxed sooner. We suggest that as a matter of federal and state policy during times of national emergencies, academic labs that are willing and able should be enabled for fast-tracked approvals under the guidance of professional clinical laboratory partners. This might require existing agreements between willing laboratories and local hospital laboratory directors and/or pathologists to ensure quality control and adherence to best practices. Having in place an existing fast track for qualified academic labs to transition will allow these collaborative efforts to come online quickly to meet the needs of the community. Lastly, the efforts described herein were made possible only by the forethought of the physician scientist to investigate capabilities at LSU, leading to the formation of RRTL. Local hospitals should follow such lead with the understanding that academic laboratories have unique expertise that may be useful in public health emergencies.
Hospital administrators and physicians should engage nearby academic laboratories and work on formulating collaborations and agreements in preparation for future pandemics.

In summary, the formation of a targeted testing lab focused primarily on COVID-19 patients with faster-than-average TAT was critical for maintaining control over hospital capacity and resources. Given this dedicated system, RRTL was able to alleviate stress on state and hospital laboratories for the region serviced and prevent unnecessary stress on healthcare associated with testing backlogs. Academic biomedical laboratories are resourced with the capabilities to have significant impacts for their communities during public health emergencies. Similar to the reserve forces of the United States Armed Forces and National Guard, public health emergency responses should be enabled to draw upon a reserve of healthcare and biomedical research professionals embedded within communities who have the expertise, experience, and knowledge to fill critical gaps in capacity when necessary.

Acknowledgements: We would like to thank the following individuals for their support and insights into this effort from lab establishment to manuscript development: Governor John Bel Edwards, Mayor Sharon Weston Broom, John Spain, Dr. Sam Bentley, Dr. Stacia Haynie, Dr. Tom Galligan, Dr. George Karam, Dr. Joel Silverberg, Dr. Elizabeth Floyd, Jim Teague, Thiago Menegon, Senator Bill Cassidy, M.D., Senator John Kennedy, Walter Braud, Amy Landry, Dr. Christopher Mores, Ginger Gutner, Evelyn R. Christofferson, Christine LeBeouf, Deekshith Mandala, Milad Amini, Michael Zarruk, LeaAnn Teague, all those who took care of our families while we were thoroughly occupied in this endeavor, and all the cats who have zoom bombed the world over.
References: